
Research Article

Received: 21 March 2024

Accepted: 29 July 2024

Published: 24 December 2024

Copyright: © 2024. The Authors.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

The Use of Landsat 8 in Detecting Potential Mineral Zones in

West Nusa Tenggara, Indonesia

U. A. Said*,1 , R. A. Bantan1 , A. A. Mannaa1 , and Y. Taufiq2

1Department of Marine Geology, Faculty of Marine Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
2PT. Sumbawa Timur Mining, Jakarta, Indonesia
* Correspondence to: Umar Abdulrahim Said, usaid@stu.kau.edu.sa

Abstract: The remote sensing analysis within the Hu'u District area is known to face a challenge with
dense vegetation. The problem affects the accurate reading of spectral reflectance from satellites,
influencing the differentiation between potential mineral zones and vegetation. Therefore, this study
aims to carry out a remote sensing analysis of densely vegetated areas to differentiate minerals from
vegetation and obtain potential mineral zones. The combination band ratios and principal component
analysis (PCA) methods are used to acquire potential mineral zones. Furthermore, Landsat 8 images
freely available on Google Earth Engine are adopted and the validation is carried out using a drill
hole from previous study. The results show that band ratios method cannot distinguish mineral
zones from vegetation. However, PCA method can recognize potential mineral zones. This is the
result from PCA method with band combination of bands 1, 2, 3, 4, 5, and 6 as the first group and
band 2, 4, 5, and 6 as the second group.
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1. Introduction

Geological mapping is perceived as an indispensable component across different disci-
plines and applications. In this context, remote sensing datasets have been developed as
a cost-effective, efficacious, as well as temporally and labor-efficient methodology, partic-
ularly when subjected to traditional approaches of field mapping. Landsat data has also
been extensively deployed for tasks such as discriminating among rock units, deciphering
lineaments, and showing hydrothermal alterations. Due to economic concerns, mineral
mapping using satellite data speeds up exploration, lowers expenses, as well as accurately
and quickly identifies broad regions [Aita and Omar, 2021; Bakardjiev and Popov, 2015; Hede
et al., 2015; Shebl and Csámer, 2021].

Optical appraisal of aerial pictures has been leveraged to correctly show these for-
mations, particularly linear structures or lineaments. In the present era, with the advent
of Geographic Information System (GIS) expertise, the high-resolution data gained from
photos, autonomous parsing of satellite images, and Landsat, is strongly propagated [Takod-
jou Wambo et al., 2016]. Alteration mineral indices such as the OH-bearing, pyrophyllite,
kaolinite, alunite, and calcite were established by detecting argillic, phyllic, and propylitic
alternations in epithermal deposit and porphyry copper deposit using Landsat 8 [Ombiro
et al., 2021; Parcutela et al., 2022; Shim et al., 2021; Zhang et al., 2016]).

Several studies have focused on methodologies to show geological structures by taking
advantage of Principal Component Analysis (PCA) and Band Ratio (BR) among other tech-
niques. The use of the conventional PCA approach may substantially enhance the precision
of geological mapping, facilitating a more accurate identification and interpretation of
geospatial and spectral data [Carranza and Hale, 2002; Chen et al., 2021; Ghasemi et al.,
2018].
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2. Study Area

The study area is located within the Hu'u district, Dompu Regency on Sumbawa
Island, situated in West Nusa Tenggara, Indonesia, as seen in Figure 1. It forms a portion
of the territory 50 under projects managed by PT Sumbawa Timur Mining (PT STM).
Within the district, there exist three principal porphyry Cu-Au prospects, specifically the
Humpa Leu East, Sori Hiu, and Onto prospects [Fadlin et al., 2023]. The district has been
hypothesized to be a paleovolcano, characterized by Upper Miocene Basaltic Andesite lava,
with radiometric dating at an age of 5 ± 0.2 Ma years. Regionally, the rock formations
are categorized as constituents of the Old Volcanics Rocks Formation [Verdiansyah et al.,
2023]. The Hu’u intricate features various surface possibilities, manifested as a lithocap
of widespread epithermal-style alteration but some are connected to a porphyry situated
underneath the ground [Verdiansyah et al., 2021].

The Hu'u project region is situated at the junction of many significant fault zones,
according to a seismotectonic assessment. A significant sinistral fault with an NW trend is
projected across the region from the southwest face of the Tambora volcano. Furthermore,
a significant dextral fault with an NE trend extends along the bay straight west of the Hu'u
region [Burrows et al., 2020].

Figure 1. Hu’u District, West Nusa Tenggara, Indonesia as the study area.

3. Method
3.1. Images Data

The visible and shortwave bands of the Landsat 8 image were thought to be useful
for identifying the type of mineral based on its spectral signature or spectral reflection
properties [Setianto et al., 2021].

Landsat 8 data used is freely obtained from Google Earth Engine as a compilation
of images from April 2013 to 2023. This data is pre-configured in a Top of Atmosphere
(TOA) format after radiometric and geometric corrections. Furthermore, cloud cover filter
is the preprocessing conducted to obtain the least cloudy images. The purpose of the
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pre-processing is to derive a collection of satellite images, spanning several years, with
minimal cloud interference.

This study made use of Landsat 8 satellite images, which has a range of spectral bands
capturing multiple wavelengths of light. These electromagnetic spectrum bands span the
visible and shortwave infrared regions. Specifically:

• Band 2 (Blue: 0.45–0.51 µm): This band's ability to penetrate clear water makes it
useful for mapping underwater structures and evaluating bodies of water.

• Band 3 (Green: 0.53–0.59 µm): Useful for assessing the health and vigor of vegetation,
as it captures the green reflectance peak from chlorophyll.

• Band 4 (Red: 0.64–0.67 µm): This band is crucial for distinguishing between vegetation
and bare soil, as healthy vegetation absorbs red light.

• Band 5 (Near Infrared, NIR: 0.85–0.88 µm): Highly reflective in vegetation, this band
is used for assessing biomass content and mapping vegetation.

• Band 6 (Shortwave Infrared 1, SWIR1: 1.57–1.65 µm): Sensitive to moisture content,
useful in studying soil and vegetation water content.

• Band 7 (Shortwave Infrared 2, SWIR2: 2.11–2.29 µm): Effective for detecting hy-
drothermal alterations in rocks and distinguishing between different types of minerals.

Understanding these spectral characteristics is fundamental for accurately interpreting
the satellite imagery and applying subsequent analysis techniques

3.2. Pre-Processing

The data, procured from the Google Earth Engine, originates from Landsat 8, Collec-
tion 2, Tier 1. This data is pre-configured in a TOA format after radiometric and geometric
corrections. In addition, the pre-processing is to derive a collection of satellite images,
spanning several years, with minimal cloud interference. Obtaining raw Landsat satellite
images in the region of interest is crucial in providing the conditions in the targeted area.

3.3. Band Ratio

Band rationing is a technique where one band's Digital Number (DN) is split by the
value of a different band's DN. When pointing out elements or materials that are not visible
in the raw bands, band ratios can potentially be beneficial. It consists of applying numerical
methods to multispectral pictures to lessen spectral reflectance fluctuations brought on by
topography or fluctuations in sunlight illumination angle and to derive certain spectral
responses [Ghasemi et al., 2018].

Band combinations tested in this study are 4/2, 6/7, 6/5, and 7/5 to obtain iron oxide,
hydroxyl-bearing rocks, ferrous minerals, and clay, respectively.

3.4. Band Ratio Composites

The 3 combinations of band ratio composites experienced in the project are Sabin’s
ratio, Kaufmann’s ratio, and composite of 4/2, 6/7, and 5. Sabin’s ratio is expected to
define a hydrothermal alteration map, while Kaufmanns’ ratio is anticipated to distinguish
altered rocks and lithological elements from the vegetation. The composites of 4/2, 6/7,
and 5 are used to differentiate altered rocks and outcrops from trees and plants.

3.5. PCA

To mitigate and dissociate the inaccurate impacts of flora in mapping hydrothermal
alterations and revealing the lithology of tropical terrain, the Principal Components Analy-
sis (PCA) is employed [Pour and Hashim, 2014]. In areas of dense vegetation, pixels may
exclusively depict vegetation spectra, while in less densely vegetated regions with insuffi-
cient spatial resolution pixels, they may represent a mix of different materials. Techniques
for detecting and mapping hydrothermally altered rocks typically aim to substantially
separate or reduce the spectral impact of vegetation from that of the underlying substrate.
The software defoliant technique, an image enhancement method, employs a prime compo-
nents analysis of two band ratios that emphasize the effects of the objective interest, with
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input band ratio images chosen based on their information associated to components of
concentration (e.g., hydrothermal alteration) and their interference from other components
such as vegetation. This method elucidates variance due to spectral response similarities
and highlights unique contributions from each component [Ghasemi et al., 2018].

There are two combinations of bands for PCA. The group of bands 1, 2, 3, 4, 5, and
6, as well as those from bands 2, 4, 5 and 6. Eigenvalue and eigenvector are required to
calculate visualization in RGB format.

4. Results
4.1. Raw Landsat Satellite Images

The true color composite requires the visual combinations of bands 2, 3, and 4 from
Landsat 8 satellite. The image area should have a low cover of clouds to disturb the
reflectance of signal from a satellite. The cloud covering is inversely proportional to the
accuracy of the results. From Figure 2, the region of interest can be known as a densely
vegetated area, disturbing the reflectance of signal from a satellite. Meanwhile, the signal
reads the vegetation instead of mineral and an advanced analysis is essential to obtain the
reflection of mineral under tight vegetation. Figure 2 is a compilation of Landsat 8 images
from April 2013 to 2023 freely available and obtained from Google Earth Engine showing
true color composite.

Figure 2. True color composites are presented by bands 2, 3, and 4 to explain the real condition of
the study area with the least clouds.

4.2. Band Ratios

Figure 3A, 3B, 3C, and 3D shows the results of band 4/2, 6/7, 6/5, and 7/5, respec-
tively. Mineral potential zone is not reported due to vegetation and the expected result is
unachieved by combining some bands. Therefore, this method does not apply to the study
area due to increased vegetation.

Russ. J. Earth. Sci. 2024, 24, ES5010, EDN: HSCGRG, https://doi.org/10.2205/2024es000921 4 of 10

https://elibrary.ru/hscgrg
https://doi.org/10.2205/2024es000921


The Use of Landsat 8 in Detecting Potential Mineral Zones in West Nusa Tenggara, Indonesia Said et al.

Figure 3. (a) Band ratio 4/2, (b) Band Ratio 6/7, (c) Band Ratio 6/5, (d) Band Ratio 7/5. These
combinations were conducted to detect potential zones.

4.3. Band Ratio Composites

Sabin’s ratio is expected to define the hydrothermal alteration map by combining
bands 4/2, 6/7, and 6/5. Kaufmanns’ ratio is anticipated to distinguish altered rocks and
lithological units from the flora using a combination of 7/5, 5/4, and 6/7. Meanwhile,
composites of 4/2, 6/7, and 5 are optimized to differentiate altered rocks and outcrops
from woodlands. Figures 4A, 4B and 4C present the result of Sabin’s ratio, Kaufmann’s
ratio, and a composite of 4/2, 6/7, and 5. These three composites cannot identify potential
mineral zones and the vegetation is still the unworked factor. Even though the three bands
are tested in one composite of RGB format, the expected result is not attained.

4.4. PCA

The first combination group consists of bands 1, 2, 3, 4, 5, and 6 to recognize hy-
drothermally altered rocks and other minerals from trees. In addition, the second group of
bands 2, 4, 5, and 6 are processed to obtain iron oxides from plants.

Table 1 shows that PC1, PC2, and PC3 account for 99.83% of the variation to create the
RGB composite for producing the primary component seen in Figure 5a. According to the
illustration, the green and blue colors symbolize flora and rocks subjected to hydrothermal
alteration, respectively.

PC4 comprises 0.09% of the variance data and has the greatest loading positive and
negative Eigenvector values of 0.779882 and −0.612408 for bands 2 and 4, respectively. In
broad terms, minerals related to iron oxides show low absorption and reflectance between
and 0.45–0.51 µm, respectively. Therefore, regions connected to iron oxides in bands 2 and
4 are bright in the PC4 picture.
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Figure 4. A) Sabin’s Ratio (band 4/2, 6/7, and 6/5), B) Kaufmann’s Ratio (band 7/5, 5/4, 6/7), C)
Composite of 4/2, 6/7, 5.

Table 1. Eigen Values and Eigen Vectors for Bands 1, 2, 3, 4, 5 and 6

PC1 PC2 PC3 PC4 PC5 PC6

Band 1 0.020360 0.192974 −0.334840 −0.494944 0.402861 0.665554

Band 2 0.035911 0.238785 −0.402445 −0.452621 0.201009 −0.731068

Band 3 0.103666 0.253710 −0.484258 −0.032229 −0.816609 0.149964

Band 4 0.155918 0.433000 −0.377308 0.723144 0.350531 0.005456

Band 5 0.754882 −0.595431 −0.265794 0.023034 0.066237 −0.007135

Band 6 0.627209 0.547126 0.527643 −0.160181 −0.056473 0.002697

Eigen Values 0.026078 0.004487 0.001089 0.000040 0.000011 0.000001

Percentage of
Eigen Values

82.251% 14.151% 3.436% 0.126% 0.035% 0.002%

Cumulative
Percentage of
Eigen Values

82.251% 96.402% 99.837% 99.963% 99.998% 100.000%

Figure 5a explains that potential mineral zones are depicted in dark blue, while
vegetation is shown in green. In this context, the bright pixels represent hydrothermally
altered rocks in Figure 5b.

The drill hole data and boundaries of the company’s project area used are presented
in Figure 6. The white lines and yellow dots represent the project area boundaries and drill
hole locations, respectively. From Figure 7, the locations of the drill holes are matched with
the blue areas from the analysis representing potential mineral zones. Therefore, the green
squares can be potential areas for upcoming exploration projects.

Russ. J. Earth. Sci. 2024, 24, ES5010, EDN: HSCGRG, https://doi.org/10.2205/2024es000921 6 of 10

https://elibrary.ru/hscgrg
https://doi.org/10.2205/2024es000921


The Use of Landsat 8 in Detecting Potential Mineral Zones in West Nusa Tenggara, Indonesia Said et al.

Table 2. Eigen Eigen Values and Eigen Vectors for Bands 2, 4, 5, and 6

PC1 PC2 PC3 PC4

Band 2 −0.033644 0.223736 0.583605 0.779882

Band 4 −0.153175 0.432613 0.643692 −0.612408

Band 5 −0.761896 −0.611333 0.213294 −0.017100

Band 6 −0.628427 0.623747 −0.446734 0.128249

Eigen Values 0.025795 0.004078 0.000661 0.000027

Percentage of
Eigen Values

84.40% 13.35% 2.16% 0.09%

Cumulative
Percentage of
Eigen Values

84.40% 97.75% 99.91% 100.00%

Figure 5. A) The PC1, PC2, and PC3 components in RGB combination. Potential mineral zones
are illustrated in dark blue. B) Principal component 4 (PC4). The bright pixels correspond to
hydrothermally altered rocks.

Figure 6. Drill hole locations (modified after [Burrows et al., 2020]). The yellow dots and white lines
are drill holes and project boundaries, respectively.

5. Discussion and Conclusion

The true color composite was reported to require the visual combinations of bands 2,
3, and 4 from Landsat 8 satellite. The image area had minimal cloud cover, reducing the
potential for cloud to interfere with the satellite signal’s reflectance. The clouds covering
was inversely proportional to the accuracy of the results and the region of interest could be
known as a densely vegetated area. In this context, the vegetation disturbed the reflectance
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Figure 7. Validated map. Yellow dots are drill holes. Dark blue are potential mineral zone. The green
boxes are the suggested next exploration areas.

of the signal from a satellite. Therefore, an advanced analysis is essential to obtain the
reflection of minerals under tight vegetation.

Band ratios 4/2, 6/7, 6/5, and 7/5 were tested as visualized in Figure 3 but could
not differentiate mineral potential zone. The vegetation disturbed the satellite signal
reflectance and the expected result could not be accomplished by combining some bands.
Therefore, this method did not apply to this study area due to high vegetation. Sabin’s
Ratio (band 4/2, 6/7, and 6/5), Kaufmann’s Ratio (band 7/5, 5/4, 6/7), and composite of
band 4/2, 6/7, 5 were also examined as shown in Figure 4.

Advanced analysis was conducted using PCA andpotential mineral zones were visible.
Based on eigenvalue and eigenvector calculations, PC1, PC2, and PC3 possessed data
variance of more than 99.83% in RGB format. The dark blue and green tint sections showed
possible mineral zones and flora, respectively. Meanwhile, the bright pixels represented
hydrothermally altered rocks in Figure 5B. Figure 7 shows that mineral zones from PCA
method were located as drill holes and yellow dots were drill holes from the previous study.
Dark blue zones were potential mineral areas and the green boxes were the suggested
exploration areas.

In conclusion, While the Band Ratios method did not effectively distinguish mineral
zones due to the presence of dense vegetation, the PCA method demonstrated significant
potential. The application of PCA to the spectral bands revealed distinct variations that
could be attributed to mineral zones, even in areas with substantial vegetation cover. Key
findings from the PCA analysis include:

1. Principal Components Analysis (PCA):
2. Over 99.83% of the variance in the data was explained by the first three principal

components (PC1, PC2, and PC3) taken together. Indicating that these components
captured the most critical information from the spectral bands.

3. The fourth principal component (PC4) identified bright pixels corresponding to
hydrothermally altered rocks, providing a clear distinction from vegetative cover.

These results suggest that PCA could enhance the accuracy and clarity of mineral zone
identification. This approach offers a promising avenue for future research, particularly
in areas with complex surface conditions. The integration of the method with machine
learning might produce clearer differences for potential zones.
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