FORMATION OF AEROSOLS IN THE LOWER TROPOSPHERE
Abstract and keywords
Abstract (English):
This paper overviews the observations of aerosol events in the atmosphere in view of a simple linear model of the formation of nanoaerosols in the atmosphere. The model includes three input functions: the rate of formation of the smallest (1.5 nm in diameter) particles by nucleation, the particle growth rate, and the coagulation sink of newly born particles. Neglecting the self-coagulation of newly born particles (this process is slow) simplifies the growth equation describing time evolution of the particle size distribution. This equation becomes linear and is solved exactly. The most remarkable feature of our consideration is that the particle size distribution can be presented as a superposition of different growth regimes. In particular, if the source-enhanced particle growth is combined with the free regime, the latter produces a running wave that moves to the right along the size axis giving the picture very similar to that observed during the nucleation events. The source-enhanced regime alone can also produce the wave moving to the right but the picture is much less expressive. Another possibility discussed here is an abrupt change in the particle source intensity because of increasing the condensation sink. The source stops producing fresh particles and the whole particle distribution begins to shift to the right along the particle size axis. Similar picture is observed if the nucleation process goes at nighttime and stops at daytime. In this case the particles accumulated during the night grow in the free regime at daytime by condensing the low volatile substances formed in photochemical reactions. The particle size spectra are found for different sets of the parameters. Possible scenarios of nucleation bursts are discussed.

Keywords:
Atmospheric aerosols, mechanisms of formation, nucleation bursts, linear models, nucleation, condensational growth, deposition
Text
Text (PDF): Read Download
References

1. Aalto, P., et al. Physical characterization of aerosol particles during nucleation events, // Tellus, 2001. - v. 53B - p. 344.

2. Adams, P. J., Seinfeld, J. H. Predicting global aerosol size distribution in general circulation models, // J. Geophys. Res., 2002. - v. 107 - no. D19 - p. 344.

3. Adams, P. J., Seinfeld, J. H. Disproportionate impact of particulate emissions on global cloud condensation nuclei concentration, // Geophys. Res. Lett., 2003. - v. 30 - p. 344.

4. Anttila, T., Kerminen, V.-M., Kulmala, M., Laaksonen, A., O'Dowd, C. D. Modelling the formation of organic particles in the atmosphere, // Atmos. Chem. Phys., 2004. - v. 4 - p. 1071.

5. Barrett, J. C., Clement, C. F. Aerosol concentrations from a burst of nucleation, // J. Aerosol Sci., 1991. - v. 22 - p. 327.

6. Boy, M., Kulmala, M. Nucleation events on the continental boundary layer: in uence of physical and meteorological parameters, // Atmos. Chem. Phys., 2002. - v. 2 - p. 1.

7. Boy, M., Rannik, U., Lehtinen, K. E., Tarvainen, V., Hakola, H., Kulmala, M. Nucleation events in the continental boundary layer: Long-term statistical analysis of aerosol relevant characteristics, // J. Geophys. Res., 2003. - v. 108 - no. D21 - p. 4667.

8. Clement, C. F. Solutions of the continuity equation, // Proc. R. Soc., London, 1978. - v. A364 - p. 117.

9. Clement, C. F., Ford, I. J. Gas to particle conversion in the atmosphere: II Analytic models of nucleation bursts, // Atmos. Environment, 1999. - v. 33 - p. 489.

10. Clement, C. F., Pirjola, L., Twohy, C. H., Ford, I. J., Kulmala, M. Analytic and numerical calculations of the formation of a sulfuric acid aerosol in the upper troposphere, // J. Aerosol Sci., 2006. - v. 37 - p. 1717.

11. Dal Maso, M., Kulmala, M., Lehtinen, K. E. J., Mäkelä, J. M., Aalto, P., O'Dowd, C. D. Condensation and coagulation sinks and formation of nucleation mode particles in coastal and boreal boundary layers, // J. Geophys. Res., 2002. - v. 107 - p. 1717.

12. Dal Maso, M., Kulmala, M., Riippinen, I., Hussein, T., Wagner, R., Aalto, P. P., Lehtinen, K. E. J. Formation and Growth of fresh Atmospheric Aerosols: Eight Years of Aerosol Size Distribution Data from SMEAR II, Hyytiälä, Finland, // Boreal Env. Res., 2005. - v. 10 - p. 323.

13. Easter, R. C., et al. MIRAGE: Model description and evaluation of aerosols and trace gases, // J. Geophys. Res., 2004. - v. 109 - p. 323.

14. Elperin, T., Fominykh, A., Krasovitov, B., Lushnikov, A. Isothermal absorption of soluble gases by atmospheric nanoaerosols, // Phys. Rev., 2013. - v. E87 - p. 323.

15. Friedlander, S. K. Smokes, Dust and Haze - New York: Wiley., 1977.

16. Friedlander, S. K. Dynamics of Aerosol Formation by Chemical Reactions - NY: Ann. NY Acad. Sci.., 1983. - 354-363 pp.

17. Griffin, R., Cocker. D. R. III, Flagan, R., Seinfeld, J. H. Organic aerosol formation from the oxidation of biogenic hydrocarbons, // J. Geophys. Res., 1999. - v. 104 - p. 3555.

18. Griffin, R., Dabdub, D., Seinfeld, J. H. Secondary organic aerosol I. Atmospherical chemical mechanism for production of molecular constituents, // J. Geophys. Res., 2002. - v. 107 - no. D17 - p. 3555.

19. Grini, A., Korhonen, H., Lehtinen, K., Isaksen, I., Kulmala, M. A combined photochemistry/aerosol dynamics model: model development and a study of new particle formation, // Boreal Environ. Res., 2005. - v. 10 - p. 525.

20. Hoffmann, Th., Odum, J., Bowman, F., Collins, D., Klockow, D., Flagan, R. C., Seinfeld, J. H. Formation of organic aerosols from the oxidation of biogenic hydrocar-bons, // J. Atmos. Chem., 1997. - v. 26 - p. 189.

21. Janson, R., Rozman, K., Karlsson, A., Hansson, H. C. Biogenic emission and gaseous precursor to forest aerosols, // Tellus, 2001. - v. 53B - p. 423.

22. Kavouras, I. G., Mihalopoulos, N., Stephanou, E. G. Formation of atmospheric particles from organic acids produced by forests, // Nature, 1998. - v. 395 - p. 683.

23. Kerminen, V.-M., Kulmala, M. Analytical formulae connecting the ``real'' and the ``apparent'' nucleation rate and the nuclei number concentration for atmospheric nucleation events, // J. Aerosol Sci., 2002. - v. 33 - p. 609.

24. Kerminen, V.-M., Anttila, T., Lehtinen, K. E. J., Kulmala, M. Parametrization for atmospheric new-particle formation: application to a system involving sulfuric acid and condensable water-soluble organic vapors, // Aerosol Sci. Technol., 2004a. - v. 38 - p. 1001.

25. Kerminen, V.-M., Lehtinen, K., Anttila, T., Kulmala, M. Dynamics of atmospheric nucleation mode particles: timescale analysis, // Tellus, 2004b. - v. B56 - p. 135.

26. Kerminen, V.-M., Pirjola, L., Kulmala, M. How signi cantly does coagulation scavenging limit atmospheric particle production?, // J. Geophys. Res., 2001. - v. 106 - no. D20 - p. 24,119.

27. Kerminen, V.-M., Virkkula, A. , Hillamo, R. , Wexler, A. S. , Kulmala, M. Secondary organics and atmospheric cloud condensation nuclei production, // J. Geophys. Res., 2000. - v. 105 - p. 9255.

28. Korhonen, H., Lehtinen, K. E. J. , Pirjola, L. , Napari, I. , Vehkamaki, H. , Noppel, M. , Kulmala, M. Simulation of atmospheric nucleation mode: a comparison of nucleation models and size distribution representations, // J. Geophys. Res., 2003. - v. 108 - p. 9255.

29. Korhonen, H., Lehtinen, K. E. J., Kulmala, M. Multicomponent aerosol dynamic model UHMA: Model development and validation, // Atmos. Chem. Phys. Discuss., 2004. - v. 4 - p. 471.

30. Kulmala, M. How particles nucleate and grow, // Science, 2003. - v. 302 - p. 1000.

31. Kulmala, M., Tammet, H. Finnish-Estonian air ion and aerosol workshop, // Boreal Env. Res., 2007. - v. 12 - p. 237.

32. Kulmala, M., Dal Maso, M., Mäkelä, J., Pirjola, L., Väkeva, M., Aalto, P., Miikkulainen, P., Hämmeri, K., O'Dowd, C. On the formation, growth and composition of nucleation mode particles, // Tellus, 2001. - v. B53 - p. 479.

33. Kulmala, M., Hari, P., Laaksonen, A., Viisanen, Y. Research unit of physics, chemistry and biology of atmospheric composition and climate change: overview of recent results, // Boreal Env. Res., 2005. - v. 10 - p. 459.

34. Kulmala, M., Kerminen, V.-M., Laaksonen, A. Simulation on the effect of sulfuric acid formation on atmospheric aerosol concentration, // Atmos. Environ., 1995. - v. 29 - p. 377.

35. Kulmala, M., Vehkmäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V.-M., Birmili, W., McMurry, P. H. Formation and growth rates of ultrafine atmospheric particles: a review of observations, // J. Aerosol Sci., 2004a. - v. 35 - p. 143.

36. Kulmala, M., Kerminen, V.-M., Anttila, T., Laaksonen, A., O'Dowd, C. D. Organic aerosol formation via sulfate cluster activation, // J. Geophys. Res., 2004b. - v. 109 - no. D4 - p. 143.

37. Kulmala, M., Laakso, L. , Lehtinen, K. E. J. , Riipinen, I. , Dal Maso, M. , Anttila, T. , Kerminen, V.-M. , Horrak, U. Initial steps of aerosol growth, // Atmos. Chem. Phys., 2004c. - v. 4 - p. 2553.

38. Kulmala, M., Lehtinen, K. E. J., Laaksonen, A. Cluster activation theory as an explanation of the linear dependence between formation rate of 3 nm particles and sulphuric acid concentration, // Atmos. Chem. Phys., 2006. - v. 6 - p. 787.

39. Kulmala, M., Pirjola, L., Mäkelä, J. M. Stable sulfate clusters as a source of new atmospheric particles, // Nature, 2000. - v. 404 - p. 66.

40. Kulmala, M., et al. The condensation particle counter battery (CPCB): A new tool to investigate the activation properties of nanoparticles, // J. Aerosol Sci., 2007. - v. 38 - p. 289.

41. Lehtinen, K. E. J., Kulmala, M. A model for particle formation and growth in the atmosphere with molecular resolution in size, // Atmos. Chem. Phys., 2003. - v. 3 - p. 251.

42. Lehtinen, K. E. J., Dal Maso, M., Kulmala, M., Kerminen, V.-M. Estimating nucleation rates from apparent particle formation rates and vice-versa: revised formulation of the Kerminen-Kulmala equation, // J. Aerosol Sci., 2007. - v. 38 - p. 988.

43. Lushnikov, A. A., Kulmala, M. Foreign aerosol in nucleating vapor, // J. Aerosol Sci., 2000a. - v. 31 - p. 651.

44. Lushnikov, A. A., Kulmala, M. Nucleation burst in a coagulating system, // Phys. Rev., 2000b. - v. E62 - p. 4932.

45. Lushnikov, A. A., Kulmala, M. Flux-matching theory of particle charging, // Phys. Rev., 2004. - v. E70 - p. 046413(1.

46. Lushnikov, A. A., Gvishiani, A. D., Lyubovtseva, Yu. S. Trapping of trace gases by atmospheric aerosols, // Russ. J. Earth Sci., 2013a. - v. 13 - p. 046413(1.

47. Lushnikov, A. A., Gvishiani, A. D., Lyubovtseva, Yu. S. Fractals in the atmosphere, // Russ. J. Earth Sci., 2013b. - v. 13 - p. 046413(1.

48. Lushnikov, A. A., Zagaynov, V. A. , Lyubovtseva, Yu. S. , Gvishiani, A. D. Nanoaerosol formation in the troposphere under action of cosmic radiation, // Atmospheric and Oceanic Physics, 2014. - v. 50 - no. 2 - p. 152.

49. Lyubovtseva, Yu. S., Sogacheva, L., Dal Maso, M., Bonn, B., Keronen, P., Kulmala, M. Seasonal variations of trace gases, meteorological parameters, and formation of aerosols in boreal forests, // Boreal Environ. Res., 2005. - v. 10 - p. 493.

50. O'Dowd, C., Aalto, P., Hämeri, K., Kulmala, M., Hoffmann, T. Aerosol formation: atmospheric particles from organic vapors, // Nature, 2002. - v. 416 - p. 497.

51. Phillips, W. F. Drag on a small sphere moving through a gas, // Phys. Fluids, 1975. - v. 18 - p. 1089.

52. Spracklen, D. V., Carslaw, K. S., Kulmala, M., Kerminen, V.-M., Mann, G. V., Sihto, S.-L. The contribution of boundary layer nucleation events to total particle concentration on regional and global scales, // Atmos. Chem. Phys., 2006. - v. 6 - p. 5631.

53. Stolzenburg, M. R., McMurry, P. H., Sakurai, H., Smith, J. N., Mauldin, R. L., Eisele, F. L., Clement, C. F. Growth rates of freshly nucleated atmospheric particles in Atlanta, // J. Geophys. Res., 2005. - v. 110 - no. D22 - p. 5631.

54. Williams, M. M. R., Loyalka, S. K. Aerosol Science, Theory and Practice - Oxford, New York, Seoul, Tokyo: Pergamon Press., 1991.

55. Zhang, Y., Seigneur, C. , Seinfeld, J. H. , Jacobson, M. Z. , Binkowski, F. S. Simulation of aerosol dynamics: A comparative review of algorithms in air quality models, // Aerosol Sci. Technol., 1999. - v. 31 - p. 487.

Login or Create
* Forgot password?