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Introduction

Interpretation of geophysical anomalies is a process of extraction of information from
observed physical field data, which contain a large amount of geological information in
a hidden form. The main objective of data interpretation is to extract this information
in order to solve a specific geological problem. Interpretation is not a strictly structured
process, and to perform the task, the interpreter must be a skilled individual, and possess
all the tools to extract the geological information from the geophysical fields. However,
based on geophysical data alone, it is only possible to formally describe the distribution of
physical properties, and there may be infinite amounts of examples of such distributions.
Therefore, to perform a meaningful interpretation, all available a priori geological and
geophysical information on the object under study is required. Interpretation is also mainly
carried out within the framework of certain models, which is a set of simplifications and
assumptions for this particular problem.

One of the principal methods for solving inverse problems of geophysics is the reg-
ularization method. The classic theory of regularization of systems of linear algebraic
equations (SLAEs) was created in the works of Tikhonov, Ivanov, and Lavrentiev, as well as
in multiple works of their follower in the 1960s–1980s [Tikhonov and Arsenin, 1979; Turchin
and Turovtseva, 1973; Zelenyi et al., 2018].

One of the objectives of the interpretation process is to determine the parameters of
objects that create the studied anomaly field. Such problems are called “inverse problems”,
which refer to under determined problems of mathematical physics.

Existing methods for solving the inverse problems, such as the regularization tech-
nique, mostly search for a quasi-resolution, which may not be a solution to the source
problem, but only an approximation to it.

In this study we consider an approach that allows us to describe a set of solutions that
satisfy the problem and to search among these equivalent solutions for a model that best
satisfies the available a priori information about the distribution of model properties.

A constructive description of the variety of solutions Φ(A,b) of a linear system Ax = b
in the finite-dimensional Euclidean space E allows us to consider a priori information
about the properties of the desired solution xf by searching for it on the variety Φ(A,b).
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Technically, it looks like this: the expert point of view on the desired solution xf is
formalized by a non-negative functional F on Φ(A,b), and the solution xf minimizes it. If
there are several points of view on xf and a system of functionals F = (F1, . . . ,Fk) is respon-
sible for them, then the search for xf is reduced to a multi-criteria choice B(Φ(A,b),F)
relative to F on Φ(A,b).

The above is graphically conveyed by the diagram

Ax = b→ Φ(A,b)→ F → B(Φ(A,b),F)→ x
f
. (1)

The first transition in (1) relates entirely to linear algebra and in this paper will be
performed using the Gramm-Schmidt orthogonalization.

The second transition in (1) formalizes the a priori information about the sought
solution xf into a system of functionals F on the manifold Φ(A,b) and therefore requires
a wide range of methods (fuzzy mathematics, machine learning, etc.).

We construct a formalization of three expert statements Eµ, ES and their conjunctions
EµS = Eµ ∧ES . Let us give their formulations:

• Statement Eµ: “the sought solution xf is similar to the known vector µ”.
• Statement ES : let the coordinates in E be indexed by a known set I , so that any x of E

can be considered as a function on I : x ∶ i → xi , i ∈ I . Let us denote by S the partition
I = I1 ∨ ⋅⋅⋅ ∨ Ik and consider a vector x to be S-homogeneous if it is constant on every
Ik .
ES : “the desired solution xf is S-homogeneous”.

• Statement EµS : “the sought solution xf is similar to the vector µ and is homogeneous
with respect to the partition S”.

The third transition in (1) is a broad optimization of functionals from F on the
manifold Φ(A,b), involving both classical continuous methods (gradient, penalty functions,
etc.) and discrete ones (choice theory, neural networks, etc.).

In the present paper the optimization on Φ(A,b) is performed by analytical methods:
the gradients of the functionals associated with statements Eµ, ES , EµS will be explicitly

found, and with their help the variants of the true solution xf .
Examples illustrating theoretical constructions are mainly related to gravimetry and

are of both artificial and natural origin.

Projection method

The initial space E is assumed to be n-dimensional Euclidean space with respect to
the scalar product (,).

In a linear system

Ax = b ≡ (ai ,x) = bi ; i = 1, . . . ,m, x ∈ E, (2)

A simultaneously means both the set of vectors ai from E and the matrix m×n with vectors
ai as rows, b = (bi∣mi=1).

The projection method, as applied to the system (2), consists in efficiently constructing
the manifold of its solutions Φ(A,b) . This problem was solved by the authors in [Agayan
et al., 2020] based on the systematic use of the orthoprojector H(a) perpendicular to a ∈ E:

H(a) = 1− aa⊤

a⊤a
if A ≠ 0, and H(0) = 1.

In the present paper, the Gramm-Schmidt orthogonalization will have a major role in
the presentation of the projection method.
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Homogeneous systems

For the homogeneous system Ax = 0 the solution space Φ(A,0) coincides exactly
with the orthogonal addition in E to the subspace L(A) generated by A: Φ(A,0) = L(A)⊥.
Therefore to solve the system Ax = b we have to construct an orthoprojector

H =H(A) ∶ E → L(A)⊥.

Let us do this using the Gramm-Schmidt orthogonalization process: if G = {gi∣Ni=1,
N = rangA} its result for the set A: G = GSh(A), then

H(A)(x) = x−
N

∑
i=1

(x,gi)
(gi , gi)

gi ∀x ∈ E. (3)

Inhomogeneous systems

The solution of the inhomogeneous system Ax = b is the sum of the partial x∗ and
the homogeneous one, so Φ(A,b) = x∗ + Φ(A,0). In the search for the solution x∗ we
will use the equivalence given below and the realization of its right-hand side using GSh
orthogonalization:

x ∈ Φ(A,b) ≡ x vector in E, whose image Ax is the
projection b on the image ImA in Rm .

The system P = {Aej∣nj=1} generates an image in ImA in Rm. Let us apply the orthogo-

nalization of GSh to P and obtain an orthogonal system G = GSh(P ): G = {gi∣Ni=1,
N = rangP }.

We need prototypes of yi vectors gi under mapping A: Ayi = gi . If we know vectors yi ,
then

b =
N

∑
i=1

(b,gi)
(gi , gi)

gi =
N

∑
i=1

(b,gi)
(gi , gi)

Ayi = A(
N

∑
i=1

(b,gi)
(gi , gi)

yi).

Thus, the vector

x
∗
=

N

∑
i=1

(b,gi)
(gi , gi)

yi (4)

will give us a partial solution to the system Ax = b.
We construct vectors gi and yi iteratively. We start with gi : if g1, . . . , gi−1, i ≥ 2 are

known, then according to GSh:

gi = Aei −
i−1

∑
k=1

(Aei , gk)
(gk , gk)

gk . (5)

Starting with g1 = Ae1.
If the vectors y1, . . . , yi−1, i ≥ 2 are known, then taking into account (5)

gi = Aei −
i−1

∑
k=1

(Aei , gk)
(gk , gk)

Ayk = A(ei −
i−1

∑
k=1

(Aei , gk)
(gk , gk)

yk).

Thus,

yi = ei −
i−1

∑
k=1

(Aei , gk)
(gk , gk)

yk . (6)

Starting with y1 = e1.
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To summarize: the effective parametrization of the variety of the solution Φ(A,b) of
the linear system Ax = b with the help of the GSh orthogonalization is the correspondence

x = x
∗
+Hs, s ∈ E, (7)

where H and x∗ are given by the formulas (3) and (4).

Example 1. A system of linear equations is given Ax = b:

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2 −1 1 2 3
6 −3 2 4 5
6 −3 4 8 13
4 −2 3 4 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

; b =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

2
3
9
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠
. (8)

After implementation Gramm-Schmidt orthogonalisations for the system P = {Aej∣nj=1}, we

obtain an orthogonal system G = GSh(P ): G = {gi∣Ni=1,N = rangP = 3} (5)

g⊤1 = ( 2.000, 6.000, 6.000, 4.000);
g⊤2 = (−0.087, −1.261, 0.740, 0.826);
g⊤3 = ( 0.123, −0.215, 0.954, −1.169).

and the corresponding system Y : Y = {yi∣Ni=1,N = rangP = 3} (6)

y⊤1 = ( 1.000, 0.000, 0.000, 0.000, 0.000);
y⊤2 = (−0.543, 0.000, 1.000, 0.000, 0.000);
y⊤3 = (−0.231, 0.000, −1.415, 1.000, 0.000).

By substituting the calculated gi , yi , i = 1,2,3 into (4), we obtain a partial solution to our
system

x∗ = (−0.5, 0.0, −3.0, 3.0, 0.0).

The discrepancy in the solution obtained is ∥Ax− b∥ = 8.189e−15.

Statement Eµ

The variety Φ(A,b) serves as the domain of determining an arbitrary statement about
the true solution xf . We will begin with the most basic of these, namely, the statement Eµ

about the similarity of xf to the known vector µ of E. Two interpretations will be given
and analyzed.

First Interpretation

In this case, the similarity of xf and µ is understood metrically as proximity in E:
“xf is the closest point to µ on the variety of solutions Φ(A,b)”.

If x∗ +Hs parameterizes Φ(A,b) (7), then the solution x̃f = x∗ +HSf , which is a vari-
ant of the true solution xf based on this interpretation of statement Eµ, is reduced to
unconditional minimization by s on E the first version of the Fµ function:

Fµ(s) =
ÂÂÂÂÂx

∗
+Hs−µ

ÂÂÂÂÂ
2
; gradFµ(s) =H

⊤
Hs−H

⊤(µ− x
∗), (9)

which leads to a linear system of equations on the sought parameter sf :

H
⊤
Hs

f
=H

⊤(µ− x
∗), (10)

which can be solved by the projection method.
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Example 2. For the system (8) we will look for a solution close to the known vector µ. As µ
a zero vector is taken, so in this case the problem is reduced to finding the minimum by norm
solution xf .

To solve the problem, just construct the projector H [Agayan et al., 2020] and, assuming
A = H⊤H , b = −H⊤x∗, find sf (10). Using the (3)–(10) approach described above, we get sf

and xf :
sf = (48.500, −24.000, 0.000, 0.000, 0.000);
xf = (−0.108, 0.054, −0.084, 0.084, 0.729).

The uncertainty of the resulting solution ÂÂÂÂÂAx
f − b

ÂÂÂÂÂ = 6.286e−14. The norm of ÂÂÂÂÂx
f ÂÂÂÂÂ =

0.74849, while the norm of x∗ from the example 1 is 4.27200.

Second Interpretation

This version of the similarity of xf and µ is more invariant with respect to µ and in
a sense semicorrelated: “xf is the closest point on Φ(A,b) to the line L(µ) generated by
vector µ”.

In this case, the search for x̃f = x∗ +Hs (a variant of xf based on statement Eµ) is
reduced to absolute minimization by s and t on the product E ×R of the second version of
the Fµ functional:

Fµ(s) =
ÂÂÂÂÂx

∗
+Hs−µt

ÂÂÂÂÂ
2
.

The desired pair of parameters (sf , tf ) is obtained as a solution to a linear system

( H⊤µ −H⊤µ

−µ⊤H ∣∣µ∣∣2
)( sf

tf
) = ( −H⊤x∗

(x∗,µ) )

and xf = x∗ +Hsf .

Example 3. This example is related with the inverse problem of gravimetry on a two-dimensional
model with a given density grid ρ (Figure 1).

Figure 1. Density grid.
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In this case xj – the unknown density in jth rectangular cell with vertices σ
j
ν , ν = 1,2,3,4;

bi – the value of the observed field at point si on the surface; aij – the conversion factor for the
density j-th cell in the attraction at ith observation point. We have:

bi =∑
j

aijxj ,

aij = Re(G(si ,σ j)).

The complex gravitational potential G(s,σ) is calculated using the formula [Bulychev et al.,
2010]:

G(s,σ) = Gδ
N

∑
ν=1

(ανs+ βν − s) ln
σν+1 − s
σν − s ,

αν(σ) =
σν+1 − σν
σν+1 − σν

,

βν(σ) = σν −ανσν ,

where G is the universal gravitational constant, δ is the density of the cell (in this case taken as
unit), σν is the complex coordinate of the ν − th vertex of the quadrangle, s and σ are complex
conjugate quantities.

Figure 2 shows a given density distribution ρ and a priori information µ, which is equal to
a slightly noisy half of the original model density.

Figure 2. Source model density and a priori information.

Figure 3 shows the density distributions xf and xT found, respectively, using the projection
method (10) and the Tikhonov regularisation method [Tikhonov and Arsenin, 1979] with α = 0.1.
It can be seen that while the Tikhonov regularisation method adds uninformative background
values to the a priori model, the method under study uses a priori information in order to find
a similar solution on the variety of solutions. This way, the main information is concentrated
where the interpreter wants it to be.

1. Solution evaluation by projection method (scheme (10)):

ÂÂÂÂÂÂx
f
− ρ

ÂÂÂÂÂÂ = 0.4382,
ÂÂÂÂÂÂAx

f
− b

ÂÂÂÂÂÂ = 5.305e−7
.

2. Evaluation of the solution by the Tikhonov regularization method (α = 0.001):

ÂÂÂÂÂx
T
− ρ

ÂÂÂÂÂ = 1.7667, ÂÂÂÂÂAx
T
− b

ÂÂÂÂÂ = 1.062e−2
.
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Figure 3. Comparison of solutions with the initial model.

Statement ES

Let the coordinates in the space E = RN (x) be indexed by the set I (N = ∣I∣), so that
any vector x ∈ E can be considered a function on I : x ∶ i → xi , i ∈ I .

Let us denote by S the disjunctive partition I = I1 ∨ ⋅⋅⋅ ∨ IK , S = {Ik∣Kk=1} and consider
the vector x S-homogeneous if it is constant on each block Ik , k = 1, . . . ,K . Let us formulate
a statement ES :

ES : “the true solution xf of the system Ax = b S-homogeneous”.
The attention to ES is not accidental, since homogeneity –a fundamental property of

nature (we can just look at geology).

Formalization ES

Any vector x ∈ E is naturally associated with a S-homogeneous vector, which we call
S-averaging x and denote by MSx:

(MSx)i =
∑j∈Ik

xj

∣Ik∣
, if i ∈ Ik . (11)

The correspondence x → MSx – projector in E, the quadratic deviation FS(x) from
which quantitatively characterizes the S-homogeneity of x and thus formalizes the state-
ment ES

FS(x) = ∥x−MSx∥2
. (12)

Let us represent FS(x) through intra-block homogeneity uncertainties. To do this,
denote by pr k : E → R∣IK ∣ the mapping of constraint x to block Ik : x → xk = x∣Ik , and by

Fk(x) =
ÂÂÂÂÂÂx

k − xk
ÂÂÂÂÂÂ

2
the deviation xk from its mean xk .

This deviation can be understood as an inverse quantitative characteristic of the
homogeneity of the vector xk ∈ R∣Ik∣ with respect to the trivial partition of the block Ik
consisting only of itself. Therefore

ÂÂÂÂÂÂx
k
− xk

ÂÂÂÂÂÂ
2
= FIk(x

k) and Fk(x) = FIk(pr kx). (13)

From the very definition (12) of the function FS(x) follows the equality

FS(x) =∑K

k=1
Fk(x). (14)

For any i of block I , the equality ∣xi −MSx∣2 = ∣xi − xk∣2 is true.
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Gradient ES

The calculation of the gradient gradFk(x) is much related to the calculation of the
gradient gradFIk(x

k). Without loss of generality, we do this below for the function FI(x) in

E. The gradients gradFIk(x
k) must then be assembled together using the projectors pr kx

to obtain gradFS(x) (14). Let us do this first for the so-called S partition consistent with I ,
and then reduce the general case of S to a consistent one.

Each block Ik of partition S has within it an ordering Ik = {ik1 < ⋅ ⋅ ⋅ < ik∣Ik∣}, induced by
the outer ordering on I : I = {i1 < ⋅ ⋅ ⋅ < iN }.

Thus, any index i has two coordinates i = ikj associated with the partition S besides its
main number m in I : i = im, m =m(i):

k = k(i,S) – the number of the block Ik of partition S, which includes index i;
j = j(i,S) – internal index number i directly in block Ik .

Call a partition S consistent with I if

m(i) = ∑
k<k(i,S)

∣Ik∣+ j(k,S), ∀i ∈ I. (15)

Informally, this means that S is a partition of I into consecutive segments I1 =

{i1, . . . , i∣I1∣}, I2 = {i∣I1∣+1, . . . , i∣I1∣+∣I2∣} and so on.
Let us find gradFS(x) for such S and start, as mentioned above, by calculating the

gradients gradFIk(x
k) for all k = 1, . . . ,K on the example gradFI(x).

So, x = (x1, . . . ,xN ), N = ∣I∣

FI(x) =
N

∑
i=1

⎛
⎜
⎝
xi −

∑N
j=1 xj

N

⎞
⎟
⎠

2

=

N

∑
i=1

((N − 1)xi −∑j≠i xj)
2

N2 .

By selecting the coordinate x1, calculate the derivative ∂FI
∂x1

FI(x) =
((N − 1)x1 − x2 − ⋅⋅⋅ − xN )2

N2 +
(−x1 + (N − 1)x2 − ⋅⋅⋅ − xN )2

N2 +

+ ⋅⋅⋅ +
(−x1 − x2 − ⋅⋅⋅ + (N − 1)xN )2

N2

Taking the derivative, we get

∂FI(x)
∂x1

=
(N − 1)

N2 ((N − 1)x1 − x2 − ⋅⋅⋅ − xN )− 1

N2 (−x1 + (N − 1)x2 − ⋅⋅⋅ − xN )−

− ⋅⋅⋅ −
1

N2 (−x1 − x2 − ⋅⋅⋅ + (N − 1)xN )

After transformations we get the following equality

∂FI(x)
∂x1

= x1 −
1
N

N

∑
i=1

xi .

Similarly for xk , k > 1

∂FI(x)
∂xk

= xk −
1
N

N

∑
i=1

xi .

So that

gradFI(x) = x−
trx
N

→
1 = (1N −

1
N

EN)(x),
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where
→
1 is a vector with unit coordinates from E, 1N (EN ) — identity matrix (constant

matrix with unit elements) of order N .
Recalling that N = ∣I∣, let

GI = 1∣I∣ −
1
∣I∣E∣I∣,

and conclude: for k = 1, . . . ,K
gradFIk(x

k) = GIk(x
k),

where
GIk = 1∣Ik∣ −

1
∣Ik∣

E∣Ik∣.

Due to the consistency of the partition S with I , the union of the gradients gradFIk(x
k)

is given by the product of the block matrix GS = {GIk ∣
K
k=1} and vector x in the representation

x = (xk∣Kk=1):

gradFS(x) = GS(x) =
ÂÂÂÂÂÂÂÂÂÂÂÂÂ

GI1 0
⋱

0 GIK

ÂÂÂÂÂÂÂÂÂÂÂÂÂ
⋅

ÂÂÂÂÂÂÂÂÂÂÂÂÂ

x1

∶

xK

ÂÂÂÂÂÂÂÂÂÂÂÂÂ
.

If the partition S is not consistent with I in coordinates x, then, keeping the same
notation S, the transition in space E from coordinates x to new coordinates y:

xi = y∑k<k(i,S) ∣Ik∣ + j(i,S),

we obtain the consistency of the partition S with the set of indices I in coordinates y (15).
Using the invariance of S-homogeneity from coordinates, let us calculate the S-

homogeneity of any vector x of E in its y-coordinates

FS(x) = FS(y(x)).

Hence, taking into account the rule of differentiation of the superposition we have the
gradient in the general case

gradFS(x) = S
⊤
GSSx.

The last step in formalizing the statement ES – the superposition of the functional
FS(x) with the parameterization x = x∗+Hs, which we denote by FS(s) and give its gradient

gradFS(s) =H
⊤
S
⊤
GSS(x∗ +Hs). (16)

To summarize: the search for the true solution xf = x∗+Hs ∶ a based on S-homogeneity
reduces to the solution of the linear system

H
⊤
S
⊤
GSSHs

f
= −H

⊤
S
⊤
GSSx

∗
. (17)

In its pure form, statement ES tells only about the S-homogeneity of the true solution
xf , which is highly ambiguous and therefore ineffective.

To reduce the ambiguity of statement ES , we need to connect it to some other statement
about xf . We do this below by connecting the statement ES with the statement Eµ in the
first treatment.

Statement EµS

The conjunction EµS = {desired solution xf of the system Ax = b is similar to the vector
µ and S-homogeneous} will be realized by the α-linear connection Fα(s) of functionals
FS(s) (16) and Fµ(s) (9); α ∈ [0,1]:

Fα(s) = F
α
µS(s) = αFS(s)+ (1−α)Fµ(s) (18)
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Then

gradFα(s) = αH
⊤
S
⊤
GSS(x∗ +Hs)+ (1−α)(H⊤

Hs−H
⊤(µ− x

∗))

and therefore finding the true solution xf = x∗+Hsf based on the statement EµS is reduced
to solving a linear system

(α(SH)⊤GSSH + (1−α)H⊤
H)sf = −α(SH)⊤GSSx

∗
+ (1−α)H⊤(µ− x

∗). (19)

The last part of this article is devoted to examples of inference (19) based on judgement
EµS .

Synthetic point example of finding a solution using the Fsµ functional

Let us consider the obtained results of solving the inverse problem from the point of
view of closeness to the true density distribution.

Let us construct a two-dimensional synthetic model with 32 × 32 points horizontally
and vertically. The distance between the points is 129 m horizontally and 32 m vertically.
As points we take spheres with radius R = 10 m approximated by points. The observed
effect is calculated by the formula (20).

Vz = G
4
3πR

3
σ

ζ − z

((ξ − x)2 + (γ − y)2 + (ζ − z)2)3/2
, (20)

where x,y,z are coordinates of the observation point, ξ,γ,ζ are coordinates of the center of
the sphere, G is the gravitational constant, R is the sphere radius, σ is the sphere density.

The system Ax = b describes the gravitational effect of the density environment. The
system of linear equations can be written as follows:

a11x1 + a12x2 + ⋅⋅⋅ + a11xn = b1

a21x1 + a22x2 + ⋅⋅⋅ + a21xn = b2

. . .

am1x1 + am2x2 + ⋅⋅⋅ + am1xn = bm,

(21)

where xi are the unknown densities, aji is the effect of the i-th sphere with unit radius at
observation point j, bj is the value of the observed field at point j.

The structure of the model is the disjunctive union into 2 × 2 blocks (Figure 4). The
densities of points on the grid vary from 1 to 4, but they are the same in blocks 2 × 2
(Figure 5a).

Figure 4. Explanation of combining grid points into block structures.
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Figure 5. a – initial density distribution (ρ);
b – µ1=ρ+random noise 10%; c – µ2=ρ+random noise 20%.

The number of observation points is 51 in the range from 0 to 12,000 m. Figure 6
shows the response on the surface of the initial density distribution (Figure 5a).

Figure 6. Response on the surface from the original density distribution.

To test the performance of the Fsµ functional, we introduce two vectors µ1 (Figure 5b)
and µ2 (Figure 5c), which are equal to the original point density (Figure 5a) with the
addition of random noise of maximum amplitude 10 and 20 percent, respectively, of the
scatter of the original density, and consider its results on the 2 × 2 block system at α = 0.0,
0.1, 0.5, 0.99.

Figure 7 shows the results of finding solutions for the a priori density distribution µ1
(Figure 5b). The Table 1 summarizes the quality criteria for the obtained solutions.
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Figure 7. Finding a solution using the Fsµ1 functional on blocks 2 × 2:
a – α = 0.0, b – α = 0.1, c – α = 0.5, d – α = 0.99.

Table 1. Quality criteria of obtained solutions for a priori distribution of
densities µ1

Homogeneity Closeness to ρ Final criterion

α = 0.00 — 7.69714 7.69714

α = 0.10 6.18796 7.07885 6.98976

α = 0.50 3.44360 4.85407 4.14883

α = 0.99 0.07234 3.38303 0.10545

The Figure 8 shows the results of finding solutions for the a priori density distribution
µ2 (Figure 5c). The Table 2 summarizes the quality criteria for the obtained solutions.

Analysis of the Table 1 and Table 2 shows that as the parameter α increases, the
homogeneity criterion and the criterion of closeness to ρ decreases. The final quality
criterion at α = 0.99 is much better, since the method, gives more weight to information
about the uniform distribution of densities within blocks than to information about the
distribution itself. Thus, due to the fact that the ideal initial structure of blocks (and
derivatives of it) is used, we see that the method gives a better approximation to the initial
model of density distribution, with a larger α.
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Figure 8. Finding a solution using the Fsµ2 functional on blocks 2× 2:
a – α = 0.0, b – α = 0.1, c – α = 0.5, d – α = 0.99.

Table 2. Quality criteria of obtained solutions for a priori distribution of
densities µ2

Homogeneity Closeness to ρ Final criterion

α = 0.00 — 15.39493 15.39493

α = 0.10 12.37600 14.15752 13.97937

α = 0.50 6.88721 9.70820 8.29771

α = 0.99 0.14477 6.76424 0.21096

Example of finding a solution on the geological and geophysical model of the Norilsk
Nickel deposit
Geological and geological-geophysical model of the deposit

The section of the liquation deposit of the Norilsk ore zone, known as of 2017 [Kulikov,
2017], was taken as the basis of the numerical model. The geological section of the
Norilsk area in the first approximation is a subhorizontal-layered environment, represented
(from bottom to top) by carbonate-terrigenous sediments of the Paleozoic, carbonized
terrigenous sediments of the Tungussian series, stratified strata of basalts and tuffs of the
main composition of the Permian – Lower Triassic (Figure 9) [Kulikov, 2017].

In spite of the fact that ore-bearing intrusions of Norilsk type are characterized by
increased values of density, it is extremely difficult to identify in the observed gravity
(dg) field anomalous effects from these objects. The reasons are: a relatively weak level of
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Figure 9. Generalized petrophysical model of the section that is typical
for the Norilsk ore zone [Kulikov, 2017].

Table 3. Petrophysical characteristics of the Norilsk ore zone section
[Kulikov, 2017]

Horizons
Density,
g/cm3

Quaternary (Q) 2.22

Mokulaevskaya Formation (T1mk)

V
u

lc
an

it
es

(B
as

al
ts

)
2.72–2.82

Moronga Formation (T1mr)

Nadezhdinskaya Formation (T1nd)

Khakancha Formation (T1hk+ gd)

Syverminskaya Formation (T1sv)

Ivakinsky Formation (P1iv)

Tunguska series (C2 −P2) 2.5

United (D2 −D3) 2.78

Manturovskaya Formation (D2mt) 2.76

Razvedochninskaya Formation (D1rz) 2.67

Kureya Formation (D1kr) 2.73

Zubovskaya Formation (D1zb) C
ar

bo
na

te
St

ra
ta

2.76

Intrusions of the Norilsk type 2.9–3.1

Ore-Free Intrusions 2.95-3

Solid Ores 4.5

Disseminated Ores 4

the useful signal; the presence of intense anomalies-interference due to physical inhomo-
geneities of the surrounding environment; specific distortions of anomalies associated with
the mountainous terrain, etc [Kulikov, 2017].

Under favorable conditions, differentiated ore-bearing intrusions, at depths of up to
1200–1500 m, can be detected by means of gravity prospecting. Ore knots, which are a set
of spatially convergent ore-bearing intrusions, can be detected by gravity survey at depths
of up to 3000 m [Kulikov, 2017].

Based on the above data on the form of occurrence of layers, intrusions and their
properties, a two-dimensional geological and geophysical model of the section typical for
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Figure 10. Geological and geophysical model created on the basis of data
on the Norilsk ore zone.

the Norilsk ore zone was created. This model is shown in Figure 10, distance in km, density
in g/cm3.

Results of the search for solutions

To solve the direct gravity problem for the two-dimensional model, we used the
complex variable function theory for a polygon with constant density [Bulychev et al.,
2010].

The system Ax = b describes the gravitational effect of the dense environment. The
system of linear equations can be written as follows, by analogy with the system (21):

[aji][xi] = [bj] (22)

where xi are the unknown densities, aji is the effect of i − o block at observation point j, bj
is the value of the observed field at point j.

In order to apply the projection method, the two-dimensional model of the section
(Figure 10) was split into blocks (Figure 11). The resulting model is called the “initial”
model, and we assume that we know only the observed field from this model. During
the study, we assume that only the useful signal is selected in the observed field and that
there is no noise component in it. Also, to take advantage of the ability to account for
the Fs functional, let us represent our existing model as a density grid, 50 by 60 cells
horizontally and vertically, with dimensions of 240 m horizontally and 40 m vertically,
assigning cells to the density of the original model and relating each cell to the block model
of the Figure 11. The resulting model is shown in Figure 12.

Figure 11. Initial geological and geophysical model split into blocks.
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Figure 12. Initial geological and geophysical model represented in the
form of a grid.

The method was tested on a geological geophysical example, taking into account
a priori information about the density distribution and block structures consisted of cells.

First, we show the dependence of the result on α. The block structures for each
example are constant, a noisy initial model of 0.3 g/cm3 has been used as the density
distribution, α is taken equal to 0.0, 0.1, 0.3, 0.5, 0.9, 1.0. The standard deviation of the
obtained solution from the original density distribution is shown in the Table 4. We see
that when α equals 1.0, when only the formalization of ES is included in the solution, the
deviation is the largest, and the best value of α is chosen by the interpreter when he tries to
find a compromise between the two statements Eµ ∧ES .

Table 4. The standard deviation of the resulting solution from the
original density distribution for different α

α ∣∣x− xf ∣∣
0.0 7.46037

0.1 6.75904

0.3 5.37339

0.5 4.03042

0.9 1.88739

1.0 3102.58

We show the results of inverse problem solutions for different α under different initial
conditions. The block structures for each example are constant, a noisy initial model was
used as the density distribution, at 0.1, 0.3 and 0.5 g/cm3, α is taken equal to 0.1, 0.5,
0.9, 0.9(9). The results of the search for solutions are shown in the figures below. It can
be seen that the gravitational field from the resulting models when solving the inverse
problem coincides with the original observable field. It is also seen that the resulting model
visually approximates the original model as α increases. However, it is worth noting that
at α equal to 0.9(9) we see a picture of highly inhomogeneous medium, since almost no
a priori information about the initial density distribution is taken into account.

Appendix A presents the plots (Figures A1–A21) of the observed field for the original
model, the model after partitioning into cells, noisy a priori information, and the result of
the solution search are also presented.

Conclusion

The projection method with respect to the system Ax = b consists in efficiently con-
structing the variety of its solutions Φ(A,b). In the present paper this is done using the
Gramm-Schmidt orthogonalization.

Knowledge of Φ(A,b) allows us to take into account a priori expert information about
the properties of the solution xf and restrict its search to Φ(A,b). In this paper, this is done
for three expert statements: Eµ, ES and their conjunction EµS = Eµ ∧ES .
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The judgement Eµ about the similarity of the solution xf with the known vector µ is
implemented on Φ(A,b) in two ways. It is shown by examples that each of them works
better than the traditional way of accounting for µ based on Tikhonov regularization.

The ES judgement of S-homogeneity of xf by itself is of little use due to great ambi-
guity, but its coupling to EµS with the scheme Eµ gives good results: if the initial solution

xf is indeed S-uniform, then the result xµS of its search by the scheme EµS turns out to

be closer to xf than the result xµ of the search by the scheme Eµ: ÂÂÂÂÂxµS − xf
ÂÂÂÂÂ <

ÂÂÂÂÂxµ − xf
ÂÂÂÂÂ

(based on the results for finding a solution for the ore problem based on the geological
geophysical model of the Norilsk Nickel deposit).

In reality, information xf is fuzzy: the expert knows more about some things and less
about others. Therefore, the authors see a natural extension of research in constructing
fuzzy variants of schemes, Eµ, ES , EµS .

Acknowledgments. This work was funded by the Russian Science Foundation (project
No. 24-17-00346).

Appendix A

Figure A1. Noisy a priori model at 0.1 g/cm3.

Figure A2. Comparison of observed field plots from the original
cell-split model and the a priori model at 0.1 g/cm3 noisiness.
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Figure A3. The result of searching for a solution using an a priori model
with a noise of 0.1 g/cm3 and α equal to 0.1.

Figure A4. The result of searching for a solution using an a priori model
with a noise of 0.1 g/cm3 and α equal to 0.5.

Figure A5. The result of searching for a solution using an a priori model
with a noise of 0.1 g/cm3 and α equal to 0.9.

Figure A6. The result of searching for a solution using an a priori model
with a noise of 0.1 g/cm3 and α equal to 0.9(9).
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Figure A7. Comparison of observed field plots from the source model,
the a priori model at 0.1 g/cm3 noisiness and the resulting models.

Figure A8. Noisy a priori model at 0.3 g/cm3.

Figure A9. Comparison of observed field plots from the original
cell-split model and the a priori model at 0.3 g/cm3 noisiness.

Figure A10. The result of searching for a solution using an a priori
model with a noise of 0.3 g/cm3 and α equal to 0.1.
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Figure A11. The result of searching for a solution using an a priori
model with a noise of 0.3 g/cm3 and α equal to 0.5.

Figure A12. The result of searching for a solution using an a priori
model with a noise of 0.3 g/cm3 and α equal to 0.9.

Figure A13. The result of searching for a solution using an a priori
model with a noise of 0.3 g/cm3 and α equal to 0.9(9).

Figure A14. Comparison of observed field plots from the source model,
the a priori model at 0.3 g/cm3 noisiness and the resulting models.
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Figure A15. Noisy a priori model at 0.5 g/cm3.

Figure A16. Comparison of observed field plots from the original
cell-split model and the a priori model at 0.5 g/cm3 noisiness.

Figure A17. The result of searching for a solution using an a priori
model with a noise of 0.5 g/cm3 and α equal to 0.1.

Figure A18. The result of searching for a solution using an a priori
model with a noise of 0.5 g/cm3 and α equal to 0.5.
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Figure A19. The result of searching for a solution using an a priori
model with a noise of 0.5 g/cm3 and α equal to 0.9.

Figure A20. The result of searching for a solution using an a priori
model with a noise of 0.5 g/cm3 and α equal to 0.9(9).

Figure A21. Comparison of observed field plots from the source model,
the a priori model at 0.5 g/cm3 noisiness and the resulting models.
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