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Abstract: The paper presents a mathematical model of rocks freezing saturated with salt solution
under impact of osmotic force. Osmosis is related to the salt concentration gradient, which is
characteristic for solutions, and it is a powerful mechanism for the movement of solutions in poorly
permeable porous media. A mathematical criterion for the formation of closed “pockets” with brines
(cryopags) in frozen rocks has been obtained. This criterion is shown to be significantly depends on
the osmosis coefficient. The model includes three layers of a porous medium saturated, respectively,
with ice, ice and solution, and salt solution only. A special case was studied when there is only
a second layer with a movable boundary, on which a phase transition from the second layer to the
third one occurs. The investigated layer is saturated with a salt solution and ice in thermodynamic
equilibrium. Other layers are replaced by boundary conditions. An approximate analytical solution
of the problem is found in a self-similar formulation. The nature of the influence of osmotic force on
the freezing process of rocks saturated with solution is shown. The characteristic patterns associated
with the considered process are revealed. One of the features of the osmosis influence is the fact that
it can cause the movement (migration) of the solution in the direction of increasing pressure, i.e. in
the direction opposite to the driving force caused by the pressure gradient.
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1. Introduction

Understanding the regularities of freezing processes in rocks saturated with salt
solution is important due to numerous practical applications. The problems of chemical
contamination of the surface in cold regions due to the burial of various liquid radioactive
waste in permafrost can be distinguished among them [Chuvilin, 1999]. In the cited work,
based on the results of physical experiments, the behavior of ions of chemical elements
in freezing and thawing soils and in ice is studied. The features characteristic for the
interaction of frozen ground with salt solutions are described.

According to modern ideas, during the geological history permafrost in the coastal
zone of the East Siberian Arctic shelf experienced alternation of freezing and thawing, as
a result of which a large volume of hypersaline brines (called cryopags) were formed. At
the same time, salty sea water and cryopags significantly contribute to the destruction and
degradation of permafrost and, accordingly, the intensive release of methane as a result of
the decomposition of metastable gas hydrates contained in frozen rocks in a self-preserved
form [Lobkovskii and Ramazanov, 2018; Shakhova et al., 2017]. Methane is a powerful
greenhouse gas and affects global warming [Yakushev, 2009]. Therefore, studies of the
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regularities of cryopags formation during freezing of rocks saturated with a salt solution
are very relevant. So, the developed mathematical model makes it possible to describe not
only the freezing of porous media saturated with solution, but also to an equal extent the
reverse process, i.e. the process of permafrost degradation taking into account the osmotic
effect.

Modeling the processes of both freezing and thawing for rocks and soils saturated
with salt solutions was carried out by some authors [Tsypkin, 2009]. The essential difference
of our proposed model is that it takes into account osmosis associated with the salt con-
centration gradient, which is characteristic for salt solutions and is a powerful mechanism
for the movement (migration) of solutions in poorly permeable porous media [Ramazanov
et al., 2019, 2022]. This, in particular, made it possible to find a criterion for the formation
of cryopags, which significantly depends on the osmotic filtration coefficient.

It is generally believed that for the osmotic effect, it is necessary to have a semi-
permeable membrane that passes water molecules and does not pass salt molecules. But
this is an ideal case, in fact, this effect manifests itself locally in any sufficiently weakly
permeable porous medium in the presence of a significant salt concentration gradient.
This follows from thermodynamics, according to which the equilibrium of the solution
requires the constancy of the chemical potential of both the dissolved component and
the solvent [Landau and Lifshitz, 1976; Ramazanov et al., 2019]. However, the degree of
osmotic effect depends on the type of rock. In particular, it is well known that clays have
semi-permeable and, consequently, osmotic properties [Kemper, 1961]. It follows from this
that with a sufficient salt concentration gradient, the osmotic effect should be taken into
account at permeabilities of the order of one mD or less, characteristic of clays. The need to
take into account osmosis, in addition to the permeability coefficient, depends on specific
conditions, in particular, on pressure gradients and salt concentration. In general, this
question can be answered by comparing the estimates of osmotic force with the pressure
gradient in the generalized Darcy’s law given below.

2. Problem Formulation

There is a horizontal permeable layer saturated with a salt solution with a constant
concentration and with a given temperature. At some point in time, at the upper boundary
the temperature drops below the freezing point at a given local pressure and a given
solution concentration. Then two freezing fronts of the solution will spread from top to
bottom. The first front is the boundary between the upper completely frozen region of
the formation and the region where both the solution and the ice are in thermodynamic
equilibrium. The second boundary is the boundary between the indicated equilibrium
partially frozen layer and the area saturated with liquid solution (Figure 1). It is required
to formulate a mathematical model of the process under consideration and to investigate
the laws of evolution of such a system taking into account the osmotic force.

3. Mathematical Model

We present sets of equations in each layer and boundary conditions at the interphase
boundaries. Let’s point the z axis down and select the coordinate system as shown in
Figure 1.

Area I. This layer contains only rocks and ice, so here we have only the equation of
thermal conductivity

Cmi
∂T i
∂t

= λmi
∂2T i
∂z2 , Cmi =mρiCi + (1−m)Cs, λmi =mλi + (1−m)λs.

Here Cmi is the effective heat capacity of an unit volume of a porous medium saturated
with ice; T i is the temperature; λmi is the effective thermal conductivity of the saturated
porous medium; m is the porosity; ρi is the density of ice; Ci , Cs are the heat capacities of
ice and rocks, respectively; λi , λs are the thermal conductivities of ice and rocks.
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Figure 1. Diagram of the problem: I – frozen rocks containing ice; II – partially frozen layer saturated
with ice and salt solution in thermodynamic equilibrium; III – unfrozen stratum saturated with salt
solution; z = z1(t) is the movable boundary of the region I; z = z∗(t) is the partial freezing front of the
solution.

Area II. The system in this region is in a state of phase equilibrium, therefore, according
to the equation of state, temperature is a function of pressure and concentration of salt. It
is usually assumed that the temperature depends on the concentration linearly. In other
words, the equation of state can be written as

T = T w(p)−ψ0c. (1)

Here T w(p) is the dependence of the freezing temperature on the pressure for pure water
without impurities; ψ0 is a constant characterizing the degree of decrease in the freezing
temperature of water due to the presence of dissolved salt.

The dependency (1) can be written in another way:

p = P w(T +ψ0c). (2)

Here p = P w(T ) is the known function that is the equation of state for a pure liquid, i.e.
the inverse function with respect to T w(p). Next, we will use the form (2) for the equation
of state.

The set of equations in the considered layer will be written as

v = −
kf w(s)
η

(
ρw
∂µ1

∂c
∂c
∂z

+
dP
dT

(
∂T
∂z

+ψ0
∂c
∂z

)
− ρwg

)
;

∂
∂t

[
m
(
sρw + (1− s)ρi

)]
+
∂
∂z

(
ρwv

)
= 0;(

ms+ Γ
)∂c
∂t

+ v
∂c
∂z

=m
∂
∂z

(
sD
∂c
∂z

)
− c0

mρi
ρw

∂s
∂t
, Γ (K,c) =

∂a(K,c)
∂c

, lim
Kc→∞

a(K,c) = a∞;

C̄m
∂T
∂t

+ qmρi
∂s
∂t

+ ρwC̄wv
∂T
∂z

=
∂
∂z

(
λm

∂T
∂z

)
;

C̄m = Cm −msβwT
dP
dT

, ρwC̄w = ρwCw − βwT
dP
dT

;

Cm =m
[
sρwCw + (1− s)ρiCi

]
+ (1−m)Cs, λm =m

[
sλw + (1− s)λi

]
+ (1−m)λs,

(3)

where k is the permeability; s is the water saturation; ρ is the density; v is the velocity
field of the solution; C is the heat capacity of the unit volume; T is the temperature; λ is
the thermal conductivity; m is the porosity; µ1 is the chemical potential of the solvent in
the solution; η is the viscosity of the solution; D is the diffusion coefficient of salt in the
solution; q is the specific heat of melting of ice; a is the concentration of salt in the solid
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phase of a porous medium; βw is the coefficient of thermal expansion; indices: i is ice, w is
water, s is the skeleton of the rock.

Further, in this system we will assume dP w/dT as a constant value, and for simplicity
we will consider the phase permeability of the solution to be linear, i.e. we will assume
f w(s) = s.

In (3) the steady-state adsorption of salt is taken into account. For example, in the
case of the Langmuir isotherm, the adsorption equation has the form

a
(
K,c

)
= a∞

Kc
1 +Kc

,

where a∞ is the value of the maximum adsorption; c is the equilibrium concentration of
the adsorbent in the solution; K is the constant of the adsorption equilibrium.

Note that the first term in the Darcy’s law in (3) being proportional to the concentration
gradient is the osmotic force [Ramazanov et al., 2019].

In the system (3), the first equation is the generalized Darcy’s law, the second equation
is the mass balance of water, the third and fourth ones are the equations of the balance of
salt and energy. Later, we will assume that the inequality is satisfied:

ρwg

γdP /dT
≪ 1, γ =

T 0 − T 0

h
. (4)

The inequality (4) means that the temperature gradient on the saturation line caused
by the hydrostatic pressure drop, which is estimated to be about one degree per hundred
meters, is small compared to the temperature gradient under consideration.

In accordance with the condition (4), further, in the first equation of the system (3),
we will neglect gravity.

Area III. In this area, the rocks are saturated only with a liquid solution. The set of
equations in this unfrozen region can be obtained from (3) if we put the saturation of water
constant and equal to one. However, in the problem considered here, it is advisable to
introduce simplifications. In the area, the salt concentration will be considered weakly
changing and therefore the osmotic effect is neglected. For simplicity, adsorption is also
neglected, although, if necessary, these effects can be painlessly taken into account. As a
result, we have

v = − k
η

(
∂p

∂z
− ρwg

)
;

∂
∂t

(mρw) +
∂
∂z

(ρwv) = 0;

m
∂c
∂t

+ v
∂c
∂z

=mD
∂2c

∂z2 ;

Cm
∂T
∂t

+ ρwCwv
∂T
∂z

= λm
∂2T

∂z2 ;

Cm =mρwCw + (1−m)Cs, λm =mλw + (1−m)λs.

Boundary conditions. Considering the lower layer to be infinite for simplicity, the bound-
ary conditions characterizing the conservation of salt, energy and mass flows of water, we
write
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z = 0 : T i = T 0
i ;

z = z1 : T − = T + = T 0, λmi
∂T −
∂z

= ρiqm
dz1

dt
+λm

∂T +

∂z
,

s1

(
D
∂c+

∂z
+
ρi
ρw
c+
dz1

dt

)
= 0, v+ = s1

(
1−

ρi
ρw

)
m
dz1

dt
= −ks1

η

(
ρw
∂µ1

∂c
∂c+

∂z
+
dP
dT

∂T +

∂z

)
;

z = z∗ : ρw

(
v− −ms−

dz∗
dt

)
− ρim(1− s−)

dz∗
dt

= ρw

(
v+ −m

dz∗
dt

)
,

T − = T + = T∗, −ρiqm(1− s−)
dz∗
dt

+λ
∂T −
∂z

= λ+
∂T +

∂z
,

c− = c+ = c∗,
(
v− −ms−

dz∗
dt

)
c∗ −ms−D

∂c−
∂z

=
(
v+ −m

dz∗
dt

)
c∗ −mD

∂c+

∂z
,

v+ = − k
µ

∂p+

∂z
, p− = p+ = p∗ = P (T∗);

z→∞ : p→ p0, T → T 0, c→ c0.

Note that the water saturation at the boundaries of the phase transition can be discon-
tinuous.

Later, the pressure will be counted from the hydrostatic pressure, and the temperature
from T 0.

We can write the problem in the dimensionless form. To do this, we introduce scales:[
z
]

= h,
[
v
]

= − k
ηh

dP
dT

(
T 0 − T 0

)
, [t] =

h
[v]
, [T ] = T 0 − T 0,

[p] = −dP
dT

(T 0 − T 0), [c] = c0.

Keeping the notation, we have in dimensionless form

in the Area I

∂T
∂t

=
1
P eTi

∂2T

∂z2 , P eTi =
[v]hCmi
λmi

, (5)

in the Area II

v = s
[(
γf +ψ0

)∂c
∂z

+
∂T
∂z

]
;

1
N s

∂s
∂t
− 1
Np

(
∂T
∂t

+ψ0
∂c
∂t

)
+
∂v
∂z

= 0;

γc
∂c
∂t

+ v
∂c
∂z

=
s0
P ec

∂2c

∂z2 −γs
∂s
∂t

;

γT
∂T
∂t

+γq
∂s
∂t

+ v
∂T
∂z

=
1
P eT

∂2T

∂z2 .

(6)
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Here

1
Ns

=m0

(
1−

ρi
ρw

)
,

1
Np

=
[(
s0 + (1− s0)

ρi
ρw

)∂m
∂p

+
m0

ρw

(
s0
∂ρw
∂p

+ (1− s0)
∂ρi
∂p

)](
T 0 − T 0

)∣∣∣∣∣dPdT
∣∣∣∣∣,

γf = ρw

∣∣∣∣∣∂µ1

∂c

∣∣∣∣∣c0

[(
T 0 − T 0

)∣∣∣∣∣dPdT
∣∣∣∣∣]−1

, γc =m0s0 + Γ , γs =m0
ρi
ρw
,

γT =
Cm +msβwT̄

∣∣∣∣ dPdT ∣∣∣∣
ρwCw + βwT̄

∣∣∣∣ dPdT ∣∣∣∣ , γq =
qm0ρi[

ρwCw + βwT̄
∣∣∣∣ dPdT ∣∣∣∣](T 0 − T 0

) ,
P eT =

[v]h
[
ρwCw + βwT̄

∣∣∣∣ dPdT ∣∣∣∣]
λm

, P ec =
[v]h
m0D

, [v] =
k
ηh

dP
dT

∣∣∣∣∣T 0 − T 0
∣∣∣∣∣.

In the Area III

v = −
∂p

∂z
;

1
Np0

∂p

∂t
+
∂v
∂z

= 0,
1
Np0

=
1
m0

[
∂m
∂p

+
m0

ρw

∂ρw
∂p

](
T 0 − T 0

)∣∣∣∣∣dPdT
∣∣∣∣∣;

γc
∂c
∂t

+ v
∂c
∂z

=
1
P ec

∂2c

∂z2 ;

γT
∂T
∂t

+ v
∂T
∂z

=
1
P eT

∂2T

∂z2 .

(7)

The Boundary Conditions are

z = 0 : T = T 0
i ;

z = z1 : T− = T+ = T 0,
1
P eTi

∂T−
∂z

= γqi
dz1

dt
+

1
P eTi

∂T+

∂z
, (8)

s1

(
1
P eci

∂c+

∂z
+
ρi
ρw
c+
dz1

dt

)
= 0, v+ = s1

(
1−

ρi
ρw

)
dz1

dt
= s1

[(
γf +ψ0

)∂c+

∂z
+
∂T+

∂z

]
;

z = z∗ : ρw

(
v− − s−

dz∗
∂t

)
− ρi(1− s−)

dz∗
dt

= ρw

(
v+ −

dz∗
∂t

)
,

T− = T+ = T∗, −γq(1− s−)
dz∗
dt

+
1
P eT

∂T−
∂z

=
1
P eT

∂T+

∂z
, (9)

c− = c+ = c∗, −γs(1− s−)c∗
dz∗
dt

+
s−
P ec

∂c−
∂z

=
s−
P ec

∂c+

∂z
,

v+ = −
∂p+

∂z
, p− = p+ = p∗ = P (T∗);

z→∞ : p→ p0, T → 1, c→ 1.

4. Self-Similar Formulation and Solution of the Problem

We will look for a solution in a self-similar form introducing a new coordinate

ξ =
z
√
t
, v =

v(ξ)
√
t
, T = T (ξ), c = c(ξ), p = p(ξ). (10)

Then, we have in the ice area

−ξ
2
dT i
dξ

=
1
P eTi

d2Ti
dξ2 . (11)

Russ. J. Earth. Sci. 2023, 23, ES5007, EDN: BYCURY, https://doi.org/10.2205/2023es000857 6 of 15

https://elibrary.ru/bycury
https://doi.org/10.2205/2023es000857


Mathematical Model of Freezing of Rocks Saturated With Salt Solution. . . Ramazanov et al.

The general solution to this problem can be written as

T = A0 +A1erf

(√
P eTi
2

ξ

)
. (12)

In the Partially Frozen Area

v = s
[(
γf +ψ0

) dc
dξ

+
dT
dξ

]
;

− ξ
2Ns

ds
dξ

+
ξ

2Np

(
dT
dξ

+ψ0
dc
dξ

)
+
dv
dξ

= 0;

−
(
γcξ

2
− v

)
dc
dξ

=
1
P ec

d2c

dξ2 +
γsξ

2
ds
dξ

;

−
(
γT ξ

2
− v

)
dT
dξ

=
1
P eT

d2T

dξ2 +
γqξ

2
ds
dξ
.

(13)

In the Unfrozen Area – the Area III

v = −
dp

dξ
+γf

dc
dξ

− ξ
2Np0

dp

dξ
=
d2p

dξ2 −γf
d2c

dξ2 ,
1
Np0

=
1
m0

[
dm
dp

+
m0

ρw

dρw
dp

](
T0 − T 0

)∣∣∣∣∣dPdT
∣∣∣∣∣

−
(
γcξ

2
− v

)
dc
dξ

=
1

s0P ec

d2c

dξ2

−
(
γT ξ

2
− v

)
dT
dξ

=
1
P eT

d2T

dξ2 .

(14)

Boundary Conditions in Self-Similar Coordinates

ξ = 0 : Ti =
−δTi + δT

δT
, δTi = T0 − T 0

i , δT = T0 − T 0;

ξ = ξ1 : T− = T+ = 0,
1
P eTi

dT−
dξ

=
γqi
2
ξ1 +

1
P eT

dT+

dξ
, (15)

s1

(
1
P eci

dc+

dξ
+
ρi
ρw

ξ1

2
c+

)
= 0, v+ = s1

(
1−

ρi
ρw

)
ξ1

2
= s1

(
dc+

dξ
+γf

dT+

dξ

)
,

ξ = ξ∗ : v− −
m0

2
s∗ξ∗ −

ρim0

2ρw
(1− s∗)ξ∗ = v+ −

m0

2
ξ∗,

T− = T+ = T∗, −γq(1− s∗)
1
2
ξ∗ +

1
P eT

dT−
dξ

=
1
P eT

dT+

dξ
, (16)

c− = c+ = c∗, −γs(1− s∗)
1
2
ξ∗ +

1
P ec

s∗
dc−
dξ

=
1
P ec

dc+

dξ
;

ξ→∞ : p→ p0, T → 1, c→ 1.

Here: δTi , δT are temperature drops at the top and bottom of the ice layer; s1 is the water
saturation at the boundary ξ = ξ1 of the second (equilibrium) area with the ice layer.

Values δTi and s1 are given. For solving the problem, it is necessary to find: moving
boundaries of phase transitions ξ1, ξ∗, the temperature in the ice layer; the temperature,
salt concentration and water saturation in the equilibrium layer II and at its boundaries; the
temperature and pressure in the unfrozen area III. In particular, it is necessary to find the
temperature drop δT at the boundary ξ = ξ1. Note that the boundaries at the self-similar
calculus simultaneously determine the speed of the corresponding fronts.
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Equalities (5)–(9) and (10)–(16) at the self-similar statement, are a closed mathematical
model of freezing of rocks saturated with salt solution, taking into account the osmotic
driving force.

Simplifications. In the general case, the model is rather complicated, although it can
be solved. For a more convex study of the influence of osmosis, we simplify the model.
First of all, we obtain a condition under which the ice layer can be neglected. To do this,
the first front must move much more slowly than the second, i.e.

ξ1≪ ξ∗. (17)

We will consider the case when the filtration rate in a partially frozen layer (area II) is
small, i.e.

v−≪m0ξ∗.

To do this, either the water saturation, or the Peclet number for thermal diffusivity
must be small (for example, due to low permeability), i.e.

s≪ 1 and/or P eT ≪ 1. (18)

Then from the boundary conditions (15)–(16) we obtain the estimates

ξ2
1 ∼

λmi
ρiqm0

(
T 0 − T 0

i

)
;

m0

(
1−

ρi
ρw

)
(1− s∗)ξ∗ ∼

k
η

p∗ − p∞
lp

, lp ∼

√
k
ηβp

;

T∗ ∼ T 0 +
ξ∗
lT

(
T∞ − T 0

)
;

ρiqm0(1− s∗)
2λ

ξ∗ ∼
T∞ − T∗
lT

, lT ∼
√

λ
Cm

.

(19)

Here lp, lT are the effective thicknesses of the perturbed pressure and temperature areas,
respectively, in the third layer in the self-similar representation. They are also equal to the
propagation velocities of perturbations of the corresponding fields in the third layer.

Let’s choose, for example, T 0
i , p∞, T∞ and other input parameters so that the charac-

teristic pressure drops are of the order of 1 MPa, and the characteristic temperature drops
are taken from the interval ∆T ∼ (10−1 ÷ 10) ◦C.

Using the first two equations (19), we obtain an estimate for the permeability of dry
rocks, in which the condition (17) is satisfied:

k≫m0

(
1−

ρi
ρw

)2
λmi
ρiq

η

βp(p∗ − p∞)2

(
T 0 − T 0

i

)
∼ 10−18

(
10÷ 10−1

)
.

Thus, if the dry rock permeability is equal to or greater than 10−16, this approximation
is acceptable.

Using (19) from the boundary conditions for the salt concentration in (16), we can
estimate the concentration difference in the second and third layers.

Continuing the simplifications, we note that in the first consideration of the problem,
without compromising the qualitative properties, in a satisfactory quantitative approx-
imation, the third layer can also be ignored by setting fixed values of temperature and
concentration at the phase transition boundary, since the temperature and salt concentra-
tion in this area change relatively weakly.

Thus, we will consider only the second partially frozen layer, where ice and solution
are in thermodynamic equilibrium. The equations (13) are given for this layer. We will
solve the problem in two stages. First, we find the zero approximation at a zero velocity
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field, and then we find the correction associated with the motion of the solution. In the
absence of motion, system (13) can be written as

− ξ
2Ns

ds
dξ

+
ξ

2Np

(
dT
dξ

+ψ0
dc
dξ

)
= 0;

−αcξ
2

dc
dξ

=
d2c

dξ2 −
P ecγsξ

2
sT
dT
dξ

, αc = P ec(γc −γssc), sc = −Ns
Np

ψ0;

−αT ξ
2

dT
dξ

=
d2T

dξ2 −
P eT γqξ

2
sc
dc
dξ
, αT = P eT

(
γT −γqsT

)
, sT = −Ns

Np
.

(20)

We integrate the first equation in (20) and obtain

s = s0 +
Ns
Np

[
T −ψ0

(
c0 − c

)]
. (21)

The solution of the other equations will be sought in the form

c = c0 +C1erf

(√
α̃c
2
ξ

)
+C2erf

(√
α̃T
2

ξ

)
;

T = C3erf

(√
α̃c
2
ξ

)
+C4erf

(√
α̃T
2

ξ

)
.

(22)

Here the parameters α̃c, α̃T need to be found, and Ci , i =1–4 are arbitrary constants.
Substituting (22) into (20), we obtain a linear homogeneous algebraic system of equa-

tions. The solvability condition for the system results in an identical quadratic equation
for the parameters, solving which, we obtain

α̃c =
αT +αc +

√
(αc −αT )2 + 4P ecγssT P eT γqsc

2
;

α̃T =
αT +αc −

√
(αc −αT )2 + 4P ecγssT P eT γqsc

2
.

(23)

After eliminating the dependent coefficients, the solution has the form

c = c0 +C1erf

(√
α̃c
2
ξ

)
+
P ecγssT
αc − α̃T

C3erf

(√
α̃T
2

ξ

)
;

T =
P eT γqsc
αT − α̃c

C1erf

(√
α̃c
2
ξ

)
+C3erf

(√
α̃T
2

ξ

)
.

(24)

The remaining coefficients C1,C3 are determined from the boundary conditions

c∗ = c0 +C1erf

(√
α̃c
2
ξ∗

)
+
P ecγssT
αc − α̃T

C3erf

(√
α̃T
2

ξ∗

)
;

T∗ =
P eT γqsc
αT − α̃c

C1erf

(√
α̃c
2
ξ∗

)
+C3erf

(√
α̃T
2

ξ∗

)
.

(25)

The salt concentration at the origin c0 is determined from the condition that the velocity at
this point is zero (

γf +ψ0

) dc
dξ

∣∣∣∣∣
ξ=0

+
dT
dξ

∣∣∣∣∣
ξ=0

= 0.
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Substituting (24), we get[
γf +ψ0 +

P eT γqsc
αT − α̃c

]√
α̃cC1 +

[(
γf +ψ0

)P ecγssT
αc − α̃T

+ 1
]√
α̃TC3 = 0.

4. Mathematical Criterion for the Formation of Cryopags

In this section, we assume that the water saturation at the origin is zero. In the simplest
case, for cryopag formation it is necessary that in addition to the origin of coordinates, the
water saturation turned to zero at one more point ξ0 (0 < ξ0 ≤ ξ∗). The derivative of water
saturation at this point must be negative, i.e. the conditions must be met:

at ξ = ξ0 ≤ ξ∗ : s = 0,
ds
dξ

< 0. (26)

We consider the complete equation for water saturation, which is obtained from system
(13) after eliminating the second derivatives with respect to temperature and concentration 1

Ns
−

2
(
γf +ψ0

)
dc
dξ + dT

dξ

ξ
+ s

(
P eT γq +

(
γf +ψ0

)
P ecγs

) dsdξ +

+ s
[
P eT

(
γT −

2v
ξ

)dT
dξ

+
(
γf +ψ0

)
P ec

(
γc −

2v
ξ

) dc
dξ

]
=

1
Np

(
dT
dξ

+ψ0
dc
dξ

)
;

v = s
[(
γf +ψ0

) dc
dξ

+
dT
dξ

]
.

(27)

We assume in this equation s = 0, then we get 1
Ns
−

2
(
γf +ψ0

) dc
dξ

+
dT
dξ

ξ

 dsdξ =
1
Np

(
dT
dξ

+ψ0
dc
dξ

)
. (28)

After expanding the solution in a Fourier series in powers of ξ, and taking into account
the last two equations in (13), the conditions for cryopag appearance can be written as

ds
dξ

∣∣∣∣∣
ξ=ξ0

=

=
Ns
Np

γf
γf +ψ0

dT
dξ

∣∣∣∣
ξ=ξ0
−

[
P eT

2

(
γT +

γf
γf +ψ0

Ns
Np
γq

)
− P ecψ0

2(γf +ψ0)

(
γc −γf

Ns
Np
γs

)]
ξ2

0
2
dT
dξ

∣∣∣∣∣
ξ=ξ0

1 +
[
P eT

2

(
γT +

γf
γf +ψ0

Ns
Np
γq

)
− P ec

2

(
γc −γf

Ns
Np
γs

)]
ξ0

dT
dξ

∣∣∣∣∣
ξ=ξ0

< 0

s(ξ0) = 0.

(29)

Consider the case of low osmosis coefficients, when

γf ≪ ψ0. (30)

Then from (26)–(27) we approximately obtain

P eT γT > P ecγc

[
1−

γf
ψ0

(
1−

Nsψ0

Npγc
γs

)
−
γf
ψ0

Ns
NpγT

γq

]
,

γf
ψ0
≪ 1. (31)
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The value of ξ0 is found from the second equation (29) or approximately from the
equation

γf
ψ0
−
[
P eT

2

(
γT +

γf
ψ0

Ns
Np

γq

)
− P ec

2

(
γc

(
1−

γf
ψ0

)
−γf

Ns
Np

γs

)]
ξ0

2

6
= 0;

P eT
2

(
γT +

γf
ψ0

Ns
Np

γq

)
− P ec

2

(
γc

(
1−

γf
ψ0

)
−γf

Ns
Np

γs

)
> 0.

(32)

As a consequence, the cryopag requires the osmosis coefficient to be non-zero. In addi-
tion, from (29) it follows that with an increase in the osmosis coefficient, the ξ0 increases
and at some critical value γfc ,ξ0 reaches the phase transition boundary ξ∗; with further
growth of γf the cryopag opens and the water saturation of the area under consideration
at the phase boundary increases. Thus, on the one hand, small values of the osmosis
coefficient are necessary for cryopag formation, and, on the other hand, if this coefficient
exceeds the critical value, a closed cryopag is not formed.

The indicated critical value γfc is found from the condition ξ0 = ξ∗ or

s(ξ∗) = 0. (33)

Approximately γfc can be calculated assuming in (29) ξ0 = ξ∗.

5. Results and Discussion

Thus, expressions (21)–(25) give the complete problem solving in the approximation
of the absence of solution motion. Next we determine the approximate velocity field
from the values of the temperature, concentration, and water saturation fields from the
generalized Darcy law, taking into account osmosis (13)

v = s
[(
γf +ψ0

) dc
dξ

+
dT
dξ

]
. (34)

Finally, the corrected water saturation field is determined from the second equation
(13) using (34). After integration, it can be written as

s = s0 +
Ns
Np

[
T +ψ0

(
c − c0

)]
+

v
ξ

+

ξ
∫

0

v
ξ2 dξ.

The resulting approximation is valid as long as the corrected water saturation approx-
imation is close to the unperturbed one at zero velocity field. This is possible either when
the Peclet number is small P eT ≪ 1, or when the water saturation s is sufficiently small.

In the problem of freezing of water-saturated rocks, two forces act: the force that
pushes the solution into the unfrozen area, and the force that draws the solution in it. The
pushing force is due to the fact that the equilibrium pressure increases with decreasing
temperature, as well as the difference in the densities of water and ice, and the retracting
force is due to the osmotic force. Depending on the values of the parameters, one or another
force prevails.

Some of the obtained results are illustrated in Figures 2–4.
Figure 2 (a–c) shows the distributions of water saturation with depth in zero and first

approximations (dotted line) for two different values of pore expansion coefficients βp
(water capacity) (a, b) and two different values of the osmotic force coefficients γf (a, c).
Curves (1–2) correspond to two different moments of time; the dotted line shows the
curves corrected with the filtration velocity field. Above the water saturation curves, the
distributions of the respective filtration rates are shown.
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Figure 2. Water saturation distribution in the zero and first approximations (dashed line) for two
points in time (the distributions of the filtration rate are shown above) for Pec = 10, PeT = 10−2,

c∗ = 2.8%,T0 = −1.88 ◦C,ψ0 = 1.7, t = 1; 4 (1–2), where
(
γf ,

1
Np

)
= (2,0.01) a); (2,0.003) b); (1,0.01) c).

First of all, it follows from Figure 2 that, with time, the water saturation behind the
phase transition front decreases monotonically due to freezing. In this case, the velocity
field is negative, i.e. the solution is pulling into the partially frozen area from the thawed
area by osmosis (Figure 2a). Accordingly, water saturation increased after correction for
velocity (the dotted line is higher than the solid line). Comparing the solid and dotted lines,
we see that the obtained solution has a very good accuracy with P eT = 10−2.

If the water capacity βp is reduced with unchanged other parameters, the pushing force
prevails (Figure 2b). In this case, the corrected water saturation decreased. In Figure 2c,
in comparison with Figure 2a, the osmotic force coefficient is reduced. As can be seen
from the comparison, a decrease in the osmotic force also resulted in predominance of the
pushing force and so leads to decrease in water saturation.

These results are quite consistent with the results of physical experiments presented in
[Chuvilin, 1999], where it is shown that clays under the considered freezing conditions draw
the salt solution from the thawed area, but sands are pushed it out on the contrary. At the
same time, as already noted, it is known that clays have semi-permeable and, consequently,
osmotic properties [Kemper, 1961].

It should be emphasized that the patterns shown in Figure 2 associated with water
saturation are valid, strictly speaking, only for the considered approximation of sufficiently
low filtration rates. In the general case, an increase or decrease in water saturation depends
not only on the inflow or outflow of the solution, but also on additional freezing of the
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solution or melting of ice caused by a disturbance of the velocity field. As a result, at not
too low speeds and certain values of the parameters, the dotted curve in Figure 2a can be
below the solid line or cross it. This also applies to Figure 2b, c. As for the laws associated
with osmosis and its influence on the direction of movement of the salt solution, in the case
of “normal” osmosis it is also true for not low filtration rates.

Figure 3a–d shows the distributions of salt concentration in solution, temperature,
pressure and filtration velocity fields for two different values of pore expansion coefficients
βp (water capacity) and two different values of osmotic force coefficients. We take curves 1 as
the base curves for comparison. Figure 3a (curve 2) showed that a decrease in the water
capacity resulted in a decrease in the salt concentration.

Figure 3. Distribution of salt concentration (a); temperature (b), pressure (c) and filtration rate (d) at

P ec = 10, P eT = 10−2, c∗ = 2.8%, T0 = −2 ◦C, ψ0 = 1.7, where:
(
γf ,βp = 1

Np

)
= (2,0.01) 1); (2,0.003) 2);

(1,0.01) 3).

The curve 3 in Figure 3a shows that a decrease in the osmotic force coefficient leads
to an increase in solution concentration. To explain these properties, first of all, we note
that, as follows from Figure 3b, the temperature distributions for the three considered
cases almost coincide. Such a low sensitivity of temperature to the considered changes
in parameters is due to the fact that, in contrast to the concentration, the temperature is
fixed at both boundaries and the curves are almost linear at the considered small Peclet
numbers. The concentration at the origin is not specified, but it is found from the solution
of the problem of freezing.

At a constant temperature, it follows from the condition of thermodynamic equilib-
rium (1)–(2) that with increasing pressure, the concentration of the solution decreases
and vice versa. At the same time, a decrease in water capacity (compressibility of the
skeleton) leads to an increase in pressure, and a decrease in the osmosis coefficient results
in a decrease in pressure (see Figure 3c), which explains the patterns in Figure 3a–c.
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Finally, from Figure 3c (curve 1), we can see that for these parameters the salt solution
is drawn into the considered area. The curves 2 and 3 showed that both a decrease in water
capacity and a decrease in osmotic force resulted in a predominance of the pushing force.

Thus, under certain conditions of freezing of rocks saturated with salt solution, cry-
opags (closed “pockets with brine”) can form in the permafrost. The mathematical criterion
for the formation of a cryopag in the framework of this problem is given by formulas
(26)–(33). However, the authors do not deny the possibility of other mechanisms of cryopag
formation.

Some of the properties associated with cryopags are illustrated in Figure 4a, b. As
calculations show, cryopags under the given conditions are formed in the presence of an
osmosis coefficient γf , but it should be sufficiently small. Figure 4a shows that with an
increase in the osmosis coefficient, the cryopag grows and expands (curve 2). With further
increase in γf , the cryopag opens (curve 3). Figure 4b shows the evolution of the cryopag
over time. The top corner shows the velocity field. We can see that the cryopag expands as
the freezing front advances. In addition, we note that the solution inside the cryopag is
practically immobile.

Figure 4. a) Distribution of water saturation with depth for different values of the osmosis coeffi-
cient: γf /γf0 = 0,3;0.79;0.9 (1–3); b) Distribution of water saturation with depth for γf /γf0 = 0.79
for different time values: t = 1;4;10 (1–3); General values of parameters: P ec = 10, P eT = 1.55,

1
Np

= 0.1, ψ0 = 1.7, c∗ = 2.8%, T0 = −2 ◦C, T∗ = −1.88 ◦C.

6. Conclusion

A mathematical model of freezing for rocks saturated with salt solution is proposed.
An approximate analytical solution of the problem in a self-similar formulation has been
obtained, and the properties of the solution have been studied. A mathematical criterion
for the formation of closed “pockets” with brines (cryopags) in frozen rocks is derived. The
regularities of the osmosis effect on the process of freezing of rocks are shown, as well as
the criterion for the formation of cryopags.

At high values of the osmotic coefficient, the solution is shown to be drawn into the
freezing zone from the thawing zone, and at low values, on the contrary, it is pushed out.
The pushing force is due to the fact that the equilibrium pressure increases with decreasing
temperature, as well as to the difference in the densities of water and ice. This is quite
consistent with the results of physical experiments on freezing clay and sand, where clay,
in which osmotic properties are strongly pronounced, retract the salt solution, but sands,
on the contrary, push it out [Chuvilin, 1999].

The proposed mathematical model makes it possible to describe not only the freezing
of saturated porous media, but also the reverse process of permafrost degradation, taking
into account the osmotic effect.
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Note that when the phase boundary approaches the lower boundary of the reservoir,
the self-similar approximation will be violated, but this does not apply to the resulting
model itself. On a finite time, interval, the solution will be essentially non-stationary and,
in the limit, will pass into a stationary solution.
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