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Abstract: The previous paper of this series presented the results of a numerical investigation of the
dependence of the dominant growth rates of Bloch eigenmodes on the diffusivity parameters (the
molecular viscosity ν and molecular magnetic diffusivity η) in three linear stability problems: the
kinematic dynamo problem, and the hydrodynamic and MHD stability problems for steady space-
periodic flows and MHD states. The dominant eigenmodes (i.e., the stability modes, whose growth
rates are maximum over the wave vector q of the planar wave involved in the Bloch modes) comprise
branches. In some branches, the dominant growth rates are attained for constant half-integer q.
In all the three stability problems for parity-invariant steady states, offshoot branches, stemming
from the branches of this type, were found, in which the dominant growth rates are attained for
q depending on ν and/or η. We consider now such a branching of the dominant magnetic modes in
the kinematic dynamo problem, where an offshoot stems from a branch of neutral eigenmodes for
q = 0, and construct power series expansions for the offshoots and the associated eigenvalues of the
magnetic induction operator near the point of bifurcation. We show that the branching occurs for
the molecular magnetic diffusivities, for which the two eigenvalues of the eddy diffusivity operator
become imaginary, and magnetic field generation by the mechanism of the negative eddy diffusivity
ceases. The details of branching in the other linear stability problems under consideration are distinct.
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1. Introduction

Bloch eigenmodes of three linear stability problems: the kinematic dynamo problem,
the hydrodynamic and MHD stability problem for steady space-periodic flows and MHD
states were considered in the previous papers [Chertovskih and Zheligovsky, 2023a,b] of
this series. A Bloch mode is a product of a three-dimensional vector field of the same
periodicity as the perturbed state and an amplitude-modulating planar wave eiq·x.

We have studied the dependence of the dominant growth rates of the Bloch modes on
the diffusivity parameters, the molecular magnetic diffusivity η and the molecular viscosity
ν. Computations [Chertovskih and Zheligovsky, 2023b] have revealed that the Bloch modes,
maximizing growth rates γ(q) over the Bloch wave vectors q, constitute branches, in which
the dependence of the dominant growth rates on the diffusivity parameter is smooth. It
was demonstrated in [Chertovskih and Zheligovsky, 2023a] that half-integer q (whose all
components are integer or half-integer) satisfy the necessary condition for the maximum,
∂γ/∂qm = 0. In agreement with this, branches of the dominant eigenmodes were found
[Chertovskih and Zheligovsky, 2023a], that are comprised of the eigenmodes for constant
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half-integer q. Furthermore, in all the three stability problems for parity-invariant steady
states, instances of branches (which we call offshoots) stemming from branches of this type
(we call them main branches) were detected; the dominant growth rates in the offshoots
are attained for q depending on ν and/or η.

The phenomenon is very common. It is observed in 9 problems out of the 18 ones
which were solved in [Chertovskih and Zheligovsky, 2023b], see figs. 6, 9, 10, 13–15, 21–
23 ibid. (there are two instances of branching in figs. 9, 22 and 23, and three in fig. 6).
Moreover, continuation of the plots “by eye” suggests, that the branch of neutral modes for
q = 0 perhaps experiences similar branching, that we have not detected (although some
of the offshoots can consist of modes that have just the locally and not globally maximum
growth rates). For ν or η larger than 0.3 for which computations were performed, branching
can happen in fig. 15, as well as (probably with a different asymptotics of the approach of
the Bloch wave vector in the offshoots to q = 0 in the main branch) in figs. 1, 2, 4, 6, 10, 12,
13, 18 and 20. Potential offshoots stemming from the branch of neutral modes for q = 0
at the diffusivities below this upper bound can be observed in figs. 1 (perhaps one or two
more possible branchings), 2, 12, 14, 15, 20 (the second possible branching in each of the
four figures). This scenario seems impossible only for figs. 7, 16 and 19.

Consequently, questions arise: At which points (i.e., molecular diffusivities) does the
branching occurs? What is the asymptotics of the offshoot near the point of bifurcation?
How general is the behavior: does the asymptotics of branching coincide in the context
of the three stability problems under consideration? Can offshoots stem similarly from
branches of ν- and/or η-dependent eigenmodes?

In order to answer some of these questions, we consider in the present paper the
problem for Bloch magnetic modes kinematically generated by a parity-invariant flow
V(x) = −V(−x). The precise statement of this problem is outlined in the next section.
We expand all the quantities involved in power series in ϑ = (η0 − η)1/2, where η0 is the
magnetic diffusivity, for which branching occurs. The eigenvalue equations for the modified
magnetic induction operator and its adjoint (see [Chertovskih and Zheligovsky, 2023a] for
derivation),

Dq : b 7→ η∆qb+∇× (V×b) + iq× (V×b),

D ∗q : b 7→ η∆qb−V× (∇×b+ iq×b),

where

∆q : f 7→ ∇2f+ 2i(q · ∇)f− |q|2f

is the modified Laplacian, give rise to a hierarchy of equations emerging at different
orders of ϑ. In sections 3–7 we consider the equations of the hierarchy at orders ϑ0 to ϑ4,
respectively. At order ϑ4 we obtain the leading-order expression for the growth rate. In
principle, we could also solve the equations at higher orders and obtain all terms of the
expansions. The concluding remarks are summarized in the last section.

2. Statement of the problem

We consider here kinematic generation of magnetic Bloch modes by a parity-invariant
flow V(x) = −V(−x) and investigate branching of modes featuring locally maximum growth
rates from a branch of minimum-periodicity modes for q = 0. This bifurcation is illustrated,
e.g., by Fig. 14(a),(b) [Chertovskih and Zheligovsky, 2023b], where branch II bifurcates from
branch III comprised of neutral (stationary) magnetic modes for q = 0. We observe that at
the point of bifurcation the graph of growth rates is tangent to the zero eigenvalue for q = 0,
and the locally maximum growth rates in branch II are attained for the optimal q that are
order ϑ = (η0 − η)1/2. This suggests to study the bifurcation by expanding the magnetic
modes, b(x), and the associated eigenvalue, λ,

Dqb = λb, (1)
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the respective eigenfunctions of the adjoint operator, b∗(x),

D ∗qb
∗ = λb∗, (2)

and the optimal q in power series in ϑ:

b =
∞∑
j=0

bjϑ
j , b∗ =

∞∑
j=0

b∗jϑ
j , λ =

∞∑
j=1

λjϑ
j , q =

∞∑
j=1

qjϑ
j . (3)

The modes are normalized by the condition

⟨⟨b,b∗⟩⟩ = 1 (4)

(the individual normalization of each mode is irrelevant). Here the angle brackets ⟨⟨·, ·⟩⟩
denote the scalar product

⟨⟨f1,f2⟩⟩ =
〈
f1 · f2

〉
≡ (2π)−3
∫

T3
f1(x) · f2(x) dx

in the Lebesgue space L2(T3) of three-dimensional complex-valued vector fields, and the
angle brackets ⟨·⟩ denote the spatial averaging

⟨b(x)⟩ = (2π)−3
∫

T3
b(x) dx.

An eigenfunction ofDq, whose growth rate γ = Reλ is positive, automatically gives
rise to a solenoidal Bloch mode. Nevertheless, it is useful to specialize the condition of
solenoidality of the Bloch field eiq·xb(x) for eigenfunctions of the form of the series (3). We
obtain at order ϑj

∇ ·bj + i
j∑

k=1

qk ·bj−k = 0.

In particular, b0 (but not b∗0) must be solenoidal. Averaging this equation yields

j∑
k=1

qk ·
〈
bj−k

〉
= 0. (5)

We substitute the series (3) into the eigenvalue equations (1) and (2), and the conditions

∂γ

∂qm
= 0 ⇔ −2ηqmRe⟨⟨b,b∗⟩⟩ − Im

〈〈
2η

∂b
∂xm

+ em × (V×b),b∗
〉〉

= 0

⇔ 2η

q+
∑
m

Im
〈
∂b
∂xm

·b∗
〉
em

+ Im
〈
(V×b)×b∗

〉
= 0 (6)

for the local maximum of the growth rate γ (derived from the general expression for the
gradient, see (14) in [Chertovskih and Zheligovsky, 2023a]).
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3. Order ϑ0 equations

Substituting η = η0 − ϑ2 and the series (3) into (1), (2), (6) and the normalization
condition (4) we obtain at order ϑ0, respectively, the equations

Db0 = 0, (7.1)

D ∗b∗0 = 0, (7.2)

Im
〈〈

2η0
∂b0

∂xm
+ em × (V×b0),b∗0

〉〉
= 0, (7.3)

⟨⟨b0,b
∗
0⟩⟩ = 1, (7.4)

where
D : b 7→ η0∇2b+∇× (V×b), D ∗ : b 7→ η0∇2b−V× (∇×b). (8)

For a space-periodic flow, the magnetic induction operatorD has at least a three-dimensional
kernel of neutral modes of the same periodicity (Arnol’d et al. [1982], see also Zheligovsky
[2011]). Generically, the dimension of the kernel is 3, and we assume that this holds for
η = η0. Then, for a parity-invariant flow V, (7.1) implies that b0 is a parity-antiinvariant
solenoidal field (i.e., b0(x) = b0(−x)), the set of all possible ⟨b0⟩ spans R3, and

b0(x) =
3∑

k=1

⟨b0⟩kSk , where DSk = 0, ⟨Sk⟩ = ek . (9)

Here ⟨·⟩k denotes averaging of the kth component of a vector field: ⟨f⟩ =
∑3

k=1⟨f⟩kek . Neutral
modes Sk are real, solenoidal and parity-antiinvariant. From (7.2),

b∗0 =
∑
k

b∗0kek (10)

is a constant vector. Consequently, (7.3) is satisfied identically (which agrees with the
statement that half-integer q are stationary points of the growth rate regarded as a function
of q; it was proven in section 4 of [Chertovskih and Zheligovsky, 2023a]). {Sk} constitute the
basis in the kernel ofD , biorthogonal to {ek} that are the basis in the kernel ofD ∗. By the
Fredholm alternative theorem, the equationsDb = f andD ∗b∗ = f∗ have solutions if and
only if, respectively,

⟨f⟩ = 0, (11.1)

⟨⟨f∗,Sk⟩⟩ = 0 for all Sk ∈ kerD . (11.2)

4. Order ϑ1 equations

At order ϑ1 we obtain from (1), (2), (6) and (4), respectively,

Db1 + 2iη0(q1 · ∇)b0 + iq1 × (V×b0) = λ1b0, (12.1)

D ∗b∗1 −V× (iq1 ×b∗0) = λ1b
∗
0, (12.2)

2η0

q1 +
∑
m

Im
〈
∂b0

∂xm
·b∗1

〉
em

+ Im
〈
(V×b0)×b∗1 + (V×b1)×b∗0

〉
= 0, (12.3)

⟨⟨b0,b
∗
1⟩⟩+ ⟨⟨b1,b

∗
0⟩⟩ = 0. (12.4)

Averaging (12.1) yields λ1⟨b0⟩ = 0, whereby λ1 = 0. The conditions (11) for solvability
of equations (12.1) and (12.2) are satisfied ((11.2) holds because all Sk ∈ kerD are parity-
antiinvariant). The solutions are

b1 =
∑
k

⟨b1⟩kSk +b1p, b∗1 =
〈
b∗1

〉
+b∗1p. (13)
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Here

b1p = i
∑
k,m

q1m⟨b0⟩kGmk(x), DGmk + 2η0
∂Sk
∂xm

+ em × (V×Sk) = 0, (14.1)

b∗1p = i
∑
m,k,n

ϵmkn q1m b∗0kZn(x), D ∗Zn −V× en = 0, (14.2)

q1k are the Cartesian components of q1 =
∑

k q1kek and ϵmkn is the unit antisymmetric tensor.
Gmk(x) and Zn(x) are real-valued parity-invariant zero-mean vector fields (since parity-
invariant and parity-antiinvariant fields constitute invariant subspaces of the operatorsD
andD ∗).

In the equations for Gmk and Zn we recognize auxiliary problems for the magnetic
induction operator (cf. section 5.2 in [Chertovskih and Zheligovsky, 2023a], equations (39))
and the adjoint operator (cf. section 5.3 ibid.) arising in the standard formalism of the
analysis of magnetic eddy diffusivity in small-scale flows of electrically conducting fluid
(see Andrievsky et al. [2015], Rasskazov et al. [2018], Zheligovsky [2011]). In fact, so far the
expansion followed (except for the new condition (6) of local extremality of the growth
rate) that formalism, but in the present context we have to consider the problems emerging
at further levels of the asymptotic expansion.

We substitute (9), (10) and (13) into (12.3), use the identity

〈
(V×Sj )×Zn

〉
l
+ 2η0

〈
∂Sj
∂xl
·Zn

〉
=

〈
V×Glj

〉
n

(15)

and obtain
E q1 = 0, (16)

where

E : c 7→ 2η0 c−
∑
k,m

((
c×Re(⟨b0⟩kb∗0 )

)
· ⟨V×Gmk⟩

)
em −

∑
k,m

cm Re
(
⟨b0⟩kb∗0

)
× ⟨V×Gmk⟩.

The linear operator E : R3→ R3 is self-adjoint. By (16), the vector q1 belongs to its kernel.
Generically, the kernel is one-dimensional, and then the solvability condition for the
equation E c = f is the orthogonality f ·q1 = 0.

5. Order ϑ2 equations

At order ϑ2, (1), (2), (6) and (4) give rise, respectively, to the equations

Db2 + 2iη0((q1 · ∇)b1 + (q2 · ∇)b0)−∇2b0 + iq1 × (V×b1) + iq2 × (V×b0)

= (λ2 + η0|q1|2)b0, (17.1)

D ∗b∗2 + 2iη0(q1 · ∇)b∗1 − iV× (q1 ×b∗1 +q2 ×b∗0) = (λ2 + η0|q1|2)b∗0, (17.2)

2η0

q2 +
∑
m

Im
〈
∂b0

∂xm
·b∗2 +

∂b1

∂xm
·b∗1

〉
em


+ Im

〈
(V×b0)×b∗2 + (V×b1)×b∗1 + (V×b2)×b∗0

〉
= 0, (17.3)

⟨⟨b0,b
∗
2⟩⟩+ ⟨⟨b1,b

∗
1⟩⟩+ ⟨⟨b2,b

∗
0⟩⟩ = 0. (17.4)

The solvability condition for (17.1) is obtained by averaging (see (11.1)):

i ⟨q1 × (V×b1)⟩ = (λ2 + η0|q1|2)⟨b0⟩.

Substituting here (13) and (14.1) yields an eigenvalue equation

D ⟨b0⟩ = (λ2 + η0|q1|2)⟨b0⟩ (18.1)
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for the 3× 3 real entry matrix D,

Dc = −
∑
k,m

q1mckq1 × ⟨V×Gmk⟩ (18.2)

(D is the symbol of the operator of eddy correction of magnetic eddy diffusivity). Upon
substituting (13) and (14.2), the solvability condition (11.2) for (17.2) reduces to the
eigenvalue equation

D∗b∗0 = (λ2 + η0|q1|2)b∗0 (18.3)

for the 3× 3 matrix D∗ defined by the relation

D∗c = −
∑

k,m,n,j

ϵmknq1mck
〈(

2η0(q1 · ∇)Zn −V× (q1 ×Zn)
)
·Sj

〉
ej . (18.4)

Eigenvalues of the two matrices are complex conjugate, D∗ being equal to the transpose of
the matrix D since

−q1 × ⟨V×Gmk⟩ =
∑
n

(q1 × en)⟨(V× en) ·Gmk⟩

=
∑
n

(q1 × en)⟨(D ∗Zn ·Gmk⟩

=
∑
n

(q1 × en)⟨Zn ·DGmk⟩

= −
∑
n

(q1 × en)
〈
Zn · (2η0∂Sk/∂xm + em × (V×Sk))

〉
=

∑
n,l,j

ϵjlnq1l
〈
Sk · (2η0∂Zn/∂xm −V× (em ×Zn))

〉
ej .

Let us consider the component of (16) parallel to q1. In terms of the matrix D (18.2),
the scalar product of (16) and q1 takes the form

2η0|q1|2 − 2Re⟨⟨D⟨b0⟩,b∗0⟩⟩ = 0.

Hence Reλ2 = 0 by virtue of (18.1) and normalization (7.4). We can now clarify the nature
of the condition (16). Differentiating (18.1) in q1n yields

(
D− (λ2 + η0|q1|2)

)∂⟨b0⟩
∂q1n

−
(
∂λ2

∂q1n
+ 2η0q1n

)
⟨b0⟩ −

∑
k,m

⟨b0⟩k(q1δ
n
m + q1men)× ⟨V×Gmk⟩ = 0.

Scalar multiplying this equation by b∗0, applying (7.4), taking the real part and noting that
n is an arbitrary index, we obtain ∇q1

Reλ2 = −E q1. Thus, the relation (16) is equivalent
to the condition that 0 is an extreme (on varying q1) large-scale magnetic field growth
rate – that is, an extreme real part of the eigenvalue of the operator of eddy diffusivity
D − η0|q1|2. Of course, we choose the dominant eigenvalue, i.e., the maximum over q1
growth rate, and then η0 is the molecular diffusivity for which the large-scale dynamo sets
in on decreasing η.

For j = 1, (5) amounts to the orthogonality condition q1 · ⟨b0⟩ = 0. An immediate
consequence of (18.4) is that D∗ has an eigenvalue zero associated with the eigenvector
q1. It is spurious, being associated with an eigenvector of D for which q1 · ⟨b0⟩ , 0 (see
Rasskazov et al. [2018], Zheligovsky [2011] for details of solving the eigenvalue problem
for D). Consequently, the operator D∗ has eigenvalues −λ2 + η0|q1|2, λ2 + η0|q1|2 and 0
associated with eigenvectors h∗1 = b∗0, h∗2 = b∗0 and h∗3 = q1, respectively; the adjoint operator
D has eigenvalues λ2 + η0|q1|2, −λ2 + η0|q1|2 and 0 associated with eigenvectors h1 = ⟨b0⟩,
h2 =

〈
b0

〉
and a vector that we denote h3. The bases of the eigenvectors of D and D∗ are
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biorthogonal, i.e., hk ·h∗j = 0 for k , j, and this scalar product is non-zero for k = j (whereby
the normalization (7.4) is always possible).

Equations (18.1), (18.3) and (16) are homogeneous in q1: upon dividing (18.1) and
(18.3) by |q1|2, and (16) by |q1|, none of them involves the length of q1 (except for in the
product |q1|−2λ2). Therefore, at least in principle, this system can be solved as follows:
(i) we find eigenvectors ⟨b0⟩ of D and b∗0 of the transposed matrix D∗ associated with
non-zero complex conjugate eigenvalues as functions of η0 and q1/ |q1|; (ii) we find q1/ |q1|
as a function of η0 from (16); (iii) we equate η0 to the real part of the eigenvalue of the
matrix |q1|−2D obtained in step (ii), and solve the resultant equation for η0; (iv) finally,
|q1|−2λ2 is equal to the imaginary part of the eigenvalue of the matrix |q1|−2D. At this
stage we thus fully determine η0, the eigenvectors ⟨b0⟩ and b∗0 (up to arbitrary individual
normalizations, that are irrelevant provided the condition (7.4), equivalent to ⟨b0⟩ ·b∗0 = 1,
is imposed), the direction q1/ |q1|, and the imaginary value |q1|−2λ2. We lack an equation
for determining the length |q1|: this scaling is controlled by the term −ϑ2∇2b in the original
eigenvalue problem (1), but neither the solvability conditions at this order, nor (16) involve
contributions from this term.

By (17.1) and (17.2),

b2 =
∑
k

(
⟨b2⟩kSk + ⟨b0⟩k

(
(λ2 + η0|q1|2)S(1)

k +S(2)
k +

∑
m,n

q1mq1nS
(3)
nmk

))
+ i

∑
k,m

(q2m⟨b0⟩k + q1m⟨b1⟩k)Gmk , (19.1)

b∗2 =
〈
b∗2

〉
+ i

∑
m,k,n

ϵmkn (q1m
〈
b∗1

〉
k + q2m b∗0k )Zn +

∑
m,k,n,j

ϵmkn q1mq1j b
∗
0kZ

(1)
jn , (19.2)

where parity-antiinvariant zero-mean functions S(1)
k (x), S(2)

k (x), S(3)
nmk(x) and Z(1)

jn (x) solve the
auxiliary problems

DS(1)
k = Sk − ek ,

DS(2)
k = ∇2Sk ,

DS(3)
nmk = 2η0∂Gmk/∂xn + en × (V×Gmk − ⟨V×Gmk⟩),

D ∗Z(1)
jn = 2η0∂Zn/∂xj −V× (ej ×Zn) +

3∑
l=1

〈
V×Gjl

〉
n
el .

Upon substituting (13), (14) and (19), and applying (15), the extremality condition (17.3)
takes the form

E q2 =
∑
k,m

((
q1 ×Re(⟨b0⟩k

〈
b∗1

〉
+ ⟨b1⟩kb∗0)

)
· ⟨V×Gmk⟩ em

+ q1m Re(⟨b0⟩k
〈
b∗1

〉
+ ⟨b1⟩kb∗0)× ⟨V×Gmk⟩

)
. (20)
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6. Order ϑ3 equations

At order ϑ3, power series expansions of (1), (2), (6) and (4) yield, respectively, the
equations

Db3 + 2iη0((q1 · ∇)b2 + (q2 · ∇)b1 + (q3 · ∇)b0)−∇2b1 − 2i(q1 · ∇)b0 + iq1 × (V×b2)

+ iq2 × (V×b1) + iq3 × (V×b0) = (λ3 + 2η0q1 ·q2)b0 + (λ2 + η0|q1|2)b1, (21.1)

D ∗b∗3 + 2iη0((q1 · ∇)b∗2 + (q2 · ∇)b∗1)−∇2b∗1 − iV× (q1 ×b∗2 +q2 ×b∗1 +q3 ×b∗0)

= (λ3 + 2η0q1 ·q2)b∗0 + (λ2 + η0|q1|2)b∗1, (21.2)

2η0

q3 +
∑
m

Im
〈
∂b0

∂xm
·b∗3 +

∂b1

∂xm
·b∗2 +

∂b2

∂xm
·b∗1

〉
em

− 2

q1 +
∑
m

Im
〈
∂b0

∂xm
·b∗1

〉
em


+ Im

〈
(V×b0)×b∗3 + (V×b1)×b∗2 + (V×b2)×b∗1 + (V×b3)×b∗0

〉
= 0, (21.3)

⟨⟨b0,b
∗
3⟩⟩+ ⟨⟨b2,b

∗
1⟩⟩+ ⟨⟨b1,b

∗
2⟩⟩+ ⟨⟨b3,b

∗
0⟩⟩ = 0. (21.4)

Again we use first the solvability conditions for (21.1) and (21.2). Averaging reduces
(21.1) to

i⟨q1 × (V×b2) +q2 × (V×b1)⟩ = (λ3 + 2η0q1 ·q2)⟨b0⟩+ (λ2 + η0|q1|2)⟨b1⟩.

Upon substituting (13), (14) and (19), the solvability condition for (21.1) becomes

D⟨b1⟩−
∑
m,k

⟨b0⟩k(q1mq2 +q2mq1)×⟨V×Gmk⟩ = (λ3 +2η0q1 ·q2)⟨b0⟩+(λ2 +η0|q1|2)⟨b1⟩. (22)

Scalar multiplying it by b∗0, we find

λ3 = −2η0q1 ·q2 −
∑
m,k

⟨b0⟩k
(
(q1mq2 + q2mq1)× ⟨V×Gmk⟩

)
·b∗0. (23)

Here the real part of the r.h.s. is equal to −q2 · E q1, and thus Reλ3 = 0 by (16). Scalar
multiplying (22) by q1 yields a relation equivalent to (5) for j = 2. To solve (22), we exploit
the biorthogonality of the bases of the eigenvectors of D and D∗, and find

⟨b1⟩ = µ1⟨b0⟩ −
∑
m,k

⟨b0⟩k

(
(q1mq2 + q2mq1)× ⟨V×Gmk⟩

)
·b∗0

2λ2

〈
b0

〉
− ⟨b0⟩ ·q2

h3 ·q1
h3, (24)

where µ1 is a constant. The solvability condition for (21.2) is∑
j

〈(
2iη0((q2 · ∇)b∗1 + (q1 · ∇)b∗2)− iV× (q1 ×b∗2 +q2 ×b∗1)

)
·Sj

〉
ej

= (λ3 + 2η0q1 ·q2)b∗0 + (λ2 + η0|q1|2)
〈
b∗1

〉
,

or, upon substituting (13), (14) and (19), and using the identity (15)),

D∗
〈
b∗1

〉
+
∑
l,j

((
(q1lq2+q2lq1)×b∗0

)
·
〈
V×Glj

〉)
ej = (λ3+2η0q1·q2)b∗0+(λ2+η0|q1|2)

〈
b∗1

〉
. (25)

The scalar product of this equation with
〈
b0

〉
is equivalent to (23). The solution to (25) is

〈
b∗1

〉
= µ∗1b

∗
0 +

∑
l,j

((
(q1lq2 +q2lq1)×b∗0

)
·
〈
V×Glj

〉)−⟨b0⟩jb∗0
2λ2

+
h3,jq1

(λ2 + η0|q1|2)h3 ·q1

 , (26)
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where µ∗1 is a constant. The eigenfunctions can be multiplied by any linear function of
ϑ; this changes arbitrarily the coefficients µ1 and µ∗1. In view of (9), (13) and (14), the
normalization condition (12.4) reduces to ⟨b0⟩ ·

〈
b∗1

〉
+ ⟨b1⟩ ·b∗0 = 0. Substituting here the

expressions (24) and (26), and employing the biorthogonality of the bases {hk} and {h∗j }
transforms this equation into µ1 + µ∗1 = 0. Without any loss of generality we henceforth
assume µ1 = µ∗1 = 0.

The solvability condition for the problem (20) in q2 amounts to the orthogonality
of the inhomogeneous term in (20) to q1 (as discussed at the end of section 4), which is
equivalent to the equality

−2Re
(
D⟨b0⟩ ·

〈
b∗1

〉
+D⟨b1⟩ ·b∗0

)
= 0.

Substituting here D⟨b0⟩ (18.1) and D⟨b1⟩ (22), using the normalization conditions (7.4)
and (12.4), and relying on (23), we find that this equality holds true.

Upon dividing (22) and (25) by |q1|2, and (20) by |q1|, we obtain equations that involve
the direction q1/ |q1| and the vector q2/ |q1|, but not the length |q1|. Hence, we solve this
system of equations as follows: (i) We have expressed ⟨b1⟩ and

〈
b∗1

〉
as functions of q2/ |q1|

and λ2/ |q1|2. (ii) We find q2/ |q1| from the extremality condition (20) up to an unknown
additive term β2q1/ |q1| (cf. (16)). (iii) The imaginary value λ3/ |q1|2 is determined by (23).
We still lack an equation for determining the length |q1|.

Next we find solutions to equations the (21.1) and (21.2):

b3 =
∑
k

(
⟨b3⟩kSk +

(
⟨b0⟩k(λ3 + 2η0q1 ·q2) + ⟨b1⟩k(λ2 + η0|q1|2)

)
S(1)
k + ⟨b1⟩kS

(2)
k

)
+

∑
k,m,n

(
⟨b0⟩k(q1nq2m + q2nq1m) + ⟨b1⟩kq1nq1m

)
S(3)
nmk

+ i
∑
k,m

(
(q3m⟨b0⟩k + q2m⟨b1⟩k + q1m⟨b2⟩k)Gmk

+ q1m⟨b0⟩k
(
(λ2 + η0|q1|2)G(1)

mk +G(2)
mk +

∑
j,n

q1jq1nG
(3)
jnmk

))
, (27.1)

b∗3 =
〈
b∗3

〉
+ i

∑
m,k,n

ϵmkn (q1m
〈
b∗2

〉
k + q2m

〈
b∗1

〉
k + q3m b∗0k )Zn

+
∑

m,k,n,j

ϵmkn

((
b∗0k(q1mq2j + q2mq1j ) +

〈
b∗1

〉
kq1mq1j

)
Z(1)
jn + i

∑
p

b∗0kq1mq1jq1pZ
(2)
jnp

)
+ i

∑
m,k,n

ϵmkn q1m b∗0k
(
Z(3)
n + (λ2 + η0|q1|2)Z(4)

n

)
, (27.2)

where we refer to parity-invariant solutions to the following auxiliary problems:

DG(1)
mk + 2η0∂S

(1)
k /∂xm + em × (V×S(1)

k )−Gmk = 0;

DG(2)
mk + 2η0∂S

(2)
k /∂xm + em × (V×S(2)

k )− 2∂Sk/∂xm −∇2Gmk = 0;

DG(3)
jnmk + 2η0∂S

(3)
nmk/∂xj + ej × (V×S(3)

nmk) = 0;

D ∗Z(2)
jnp = 2η0∂Z

(1)
jn /∂xp −V× (ep ×Z

(1)
jn );

D ∗Z(3)
n = ∇2Zn;

D ∗Z(4)
n = Zn.
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Upon substituting (13), (19) and (27), and applying (15), the extremality condition (21.3)
reduces to

E q3 −
∑
l,j

〈
V×Glj

〉
·Re

(
⟨b0⟩j (q1 ×

〈
b∗2

〉
+q2 ×

〈
b∗1

〉
) + ⟨b1⟩j (q1 ×

〈
b∗1

〉
+q2 ×b∗0 ) + ⟨b2⟩jq1 ×b∗0

)
el

+
∑
k,m

⟨V×Gmk⟩ ×Re
(
(q2m⟨b1⟩k + q1m⟨b2⟩k)b∗0 + (q2m⟨b0⟩k + q1m⟨b1⟩k)

〈
b∗1

〉
+ q1m⟨b0⟩k

〈
b∗2

〉)
+ 2η0

∑
l

Re
〈
−

∑
j,m,k,n

ϵmknq1mb
∗
0k⟨b0⟩j

∂Sj
∂xl
·
(
Z(3)
n + (λ2 + η0|q1|2)Z(4)

n +
∑
p,r

q1rq1pZ
(2)
rnp

)
+
(∑
k,m

q1m⟨b0⟩k
∂Gmk

∂xl

)
·

∑
m,k,n,r

ϵmkn q1mq1r b
∗
0kZ

(1)
rn

−

 ∂
∂xl

∑
j

⟨b0⟩j
(
(λ2 + η0|q1|2)S(1)

j +S(2)
j +

∑
m,n

q1mq1nS
(3)
nmj

) · ∑
m,k,n

ϵmkn q1m b∗0kZn

〉
el

− 2

q1 −
∑

l,j,m,k,n

ϵmkn q1m Re
(
b∗0k⟨b0⟩j

)〈∂Sj
∂xl
·Zn

〉
el


+ Re

〈
−
(
V×

∑
j

⟨b0⟩jSj
)
×

∑
m,k,n

ϵmknq1m b∗0k

(
Z(3)
n + (λ2 + η0|q1|2)Z(4)

n +
∑
p,r

q1rq1pZ
(2)
rnp

)
+
(
V×

∑
k,m

q1m⟨b0⟩kGmk

)
×

∑
m,k,n,p

ϵmkn q1mq1p b
∗
0kZ

(1)
pn

−
(
V×

∑
j

⟨b0⟩j
(
(λ2 + η0|q1|2)S(1)

j +S(2)
j +

∑
m,n

q1mq1nS
(3)
nmj

))
×

∑
m,k,n

ϵmkn q1m b∗0kZn

+
(
V×

∑
k,m

q1m⟨b0⟩k
(
(λ2 + η0|q1|2)G(1)

mk +G(2)
mk +

∑
j,n

q1jq1nG
(3)
jnmk

))
×b∗0

〉
= 0. (28)

Scalar multiplying (28) by q1 yields the solvability condition for (28):∑
l,j

〈
V×Glj

〉
·
(
(q1lq2 + q2lq1)×Re(⟨b1⟩jb∗0 − ⟨b0⟩j

〈
b∗1

〉
)
)

+ 2Re
(
(λ2 + η0|q1|2)

∑
j,m,k,n,p

ϵmknq1mq1jb
∗
0k⟨b0⟩p

〈
Sp ·Z

(1)
jn +G(1)

jp ·Zn

〉
− (λ3 + 2η0q1 ·q2)⟨b1⟩ ·b∗0

)
+ 2η0

∑
l

Re
〈
−

∑
j,m,k,n

ϵmknq1mb
∗
0k⟨b0⟩j

∂Sj
∂xl
·
(
Z(3)
n + (λ2 + η0|q1|2)Z(4)

n +
∑
p,r

q1rq1pZ
(2)
rnp

)
+
(∑
k,m

q1m⟨b0⟩k
∂Gmk

∂xl

)
·

∑
m,k,n,r

ϵmkn q1mq1r b
∗
0kZ

(1)
rn

−
( ∂
∂xl

∑
j

⟨b0⟩j
(
(λ2 + η0|q1|2)S(1)

j +S(2)
j +

∑
m,n

q1mq1nS
(3)
nmj

))
·
∑
m,k,n

ϵmkn q1m b∗0kZn

〉
q1l

− 2
(
|q1|2 −

∑
l,j,m,k,n

ϵmkn q1m Re
(
b∗0k⟨b0⟩j

)〈∂Sj
∂xl
·Zn

〉
q1l

)
+ Re

〈
−
(
V×

∑
j

⟨b0⟩jSj
)
×

∑
m,k,n

ϵmknq1m b∗0k

(
Z(3)
n + (λ2 + η0|q1|2)Z(4)

n +
∑
p,r

q1rq1pZ
(2)
rnp

)
+
(
V×

∑
k,m

q1m⟨b0⟩kGmk

)
×

∑
m,k,n,p

ϵmkn q1mq1p b
∗
0kZ

(1)
pn
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−
(
V×

∑
j

⟨b0⟩j
(
(λ2 + η0|q1|2)S(1)

j +S(2)
j +

∑
m,n

q1mq1nS
(3)
nmj

))
×

∑
m,k,n

ϵmkn q1m b∗0kZn

+
(
V×

∑
k,m

q1m⟨b0⟩k
(
(λ2 + η0|q1|2)G(1)

mk +G(2)
mk +

∑
j,n

q1jq1nG
(3)
jnmk

))
×b∗0

〉
·q1 = 0. (29)

At this stage q2 is known up to the factor |q1|−1 and an additive term proportional to q1.
Expressions (24) and (26) reveal that ⟨b1⟩ and

〈
b∗1

〉
depend on q2, but it is easy to check

(relying on (18.1), (18.2) and the biorthogonality of the bases of the eigenvectors of the
operators D and D∗) that they are invariant under the transformation q2→ q2 +βq1 for any
β. The remaining potentially affected terms in (29) are the first term involving q2 explicitly,
and, by virtue of (23), λ3 + 2η0q1 ·q2. For a real β, the total change in the l.h.s. of (29) due
to the transformation q2→ q2 + βq1 is

2βRe
(
D⟨b1⟩ ·b∗0 −D⟨b0⟩ ·

〈
b∗1

〉
− 2(D⟨b0⟩ ·b∗0)⟨b1⟩ ·b∗0

)
= −2βRe

(
(λ2 + η0|q1|2)(⟨b1⟩ ·b∗0 + ⟨b0⟩ ·

〈
b∗1

〉
)
)

= 0

(we have employed relations (18.1)–(18.3), (23) and the normalization conditions at orders
ϑ0 and ϑ1). Thus, the solvability condition (29) is not altered by the unknown additive
component of q2, parallel to q1. All the quantities involved in (29) are known completely or
up to factors that are powers of |q1|. Substituting the values of these quantities transforms
(29) into an inhomogeneous equation in |q1|, involving terms proportional to |q1|2 and |q1|4.
We determine from it the length |q1|. Now (28) yields q3 up to an additive term that is a
multiple of q1.

7. Order ϑ4 equations

At order ϑ4, (1), (2), (6) and (4) yield, respectively, the equations

Db4 + 2iη0((q1 · ∇)b3 + (q2 · ∇)b2 + (q3 · ∇)b1 + (q4 · ∇)b0)−∇2b2

− 2i((q2 · ∇)b0 + (q1 · ∇)b1)) + iq1 × (V×b3)

+ iq2 × (V×b2) + iq3 × (V×b1) + iq4 × (V×b0)

= (λ4 + η0(2q1 ·q3 + |q2|2)− |q1|2)b0 + (λ3 + 2η0q1 ·q2)b1 + (λ2 + η0|q1|2)b2, (30.1)

D ∗b∗4 + 2iη0((q1 · ∇)b∗3 + (q2 · ∇)b∗2 + (q3 · ∇)b∗1)−∇2b∗2 − 2i(q1 · ∇)b∗1
− iV× (q1 ×b∗3 +q2 ×b∗2 +q3 ×b∗1 +q4 ×b∗0)

= (λ4 + η0(2q1 ·q3 + |q2|2)− |q1|2)b∗0 + (λ3 + 2η0q1 ·q2)b∗1 + (λ2 + η0|q1|2)b∗2, (30.2)

2η0

q4 +
∑
m

Im
〈
∂b0

∂xm
·b∗4 +

∂b1

∂xm
·b∗3 +

∂b2

∂xm
·b∗2 +

∂b3

∂xm
·b∗1

〉
em


− 2

q2 +
∑
m

Im
〈
∂b0

∂xm
·b∗2 +

∂b1

∂xm
·b∗1

〉
em

+ Im
〈
(V×b0)×b∗4 + (V×b1)×b∗3

+(V×b2)×b∗2 + (V×b3)×b∗1 + (V×b4)×b∗0
〉

= 0, (30.3)

⟨⟨b0,b
∗
4⟩⟩+ ⟨⟨b3,b

∗
1⟩⟩+ ⟨⟨b2,b

∗
2⟩⟩+ ⟨⟨b1,b

∗
3⟩⟩+ ⟨⟨b4,b

∗
0⟩⟩ = 0. (30.4)

Averaging (30.1) yields its solvability condition

i⟨q1 × (V×b3) +q2 × (V×b2) +q3 × (V×b1)⟩
= (λ4 + η0(2q1 ·q3 + |q2|2)− |q1|2)⟨b0⟩+ (λ3 + 2η0q1 ·q2)⟨b1⟩+ (λ2 + η0|q1|2)⟨b2⟩. (31)
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Upon substitution of the expressions (13), (14.1), (19.1) and (27.1) for bi , i = 1,2,3, this
equation takes the form(

D− (λ2 + η0|q1|2)
)
⟨b2⟩ = R2 + (λ4 + η0(2q1 ·q3 + |q2|2)− |q1|2)⟨b0⟩, (32)

where

R2 =
∑
k,m

(
q1m⟨b0⟩kq1 ×

〈
V×

(
(λ2 + η0|q1|2)G(1)

mk +G(2)
mk +

∑
j,n

q1jq1nG
(3)
jnmk

)〉
+
(
q1(q3m⟨b0⟩k + q2m⟨b1⟩k) +q2(q2m⟨b0⟩k + q1m⟨b1⟩k) +q3q1m⟨b0⟩k

)
× ⟨V×Gmk⟩

)
+ (λ3 + 2η0q1 ·q2)⟨b1⟩.

Scalar multiplying (32) by b∗0, we find

λ4 = −η0(2q1 ·q3 + |q2|2) + |q1|2 −
〈
b∗0 ·R2

〉
. (33)

Since q1 belongs to the kernel of the operator E (see (16)), the resultant expression for the
growth rate does not involve q3:

Reλ4 = −b∗0 ·
(∑
k,m

(
q1m⟨b0⟩kq1 ×

〈
V×

(
(λ2 + η0|q1|2)G(1)

mk +G(2)
mk +

∑
j,n

q1jq1nG
(3)
jnmk

)〉
+
(
q1q2m⟨b1⟩k +q2(q2m⟨b0⟩k + q1m⟨b1⟩k)

)
× ⟨V×Gmk⟩

)
+ (λ3 + 2η0q1 ·q2)⟨b1⟩

)
− η0|q2|2 + |q1|2. (34)

Furthermore, it is easy to check that this expression remains invariant under the transfor-
mation q2→ q2 + βq1 for any real β. Thus, (34) uniquely determines the leading term of
the expansion of the growth rate.

Scalar multiplying (31) by q1 yields (5) for j = 3 (given that (5) is satisfied for j = 2).
We find ⟨b2⟩ exploiting the biorthogonality of the bases of the eigenvectors of D and D∗:

⟨b2⟩ = µ2⟨b0⟩ −
R2 ·b∗0

2λ2

〈
b0

〉
− ⟨b0⟩ ·q3 + ⟨b1⟩ ·q2

h3 ·q1
h3,

where µ2 is a constant.
The solvability condition for (30.2) amounts to the orthogonality of the non-homogeneous

term in this equation to all Sl :∑
l

〈
Sl ·

(
2iη0((q1 · ∇)b∗3 + (q2 · ∇)b∗2 + (q3 · ∇)b∗1)−∇2b∗2 − 2i(q1 · ∇)b∗1

−iV× (q1 ×b∗3 +q2 ×b∗2 +q3 ×b∗1)− (λ2 + η0|q1|2)b∗2
)〉

el

= (λ4 + η0(2q1 ·q3 + |q2|2)− |q1|2)b∗0 + (λ3 + 2η0q1 ·q2)
〈
b∗1

〉
.

Substituting the expressions (13), (14.2), (19.2) and (27.2) for b∗i , i = 1,2,3, transforms this
equation into (

D∗ − (λ2 + η0|q1|2)
)〈
b∗2

〉
= R∗2, (35)
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where

R∗2 = −
∑
l,p

((
q1p(q2 ×

〈
b∗1

〉
+q3 ×b∗0) + q2p(q1 ×

〈
b∗1

〉
+q2 ×b∗0) + q3pq1 ×b∗0

)
·
〈
V×Gpl

〉)
el

−
∑

m,k,n,l

ϵmkn

〈
Sl ·

(
− 2η0 b

∗
0kq1m(q1 · ∇)

(∑
j,p

q1jq1pZ
(2)
jnp +Z(3)

n + (λ2 + η0|q1|2)Z(4)
n

)
−
∑
j

(
b∗0k(q1mq2j + q2mq1j ) +

〈
b∗1

〉
kq1mq1j

)
∇2Z(1)

jn + 2b∗0kq1m(q1 · ∇)Zn

+ b∗0kq1mV×
(
q1 ×

(∑
j,p

q1jq1pZ
(2)
jnp +Z(3)

n + (λ2 + η0|q1|2)Z(4)
n

))
−(λ2 + η0|q1|2)q1mb

∗
0k

∑
j

q1j Z
(1)
jn

)〉
el + (λ3 + 2η0q1 ·q2)

〈
b∗1

〉
+
(
λ4 + η0(2q1 ·q3 + |q2|2)− |q1|2

)
b∗0.

The solvability condition for (35), R∗2 ·
〈
b0

〉
= 0, is equivalent to (33). Due to the biorthogo-

nality of the bases of the eigenvectors of D and D∗, the solution to (35) is

〈
b∗2

〉
= µ∗2b

∗
0 +

R∗2 · ⟨b0⟩
2λ2

b∗0 −
R∗2 ·h3

(λ2 + η0|q1|2)h3 ·q1
q1,

where µ∗2 is a constant. By multiplying the eigenfunctions b2 and b∗2 by linear functions of
ϑ2, we can arbitrarily change µ2 and µ∗2. The value of the sum µ2 +µ∗2 = 0 is prescribed by
the normalization condition (17.4), but no other constraints are imposed on the coefficients
µ2 and µ∗2.

From equations (30.1) and (30.2), we now find the fluctuating parts of b4 and b∗4
and substitute the results into (30.3). The solvability condition for the resultant equation
yields the unknown so far additive term proportional to q1 that is involved in q2. From the
equation we obtain q4 up to an analogous additive term.

Reasoning similarly, we can solve successively the systems of equations at all higher
orders and determine all terms in the series (3).

8. Concluding remarks

We have developed a power series asymptotic expansion in ϑ = (η0 − η)1/2 of magnetic
Bloch modes, kinematically generated by a parity-invariant flow and featuring locally
maximum growth rates, which stem from the branch of neutral (i.e., associated with the
zero eigenvalue of the magnetic induction operatorD (8)) space-periodic modes for q = 0
(see Fig. 14 in [Chertovskih and Zheligovsky, 2023b]). We have shown that branching occurs
at a critical molecular diffusivity η0 for which the two eigenvalues of the operator of
eddy diffusivity are imaginary and complex-conjugate. The associated eigenvalues of the
eigenmodes in the offshoot are order ϑ2 and the first two terms of their expansion (order
ϑ2 and ϑ3) turn out to be imaginary. The locally maximum (over q) growth rates in the
offshoot are order ϑ4; they are attained for the optimal q = O(ϑ). Thus, the optimal q and
the maximum growth rate are continuous in η, but q is not differentiable when passing
through the critical point η0 from the branch of the neutral magnetic modes (η > η0) to the
offshoot (η < η0).

We have expected this instance of branching to be representative. Indeed, numerical
estimates reveal that for all the offshoots found ibid. the deviations of the optimal wave
vectors q from the constant half-integer q in the respective main branch are order ϑ, and
therefore expansions in power series in ϑ can be constructed for all offshoots. However,
Table 1 reveals that the branchings differ in detail. (Recalling that the eigenvalues of
the operators of linearization have period one in each component qm of the Bloch wave
vector q, we do not distinguish the component values ±1/2 in the table and in the text that
follows.) For instance, the kinematic dynamo problem for a parity-invariant flow, for which
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Table 1. Instances of branching found numerically in [Chertovskih and Zheligovsky, 2023b]. F: figures
ibid. showing the plots; P: the linear stability problem, HD hydrodynamic, MHD magnetohydrody-
namic, KD kinematic dynamo; ES: type of the energy spectrum of the state subjected to perturbations;
S: the symmetry of the state subjected to perturbations, PI parity-invariant, nPI non-symmetric; ν,η:
the molecular viscosity and/or diffusivity, at which branching occurs; q: the Bloch wave vector in the
main branch; γ : the growth rate of the instability at the branching point, common to both the main
branch and offshoot; A: the order of the growth rates in the offshoot, or of the real and imaginary
parts of the eigenvalue of the operator of linearisation, when two numbers are shown

F P ES S ν,η q γ A

6 HD exponential PI 0.0460 (0,1/2,1/2) 0.2593 2

6 HD exponential PI 0.1231 (1/2,1/2,0) 0.1049 2

6 HD exponential PI 0.1917 (1/2,1/2,0) 0.0401 2

9 HD large eddies PI 0.1046 (1/2,1/2,0) 0.1252 2

9 HD large eddies PI 0.2040 0 0 4

10 KD exponential nPI 0.0472 (0,0,1/2) 0.0711 2/2

13 KD large eddies nPI 0.0394 (0,1/2,0) 0.0868 2/2

14 KD exponential PI 0.1339 0 0 4/2

15 KD Kolmogorov PI 0.1491 (1/2,1/2,0) 0.0276 2

21 MHD exponential PI 0.1545 (0,0,1/2) 0.1353 2

22 MHD Kolmogorov PI 0.2483 0 0 4

22 MHD Kolmogorov PI 0.2710 0 0 4

23 MHD large eddies PI 0.0902 0 0.2618 2

23 MHD large eddies PI 0.2868 0 0 4

we have constructed the expansions here, is unique in that the dominant eigenvalues of
the eddy diffusivity operator are imaginary at the bifurcation point. Clearly, for a parity-
invariant steady state experiencing perturbation, the molecular diffusivity, for which the
eddy diffusivity becomes positive, is necessarily a branching point of the branch of neutral
modes for q = 0, provided all short-scale zero-mean stability modes have negative growth
rates at this critical point. The converse does not hold true: in all the 9 stability problems for
parity-invariant steady states discussed ibid., dominant eigenvalues of the eddy diffusivity
operator pass at the branching point through zero only in the sample kinematic dynamo
problem considered here. Expansions of the deviations of the growth rates, γ(η)−γ(η0),
have the leading terms order ϑ2 or ϑ4 (the power is shown in the last column of the table);
for the deviations of the imaginary parts (if applicable) of the eigenvalues of the operators
of linearization, Imλ(η) − Imλ(η0) = O(ϑ2). Here η0 is the critical magnetic molecular
diffusivity (in the hydrodynamic stability problem, the molecular viscosity substitutes the
molecular diffusivity, and then ϑ = |ν −ν0|1/2). The left branching in fig. 23b ibid. is unique
in that the growth rates in the main branch also depend on molecular diffusivity, and
upon branching the offshoot coexists with the main branch comprised of stability modes,
which have locally, but not globally maximum growth rates (not shown in fig. 23a,b). By
numerical estimations, for this branching γm(η)−γo(η) = O(ϑ4), where the subscripts m
and o indicate the growth rates in the main branch and in the offshoot.

In the context of the hydrodynamic stability problem for a sample steady flow with an
exponentially decaying energy spectrum (Fig. 6 ibid.), branch IV of stability modes of glob-
ally maximum growth rates for q = (1/2,−1/2,0) terminates in bifurcations of branching at
both ends. A similar bifurcation is observed in Fig. 15 ibid. for the dynamo problem for a
flow with a Kolmogorov energy spectrum, where offshoot II stems from branch I comprised
of eigenmodes for q = (1/2,−1/2,0). The behavior looks more “canonical” in Fig. 9 ibid.
for the stability problem for a steady flow comprised of large eddies of wave numbers 2
or less. The offshoot (branch III) of positive globally maximum growth rate modes stems
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from branch IV of neutral stability modes, whose zero growth rates are globally maximum.
The growth rates in the offshoot and in the main branch are equal at a branching; no
other conditions for these bifurcations have been identified. Both eigenvalues of the eddy
viscosity operator are real and negative, unlike in the considered here magnetic dynamo.

For the linear MHD stability of parity-invariant steady states, the behavior is more
involved. A similar branching was detected for all the three sample MHD steady states.
For the state with an exponential energy spectrum decay (see Fig. 21 in [Chertovskih and
Zheligovsky, 2023b]), the branching point, η0 = ν0, (the computations were performed
for ν = η) is the left terminal point of branch III, where growth rates admit the global
maximum for q = (0,0,1/2). The adjacent branch is I; the growth rates of its eigenmodes
cease to be globally maximum inside the interval of its existence, leaving room for branch
II. Small-scale instability (for q = 0) sets in near ν = η = 0.193 (the eigenvalues of the
operator of linearization being real and strictly positive in both branches, I and III), and
the combined eddy diffusivity for smaller molecular diffusivities is irrelevant.

Two instances of offshoots, stemming from branch VI comprised of neutral eigenmodes
for q = 0, are observed in Fig. 22 ibid. for the sample MHD steady state with the Kolmogorov
energy spectrum. The dominant eigenvalues of the linearization and all the four eigenvalues
of the operator of the combined eddy diffusivity are real at both branching points, the
latter ones are strictly negative (unlike in the dynamo problem considered in this paper)
at the right critical point, and one eigenvalue passes through zero at the left one, η0, (i.e.,
the large-scale instability is present for η < η0, the combined eddy diffusivity becoming
negative). Near the point of bifurcation, eigenmodes in the offshoot branch V have globally
maximum growth rates. Growth rates of eigenmodes constituting the offshoot branch IV
are only locally maximum near the point where it stems, becoming globally maximum in
interval IV at a positive distance from this point.

The arrangement is again different for the sample MHD steady state built of short-scale
Fourier harmonics of wave numbers not exceeding 2 (Fig. 23 in [Chertovskih and Zheligovsky,
2023b]). Two offshoots stem from branches II and V comprised of short-scale eigenmodes
for q = 0. Bifurcation of branch V is similar to how the offshoot branch V stems in Fig. 22:
Branch V consists now of neutral stability modes, the eigenvalues of the linearization are
real, all the four eigenvalues of the operator of the combined eddy diffusivity are real and
strictly negative, and the eigenmodes comprising the offshoot branch III have globally
maximum growth rates near the critical points (the growth rates of the eigenmodes in
the offshoot branch III lose global maximality strictly inside the interval of its existence,
becoming just locally maximum and surpassed by branch IV). Unlike branch V, branch II
consists of zero-mean short-scale instability modes whose growth rates are strictly positive.

Similar bifurcations of branching for non-parity-invariant states were also detected.
In the kinematic dynamo problem, offshoots stem from branch I of the eigenmodes for
q = (0,0,1/2) for the sample flow with an exponentially decaying energy spectrum (Fig. 10
ibid.) and from branch I of the magnetic modes for q = (0,−1/2,0) generated by the sample
flow comprised of large short-scale eddies of wave numbers not exceeding 2 (Fig. 13 ibid.).

We can give the following physical interpretation of the results of this paper. We
have considered magnetic field generation by parity-invariant flows, which lack magnetic
α-effect. On decreasing the molecular diffusivity η towards the critical point η0 of the onset
of negative magnetic eddy diffusivity, generation of large-scale magnetic modes begins,
while (typically) magnetic field that has the periodicity of the flow is not yet generated
(because the action of molecular diffusivity on large scales is the least). When the molecular
diffusivity is close to the critical value, the most unstable generated modes constituting an
offshoot branch involve very large (order (η0 − η)−1/2) spatial scales, which decrease fast on
decreasing the molecular diffusivity below η0. By contrast, the growth rates of the modes
are very small (order (η0 − η)2) in magnitude) and they evolve very slowly. The modes are
oscillatory, the frequency of oscillations behaving as η0 − η.

We plan to study the asymptotics in all variants of branching encountered or suspected
in this work. Moreover, it is of interest to investigate the asymptotics of co-dimension 2
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branching, which may take place in the MHD stability problem on varying both ν and η
independently.
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