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Abstract: The Vema Channel is a deep narrow passage in the South Atlantic and a main path for
bottom water which flows northward from the Argentine Basin to the Brazil Basin and after all into
the North Atlantic. The thermohaline structure and dynamics in it have been studied for many years.
In this study we report our new data on dissolved oxygen and nutrients measurements performed
in 2022 at the exit of the Vema Channel. This is the first time that such measurements have been
made with high spatial resolution. Data from standard oceanographic sections located near the
study area are also analyzed. A significant dependence in the distribution of dissolved oxygen and
nutrients on the hydrological structure is shown. Local dissolved oxygen minimum indicates the
lower boundary of Circumpolar waters. It was also revealed insignificant temporal variability of
nutrients concentration.
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Introduction

Numerous studies have been conducted in the South Atlantic both within the frame-
work of international ocean circulation research programs and in the course of individual
researches of different countries. Such interest is explained by the role of the region in the
formation and distribution of several water masses that are key for the entire World Ocean
[Holfort and Siedler, 2001; Orsi et al., 2002]. One of them is Antarctic Bottom Water (AABW,
6 < 2°C by [Wiist, 1936]), which forms in the Weddell Sea and spreads northward in the
bottom layer. Through detailed studies, several classifications were proposed dividing
AABW into several individual water masses. In our work, we follow the definition [Reid,
1989; Sandoval and Weatherly, 2001] according to which the AABW consists of Weddell
Sea Deep Water (WSDW, 60 < 0.2 °C) and Lower Circumpolar Water (LCPW, 0 < 2°C). The
characteristic features of WSDW are high density and dissolved oxygen, low temperature
and salinity; and characteristic features of LCPW are high values of temperature, silicate,
and salinity and low dissolved oxygen relative to the underlying WSDW [Mantyla and Reid,
1983].

In its northward flow, the major part of AABW enters the Argentine Basin. The zonally
oriented Rio Grande Rise and the Lower Santos Plateau, separating the Argentine and
Brazil basins, prevent further free propagation of bottom waters to the north (Figure 1).
Water exchange between these basins occurs through the Vema and Hunter channels [Hogg
et al., 1999; Speer and Zenk, 1993], as well as over the Lower Santos Plateau [Frey et al.,
2018]. The densest WSDW passes only through the Vema Channel. Water with 6 > 0.2°C
passes over the Lower Santos Plateau, and water with 6 > 0.6 °C passes through the Hunter
Channel [Sandoval and Weatherly, 2001]. The Vema Channel is a meridionally located
deep-water passage by abyssal currents [Gamboa et al., 1983]. It is more than 700 km long,
15-20 km wide with a depth relative to the terraces forming it of about 500 m, the main
sill of the channel is located at 31°12’S, 39°20’W and its depth is 4614 m [Zenk et al., 1993].
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Northward of 29°S the Vema Channel is wider and turns northeastward. For deep narrow
passage at about 27°S, 34°W we use the name Vema Extension suggested by [Zenk and
Morozov, 2007].

Due to its location and structure, the Vema Channel is an excellent object for studying
the structure and dynamics of AABW. Different aspects of abyssal circulation, including
Ekman layer, Coriolis and bottom friction forces, and potential vorticity conservation were
studied in the Vema Channel [Hogg et al., 1982; Johnson et al., 1976; Reid, 1989; Sandoval
and Weatherly, 2001]. During the Deep Basin Experiment, a part of the World Ocean
Circulation Experiment [Hogg et al., 1996] and latter studies [Hogg et al., 1999; McDonagh
et al., 2002; Speer and Zenk, 1993] estimates of velocity and transport of WSDW and LCPW
in the Vema Channel were made. The velocity and transport limits are in a wide range,
detailed values are given in [Morozov et al., 2021]. Several numerical models were used for
calculations of three-dimensional structure of bottom gravity current in the Vema Channel
[Frey et al., 2019, 2022; Wadley and Bigg, 1996]. Variability of the AABW flow in the channel
was studied at different temporal scales [Canipos et al., 2021; Frey et al., 2023; Zenk and
Visbeck, 2013].
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Figure 1. Study area. Red points indicate stations with our measurements in 2022 from 7412 in the
southeast to 7426 in the northwest. Black points indicate stations from open databases and sections:
A9 (30 and 47 are numbers of the first and last stations in section), A23 (127 and 115), A10 (3 and
15), A17 (65 and 89). The bottom topography is shown according to [GEBCO Bathymetric Compilation
Group 2023, 2023).

Much less attention has been paid to the study of hydrochemical indicators in the
Vema Channel. The values of individual parameters can be found in review papers on the
South Atlantic [Alvarez et al., 2014; Hensen et al., 1998; Holfort and Siedler, 2001; Siedler
et al., 1996; Vanicek and Siedler, 2002] or in some oceanographic articles devoted to the
hydrology of the Vema Channel [Herndndez-Guerra et al., 2019; McDonagh et al., 2002].
However, a detailed description of the hydrochemical structure and its temporal variability
in the bottom layer of the channel has not yet been carried out. At the same time, its study
and comparison with oceanographic parameters seems interesting both from the point of
view of intermediate values between the Argentine and Brazil basins, and for observations
of changes in the hydrochemical characteristics in such a complex object as the Vema
Channel. Similar studies were carried out in some other deep-water channels, for example,
the Vema Fracture Zone [McCartney et al., 1991; Zuev and Seliverstova, 2024], the Equatorial
Channel [Andrié et al., 2003] and Azores-Gibraltar Fracture Zone [Krechik et al., 2023],
which improved the understanding of the temporal and spatial variability of AABW. In this
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study we report our new data on dissolved oxygen and nutrients measurements performed
in 2022 in the Vema Channel. This is the first time such measurements have been done
with high spatial resolution. The goal of the study was to compare the distribution of
dissolved oxygen and nutrients with oceanographic parameters of AABW. A comparison
of all parameters in the bottom layer on the continental slope and in the deep bed of the
Vema Channel was carried out, the presence and position of the oxygen minimum in LCPW
were shown, and the spatial and temporal variability of dissolved oxygen and silicate in
the channel area was investigated.

Data and Methods

A total of 13 stations were performed within the Vema Channel from 3 to 6 March
2022 in the 87th cruise of the research vessel Akademik Mstislav Keldysh. Oceanographic
measurements at stations were made with an Idronaut OCEAN SEVEN 320Plus CTD probe
(Italy). The lowered probe is equipped with a high-precision temperature-compensated
pressure sensor (PA-10X) with an accuracy of 0.01% and a resolution of 0.002% for the
entire measurement range (0—-100m), two redundant temperature sensors with a measure-
ment range from —5 to 45 °C, initial accuracy of 0.001 °C, and a resolution of 0.0001 °C.
The two redundant conductivity sensors have a measurement range of 0 to 7 S/m, initial
accuracy of 0.0001 S/m, and resolution 0.00001 S/m. The currents were measured with
a TRDI Workhorse Monitor Lowered Acoustic Doppler Current profiler (LADCP) with
a frequency of 300 kHz. The LADCP data were processed using LDEO Software [Visbeck,
2002]. Additionally, tidal velocities calculated using the software described in [Egbert and
Erofeeva, 2002] were taken into account.

Samples for hydrochemical analyzes were taken at the stations with plastic five-liter
Niskin bottles of a Carousel Water Sampler system at the depths based on the vertical
distribution of potential temperature and salinity. Sampling and determination of hydro-
chemical parameters were carried out in accordance with accepted methods no later than
6-12 hours after sampling. Dissolved oxygen in seawater was analyzed using the Winkler
method modified by Carpenter in 1965 (micromethod) [Cartenter, 1965]. Determination
of dissolved inorganic silicate was carried out according to the Koroleff method [Grasshoff
et al., 2009] with the formation of blue molybdenum complex. When high values of silicate
concentration were expected, samples were pre-diluted 1:2 or 1:10 with low-silicate seawa-
ter. The sensitivity limit of the element determination was 0.0005mg/L, the total error of
determination was 5.8%. Determination of the concentration of dissolved inorganic phos-
phate was carried out according to the method of Morphy and Riley [Grasshoff et al., 2009].
The sensitivity limit of the element determination was 0.02 uM/L. Accuracy index (error
limits at probability 0.95) 10%. The determination of nitrate was based on the method of
reducing them to nitrite with cadmium and measuring calorimetrically [Grasshoff et al.,
2009]. The limit of sensitivity of determination of the element was 0.02 pM/L, the total
error of determination was 7.4%.

We used additional open data of ship observations from the World Ocean Database,
2018 [Boyer et al., 2018]. The main data are A09, A10, A17 and A23 sections from WOCE
and CLIVAR projects. The location of sections is shown in Figure 1.

Results and Discussion
Water structure at the Vema Extension section

Distribution of potential temperature at the Vema Extension section (Figure 2) shows
features of AABW before it entered the Brazil Basin. The densest and coldest part of
AABW was in the deep bed of the Vema Channel (stations 7413-7415), while the water on
the western continental slope was warmer, but still significantly colder than 0.2 °C. The
bottom homogeneous layer in the Vema Channel with a thickness of 200-250 m was located
from the bottom to depths of about 4450 m, the mean potential temperature was —0.06 °C.
At stations 7418 and 7419, the homogeneous bottom layer was absent, the minima bottom
potential temperatures were 0.11 °C and 0.05 °C, respectively. On the western continental
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slope (stations 7420-7425) the bottom homogeneous layer was about 50 m with a spread of
potential temperature values of 0.01-0.05 °C. The dynamic structure was consistent with
the distribution of potential temperature. In the deep bed of the Vema Channel there was
a flow with velocities higher than 20 cm/s, and on the western continental slope there was
a flow with velocities higher than 10 cm/s. At the same time, in the bottom layer at stations
7418-7419 there was a flow with velocities of about 5 cm/s in the opposite direction, which
corresponds to the absence of a homogeneous layer and the presence of relatively high
potential temperature.

Potential Temperature, °C
[TTT1]

05 09 I1.3

0 20 40 60 80 100 120 140 160
Distance, km

Figure 2. Distribution of potential temperature at the Vema Extension section. The white solid line
marks isotach 10 cm/s, the white dashed line marks isotach 20 cm/s, the white dotted line marks
isotach 0 cm/s; positive direction is to the northeast, normal to the section. Black lines and numbers
at the top axis indicate locations of stations. The bottom topography is shown according to [GEBCO
Bathymetric Compilation Group 2023, 2023].

The dissolved oxygen concentration was varied from 5.06 to 5.58 mL/L (Figure 3a).
The maximum dissolved oxygen concentration was located at 3800 m in the deep bed of
the Vema Channel, the minimum was located at 4150 m and 4168 m at stations 7425 and
7424, respectively. The thickness of the local oxygen minimum layer (5.06-5.09 mL/L) was
about 50-100 m and this layer was located at depths from 4400 m in the eastern part of the
section to 4100 m in the western part. Below this layer, an increase in the dissolved oxygen
concentration was observed (on average to 5.09-5.12mL/L) with a local maximum at the
bottom. The silicate concentration was varied from 57.95uM to 125.17 uM. (Figure 3b).
The minimum was located at 3800 m in the deep bed of the Vema Channel, the maximum
was at station 7413 from 4400 m to the bottom. At all stations, a uniform increase in the
silicate concentration towards the bottom was observed. The distribution of nitrate was
similar to the distribution of silicate (Figure 3c). The range of values was varied from
23.75 pM to 32.86 pM; the minimum was at 3800 m at stations 7412-7415, the maximum
was in the bottom layer at stations 7413 and 7414. The distribution of phosphate was
less uniform (Figure 3d). Absolute values were varied from 1.61 pM to 2.25 pM. Increased
phosphate was observed in the bottom layer at stations 7415-7419, as well as at stations
7423-7424.

The main feature of the section is the separation of bottom waters both in the vertical
and horizontal directions. Thus, the lower boundary of LCPW is distinguished not only
by the conventional isotherm of 0.2°C, but also by the local oxygen minimum. This
minimum is observed at all stations of the section, which indicates the existence of WSDW
both in the deep bed of the Vema Channel and on the western continental slope. Also,
the oxygen isoline of 5.08 mL/L is correlated with the isolines of 111 uM and 31.5pM
silicate and nitrate, respectively. At the same time, the concentrations of nutrients in
the bottom homogeneous layer are varied along the section. As expected, the highest
silicate (116-120 pM) and nitrate (32-32.4 pM) are located in the deepest part in the main
flow of WSDW (Figure 4). Further, with decreasing depth, the concentration of nitrate is
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Figure 3. Distributions of (a) dissolved oxygen, (b) silicate, (c) nitrate and (d) phosphate at the Vema
Extension section. The red solid line marks isotherm 0.2 °C. Black points and numbers above indicate
location of levels and stations. The bottom topography is shown according to [GEBCO Bathymetric

Compilation Group 2023, 2023].

decreased almost linearly to 31.6 pM, and concentration of silicate is changed in the range
of 112-116 uM with the highest value at station 7423. A flow in the northeast direction
with velocities exceeding 10 cm/s is also observed here. The distribution of phosphate
is noticeably different: the maximum values are at transition stations 7415-7418, the
values on the western continental slope and in the deep bed of the Vema Channel are
comparable. Probably, this distribution is associated with the reverse flow at the transition
stations. Separately, it is necessary to highlight the easternmost station of the section. It
is located outside the Vema Channel and the concentrations of all parameters here are
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significantly different, which indicates a much smaller volume of WSDW to the east of the
Vema Channel.
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Figure 4. Mean concentrations of dissolved oxygen and nutrients in bottom homogeneous layer.
The bottom topography is shown on the lower panel. Data for station 7422 may be incorrect (no
measurements at the deepest layer due to technical reasons).

Spatial and temporal variability dissolved oxygen and silicate nearly the Vema Channel

The oxygen minimum in LCPW is observed at other oceanographic sections. Its
presence is most clearly expressed in the Argentine Basin: values less than 5mL/L occupy
depths from 3700 m to 4000 m (Figure 5a), respectively, the WSDW thickness here is more
than 500 m. A similar pattern is observed in the Vema Channel (station 72). Further, the
oxygen minimum disappears, since the stations are located at shallower depths and to the
east of the Vema Channel, where WSDW is almost absent. This is clearly seen in sections
A10 and A23 (Figure 5b, ¢): the dissolved oxygen values at the bottom to the east of the
Vema Channel are 0.2 mL/L higher than in the western part of the sections. However, even
there, an increase in dissolved oxygen toward the bottom is observed only at a few stations,
which indicates an insignificant volume of WSDW outside the Vema Channel. On the
western continental slope of the Brazil Basin (Figure 5d), separate local oxygen minima
are observed, probably related to the division of the bottom water flow into separate jets
[Morozov et al., 2022]. The absolute values coincide with the oxygen values over the Lower
Santos Plateau, but the layer is much thinner. Further north, the oxygen concentration in
the bottom layer is increased, which is consistent with the disappearance of WSDW beyond
the Brazil Basin [Alvarez et al., 2014; Vanicek and Siedler, 2002]. This configuration is unique,
but there are other extremes characterizing LCPW. Just as the LCPW in the Atlantic appears
as oxygen minima and silicate maxima because of the contrasting nature of the deep and
bottom water there, it appears as a salinity maximum and silicate minimum in the South
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Pacific [Mantyla and Reid, 1983]. The temporal variability of the oxygen concentration in
the bottom layer is extremely weak, local changes can be related to measurement errors or
to the intensity of the AABW flow.
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Figure 5. Distribution of dissolved oxygen at (a) A17, (b) A10, (c) A23 and (d) A9 sections. The
location of the sections and the first and last station numbers is shown in Fig.1. The bottom
topography is shown according to [GEBCO Bathymetric Compilation Group 2023, 2023].

The highest silicate concentrations are found near the bottom in the Argentine Basin.
Thus, the silicate maximum here is characteristic of WSDW, and not of LCPW as in
the Weddell Sea [Carmack, 1973; Mantyla and Reid, 1983; Mukhametianov et al., 2023].
A significant similarity with the distribution of dissolved oxygen is observed: the presence
of its intermediate minimum coincides with the silicate maxima near the bottom, and
higher oxygen values correspond to lower silicate concentrations (Figure 6a). The graphs
of individual stations for different years show the absence of significant changes of silicate
in the bottom layer (Figure 6b,d). The greatest difference is observed in the Argentine
Basin, the decrease of silicate was about 8 tM from 1989 to 2013. Such changes may be
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Figure 6. Distribution of silicate at (a) A17 and (c) A10 sections and silicate profiles repeating stations
of (b) A17 and (d) A10 sections. The location of the sections and the first and last stations is shown in
Fig.1. The bottom topography is shown according to [GEBCO Bathymetric Compilation Group 2023,
2023].
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caused by different sources of AABW in the Weddell Sea [Hoppema et al., 2015]. At other
points, the silicate distribution is almost the same from year to year, so the warming trend
of AABW [Zenk and Morozov, 2007] is not reflected in the silicate concentration. Station
100 on section A10 (Figure 6¢) should be noted separately. It is located in one of the small
channels of the Santos Plateau and the silicate concentration here is 124.9 pM, which is
only slightly less than at station 97, located in the Vema Channel. The minima of the
potential temperature also differ slightly: —0.04 °C against —0.09 °C in the Vema Channel.
Thus, it can be assumed that WSDW can flow through individual small channels of the
Santos Plateau, but without additional data it is difficult to estimate its volume.

Conclusions

Distribution of dissolved oxygen and nutrients in the abyssal waters near the Vema
Channel was analyzed using the in situ data with high spatial resolution. Comparison with
potential temperature and current velocities showed significant similarity in distribution
even on the horizontal scales of several tens of kilometers. Such water mass tracers as
dissolved oxygen and silicate allowed us to identify more accurately the presence and
thickness of WSDW over the Vema Extension. Local oxygen minimum on the lower
boundary of LCPW was detected in this area. Additional analysis of the open access data
showed its strong presence in the Argentine Basin, and poorly noticeable in the Brazil Basin.
Silicate concentration complements the pattern of WSDW distribution between the basins.
Significant temporal variability in concentrations of dissolved oxygen and nutrients in the
bottom layer was not detected. At the same time, significant spatial variability can manifest
itself in the presence of high-resolution data, which makes it possible to see additional
features of the AABW flow.
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