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We analyze well-known model for wind energy input and wave-breaking absorption
in energy transfer equation via its numerical comparison with recently developed
alternative model. The comparison is done for time and space-independent velocity of
the wind for the waves growing along the fetch coordinate. Significant differences have
been found for integral as well as spectral characteristics of these models. It is shown
that slight modification of the analyzed model significantly improves its properties and
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Introduction

The process of energy transfer between deep
gravity ocean surface waves spectral components,
in the absence of the ocean currents, is described by
the energy transfer equation, or Hasselmann Equa-
tion, hereafter HE, [Hasselmann, 1962]:

𝜕𝜀

𝜕𝑡
+ 𝐶𝑔∇𝑟⃗𝜀 = 𝑆𝑡𝑜𝑡𝑎𝑙 (1)

where 𝜀 = 𝜀(𝑘⃗, 𝑟⃗, 𝑡) is the wave energy spectral
density, depending on 2D vectors 𝑟⃗ = (𝑥, 𝑦) and

𝑘⃗ = (𝑘𝑥, 𝑘𝑦), in real and Fourier spaces, corre-
spondingly, and time 𝑡. 𝑆𝑡𝑜𝑡𝑎𝑙 is the total source
term

𝑆𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑛𝑙 + 𝑆𝑑𝑠 + 𝑆𝑖𝑛 (2)

where 𝑆𝑛𝑙 is nonlinear four-waves interaction term,
𝑆𝑑𝑠 is the wave-breaking wave energy absorption
term, and 𝑆𝑖𝑛 is the wind energy input term.
For the last 30 years, Eq.(1) is the hull of the op-

erational ocean wave prediction models [Tolman,
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2013; SWAN, 2015] though, there is no general
agreement on the form of 𝑆𝑑𝑠 and 𝑆𝑖𝑛 terms.
It was recently shown that 𝑆𝑛𝑙 is the domi-

nant term in Eq.(1) [Zakharov, 2010; Zakharov and
Badulin, 2011]. Therefore, the first approximation
of Eq.(1) is 𝑆𝑛𝑙 = 0, it plays important role in the
theory of weak turbulence. It’s basic solution is the
spectrum [Zakharov and Filonenko, 1967]:

𝜀 ≃ 𝑃 1/3

𝜔4

where 𝑃 is the energy flux to high frequencies.
Since then, its angular-dependent generalizations
have been developed [Kats and Kontorovich, 1974;
Kats et al., 1975].
The knowledge of the exact expression for non-

linear interaction 𝑆𝑛𝑙 is of little help for operational
models due to its computational overhead. Instead,
simpler substitutes of 𝑆𝑛𝑙, such as DIA and the
likes, are used for real-time operational prediction.
As the results, there is the need for tuning coeffi-
cient in front of them. However, several researchers
reported their failure to reproduce the original 𝑆𝑛𝑙

properties.
There is another negative side of such 𝑆𝑛𝑙 defor-

mation with even more severe consequences: due
to distortions of 𝑆𝑛𝑙 as the leading term, the other
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source terms 𝑆𝑖𝑛 and 𝑆𝑑𝑖𝑠𝑠 need to be distorted in a
way to compensate 𝑆𝑛𝑙 deformation to reach decent
approximation of Eq.(1) in specific situation. Such
manipulations lead to the loss of physical proper-
ties and universality of the original model.

Therefore, while 𝑆𝑛𝑙 is rigorously analytically

formulated, but not used, the wind input 𝑆𝑖𝑛 and

wave-breaking absorption term 𝑆𝑑𝑠 are poorly for-

mulated, incorporate heuristic assumptions, and

include many tunable parameters. The develop-

ment of good 𝑆𝑖𝑛 theory was complicated by under-

studied sea surface boundary layer, uncorrelated

with surface waves. The examples of the develop-

ment of various 𝑆𝑖𝑛 terms contain plenty of heuris-

tic suggestions about the amplitude and angular

distribution of waves. As the consequence, the

local values of different parameterizations of 𝑆𝑖𝑛

vary up to the factor of 5 [Badulin et al., 2005;

Pushkarev and Zakharov, 2016]. The discussion

and demonstration of these facts can be found in

[Gagnaire-Renou et al., 2011; Pushkarev and Za-

kharov, 2016].

As with 𝑆𝑖𝑛, there is no agreement about paramet-

rization of 𝑆𝑑𝑠. While the major wave energy ab-

sorption mechanism, the scientists agree on, is the

wave breaking, one can find in the literature an-

other ambiguous heuristic long-waves absorption

mechanism as well [Tolman and Chalikov, 1996].

Moreover, there is no consent at the moment on the

localization of the wave-breakings in wave-number

space. As far as concerns operational models, the

dominant part of the absorption happens in the

vicinity of the spectral peak. This fact contradicts,

however, the reports that such assumption does not

satisfy the nonlinear tests of the Eq.(1) [Pushkarev

and Zakharov, 2016; Dyachenko et al., 2015].

Due to the above mentioned facts, the opera-

tional models obey dozens of tuning parameters.

Therefore, there is the emerging feeling that the

new generation of statistical justified approaches

to waves modeling should be developed.

Recently, the new ZRP approach to the formula-

tion of 𝑆𝑖𝑛 and 𝑆𝑑𝑠 balanced terms has been offered

by Zakharov et al. [2017]. It does not use tur-

bulent layer analytical theory, or precise measure-

ment of the boundary layer. Instead, it is based

on the existence of two-parameter automodel so-

lutions of the Eq.(1) and their restriction to the

one-parameter automodel solution through experi-

mental data. This solution can be written as:

𝜖 = 𝜒𝑝+𝑞𝐹 (𝜔𝜒𝑞) (3)

10𝑞 − 2𝑝 = 1, 𝑞 =
1

2 + 𝑠
(4)

𝑝 = 1, 𝑞 = 3/10, 𝑠 = 4/3

𝐸(𝜒) = 𝐸0𝜒
𝑝

< 𝜔(𝜒) >= 𝜔0𝜒
−𝑞 (5)

where 𝐸(𝜒) and < 𝜔(𝜒) > are the full wave energy
of waves and the average frequency, as the dimen-
sionless coordinate 𝜒 = 𝑥𝑔/𝑈2 functions, where 𝑥 is
the regular dimensional coordinate in meters of the
fetch, 𝑈 is the wind velocity and 𝑔 is gravitational
acceleration; 𝑠 = 4/3 is the power of exponent for
𝑆𝑖𝑛 = 𝜔𝑠+1 dependence on frequency 𝜔; 𝐸0 and 𝜔0

are the constant coefficients.
Later, we will compare ZRP approach [Zakharov

et al., 2017] with M1 and M2 approaches. M1 ap-
proach uses 𝑆𝑖𝑛 and 𝑆𝑑𝑠 based on [Donelan et al.,
2012]. M2 approach is the “artificial” one, using
the properties of ZRP and M1 approaches.
Let us note that ZRP and M1 approaches use

different physics: ZRP model presumes the dom-
inance of the nonlinear interactions and the flux
of the energy from the spectral peak area toward
the absorption area of big wave numbers, whereas
M1, as shows the numerical simulation, absorbs the
vast portion of the wave energy in the area of the
intermediate wave numbers, nearer the area of the
spectral peak.
That leads to substantial discrepancy in full wave

energy and average frequency dependencies on the
coordinate of the fetch, as well as the difference in
the wave energy spectra.
The simulations of the “artificial” M2 approach

exhibits the improvements of the properties of M1
approach toward better automodel behavior as well
as wave energy spectrum properties, and advice the
usage of high wave-numbers wave energy absorp-
tion mechanism in Eq.(1).
Below, we explain the above mentioned approa-

ches and present the supportive evidence for our
vision of the studied subject.
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The models formulation and numerical
approach

The numerical model used the stationary case of
Eq.(1):

1

2

𝜔

𝑘
cos 𝜃

𝜕𝜀

𝜕𝑥
= 𝑆𝑛𝑙 + 𝑆𝑤𝑖𝑛𝑑 + 𝑆𝑑𝑖𝑠𝑠 (6)

It is well-known that numerical solution of Eq.(6)
is complicated by the presence of the singularity
in the form of cos 𝜃, turning to 0 in the case of
𝜃 = ±𝜋/2, which was historically resolved [Banner
and Young, 1975] via limitation of the Fourier space
domain to the angular spread of −60∘ < 𝜃 < 60∘,
and zeroing out the remaining part. Such ap-
proach allows to avoid the division of the right
hand side of Eq.(6) by 0 at ±𝜋/2. Due to the as-
sumption of major amount of waves propagating
in the wind direction, this approach looks sensible.
In our simulation, we used the angular spread of
−90∘ < 𝜃 < 90∘.
WRT (Webb-Resio-Tracy) method [Tracy and

Resio, 1982] has been applied for the calcualation
of 𝑆𝑛𝑙 part in its original exact formulation. It
used 71 logarithmically placed frequency points in
the range 0.1 𝐻𝑧 < 𝑓 < 2.0 𝐻𝑧 and 36 uniformly
positioned angular points in the range 0 < 𝜃 < 2𝜋.
We used time-independent spatial step of 1 m or 2
meters to advance explicitly in real space with the
accuracy of first order.
Initial conditions were chosen in the form of ho-

mogeneous low-level white noise distribution of en-
ergy in Fourier space 𝜀(𝜔, 𝜃) = 10−6 𝑚4. The
permanent wind with the velocity of 10 m/sec was
supposed to be blowing away from the coast line.

ZRP model

For the wind input term 𝑆𝑖𝑛, the recently devel-
oped through automodel approach, ZRP wind in-
put term has been utilized [Zakharov et al., 2017;
Pushkarev and Zakharov, 2016]:

𝑆𝑍𝑅𝑃
𝑖𝑛 (𝜔, 𝜃) = 𝛾(𝜔, 𝜃) · 𝜀(𝜔, 𝜃) (7)

𝛾(𝜔, 𝜃) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
0.05

𝜌𝑎
𝜌𝑤

𝜔

(︂
𝜔

𝜔0

)︂4/3

𝑞(𝜃) for

𝑓𝑚𝑖𝑛 6 𝑓 6 𝑓𝑑, 𝜔 = 2𝜋𝑓

0 otherwise

(8)

𝑞(𝜃) =

{︂
cos 2𝜃 for −𝜋/4 6 𝜃 6 𝜋/4
0 otherwise

(9)

𝜔0 =
𝑔

𝑈
,

𝜌𝑎
𝜌𝑤

= 1.3 · 10−3

𝑈 = 10 m/sec is the velocity of wind at 10 meters
height above the water surface, 𝜌𝑎 and 𝜌𝑤 are the
densities of air and water, 𝑓𝑚𝑖𝑛 = 0.1 Hz and 𝑓𝑑 =
1.1 Hz.
As far as concerns the wave-breaking absorp-

tion function in ZRP model, it was used in the
“implicit” way. It was simulated via extension
of the wave energy spectrum from 𝜔𝑑 by the law
𝐴(𝜔𝑑)·𝜔−5, which is known as Phillips law [Phillips,
1966]. Due to the fact that this function decays
more rapidly than equilibrium law 𝜔−4, it provides
short-wave energy absorption, for wave energy cas-
cade, arriving to that region due to nonlinear four-
waves interactions.
There is no need to know the value of the co-

efficient 𝐴(𝜔𝑑) before 𝜔−5 in the explicit form. It
is automatically dynamically determined through
the requirement of the wave energy spectrum to be
continuous at 𝜔𝑑 on every discrete time step. Or,
saying the same things the other way, the Phillips
spectrum beginning point has to be the same as
the ending frequency point 𝑓𝑑 ≃ 1.1 𝐻𝑧 of the
spectrum, which is subject to change at every time
step.

M1 approach

The well-known M1 model [Donelan et al., 2012]
will be concisely outlined in this section for reader
convenience.
The wind input source is defined by

𝑆𝑀1
𝑖𝑛 = 𝐴1(𝑈𝜆/2 cos 𝜃−𝑐)|𝑈𝜆/2 cos 𝜃−𝑐|𝑘𝜔

𝑔

𝜌𝑎
𝜌𝑤

𝜀(𝑘, 𝜃)

(10)
where 𝜃 is the angle between wind direction and
wave vector 𝑘, 𝐴1 = 0.11 is known as the shel-
tering coefficient, 𝑈𝜆/2 is the wind velocity at one
half of wavelength above the surface, assuming the
logarithmic profile

𝑈𝜆/2 =
𝑈*
𝜅

ln
𝑧

𝑧0

where 𝑈* is the friction velocity, 𝜅 = 0.41 is Von
Karman constant, 𝑧 = 1

2𝜆 is the elevation equal to
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a fixed fraction 1
2 of the spectral peak wavelength

𝜆 = 2𝜋/𝑘𝑝, where 𝑘𝑝 is the spectral peak wave-
number. 𝑧0 = 𝛼𝐶𝑢

2
*/𝑔 is the surface roughness,

where Charnock constant 𝛼𝐶 = 0.015 [Charnock,
1955].
The absorption is described by “spilling break-

ers” function [Donelan et al., 2012]

𝑆𝑀1
𝑠𝑏 = −𝐴2

[︀
1 +𝐴3𝑀𝑆𝑀2(𝑘, 𝜃)

]︀2×
× [𝐵(𝑘, 𝜃)]2.53 𝜔(𝑘)𝜀(𝑘, 𝜃) (11)

where

𝑀𝑆𝑀2(𝑘, 𝜃) =

∫︁ 𝑘

0
𝑝2𝜀(𝑝, 𝜃)𝑑𝑝

is the Mean Square Slope (MSS) in the direction 𝜃

of all waves longer than
2𝜋

𝑘
, 𝐵(𝑘, 𝜃) = 𝑘4𝜀(𝑘, 𝜃) is

the degree of saturation, 𝐴2 = 46.665, 𝐴3 = 240.

Difficulties of M1 approach numerical
simulation

Analytical formulation of M1 approach itself,
without getting into physical details of its justi-
fication, is difficult for numerical simulation in the
straighforward manner, when the wave energy dis-
sipation Eq.(11) is considered as the part of the
“whole” 𝑆𝑡𝑜𝑡 source function Eq.(2).
The reason is connected with the “degree of satu-

ration” 𝐵(𝑘, 𝜃) = 𝑘4𝜀(𝑘, 𝜃), which was constructed
in the assumption of fast enough decay of the spec-
trum 𝜀(𝑘, 𝜃) as the function of wave number 𝑘. Nu-
merical simulation of waves turbulence excitation,
which starts from the low level of “seeding waves”,
exites initial wave spectrum in high frequencies do-
main, where there is no fast decaying spectrum yet
– it appears at later stages of the spectral evolu-
tion, following the spectral maximum down-shift.
Therefore, due to the presence of fast growing

factor 𝜔21.24 in Eq.(11), the numerical simulation of
M1 model exhibits “blow-up” instabilities right on
its start from low-level “seeding waves” conditions.
In this relation, another interpretation of the

nonlinear absorption function Eq.(11) happenes to
be effective in this case: it is possible to solve ana-
lytically the absorptional part of Eq.(1)

1

2

𝑔 cos 𝜃

𝜔

𝜕𝜀

𝜕𝑥
= 𝑆𝑀1

𝑠𝑏

on each spatial integration step ℎ in the adiabatic
approximation, presuming that 𝑀𝑀𝑆 variation is
slower in space, than spectral wave energy density
𝜀:

𝜀𝑛+1 =

𝜀𝑛/

[︂
1 + 2.52𝐴2

[︀
1 +𝑀𝑆𝑀2

]︀2 2𝜔

𝑔 cos 𝜃
ℎ𝜀2.53𝑛

]︂1/2.53
where 𝑛 is the numerical integration enumeration
index and ℎ is the spatial integration step.
Such interpretation of 𝑆𝑑𝑠 warrants instability-

free algorithm of numerical integration in the “divi-
sion by processes” of the right-hand side approach
[Fedorenko, 1994].

M2 approach

The M2 approach was developed to check what
effect will be produced with substitution of the
nonlinear absorption function of M1 approach by
simple “implicit” absorption function, described
above. It was supposed that the wind source func-
tion Eq.(10), subject the angle and frequency re-
strictions of Eqs.(8) – (9), will remain the same as
in M1 approach.
Simply said, the M2 is analogous to ZRP up to

the replacement of Eq.(7) by Eq.(10).

Numerical results

The full wave system energy is presented on Fig-
ure 1 as the function of spatial coordinate for all
three approaches: ZRP, M1 and M2. One can note
that ZRP curve reproduces automodel law Eq.(3),
corresponding to the index value 𝑝 = 1, which is
known to correspond to more than a dozen of field
experiments, mentioned and processed in [Badulin
et al., 2007], and hence should be used as the ref-
erence point.
The appropriate values of automodel powers 𝑝

for ZRP, M1 and M2 approaches can be seen on
Figure 2. Whereas ZRP approach shows asymp-
totic merger with automodel theoretical prediction
𝑝 = 1, M1 approach fails to do that. M2 ap-
proach converges as well, but to another power
value 𝑝 ≃ 0.5 with sluggish rate. That examina-
tion shows automodel tendencies in ZRP and M2
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Figure 1. Non-dimensional wave energy 𝐸𝑔2/𝑈4

as the function of non-dimensional coordinate of
the fetch 𝑥𝑔/𝑈2 for wind velocity 𝑈 = 10 m/sec.
Solid line – ZRP approach, dotted line - automodel
solution with the fitting coefficient: 2.9·10−7𝑥𝑔/𝑈2

; dashed line - M1 approach; dash-dotted line - M2
approach.

Figure 2. Energy local power function index
𝑝 = 𝑑 ln𝐸

𝑑 ln𝑥 as the function of non-dimensional co-
ordinate 𝑥𝑔/𝑈2 for wind velocity 𝑈 = 10 m/sec.
Theoretical value of index 𝑝 = 1 - thick horizontal
solid line. Solid line - ZRP approach; dashed line
- M1 approach; dash-dotted line - M2 approach.

Figure 3. Non-dimensional average frequency, de-
pending on the non-dimensional coordinate, calcu-

lated as < 𝑓 >=
1

2𝜋

∫︀
𝜔𝑛𝑑𝜔𝑑𝜃∫︀
𝑛𝑑𝜔𝑑𝜃

, where 𝑛(𝜔, 𝜃) =

𝜀(𝜔,𝜃)
𝜔 is the spectrum of the wave action, for wind

velocity 10 m/sec (solid line). The dash-dotted line

is the automodel dependence 3.4·
(︀ 𝑥𝑔
𝑈2

)︀−0.3
with the

fitting coefficient in front of it; dashed line - M1 ap-
proach; dash-dotted line - M2 approach.

approaches. One can notice quite good accordance
between ZRP and M1 approaches for wave energy
behavior on Figure 1 for “experimental” dimen-
sional distances up to ∼ 20 km, which confirms
M1 merits.
Figure 3 presents average frequency dependen-

cies on the coordinate for three considered ap-
proaches and demonstrates its 25% scatter for the
distances, exceeding 20 km.
Figure 4 shows the dependencies similar to au-

tomodel law Eq.(5): ZRP model demonstrates au-
tomodel behavior, exhibiting asymptotic evolution
to the theoretically predicted power 𝑞 = 0.3, al-
though M1 and M2 approaches have more sluggish
evolution to the dissimilar value 𝑞 ≃ 0.2 with better
quality of convergence for M2 approach. The undu-
lations observed in the evolution of 𝑞 on that graph
could be connected with discrete wave-numbers,
used in the modeling due to sharp spectral peak
perpetual shift amid neighboring frequency point,
i.e. spectral peak motion in a sort of “hit and miss”
manner.
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Figure 4. Local average frequency index −𝑞 =
𝑑 ln<𝜔>
𝑑 ln𝑥 as the function of non-dimensional coordi-

nate 𝑥𝑔/𝑈2 for 𝑈 = 10 m/sec. ZRP approach -
solid line; dashed line - M1 approach; dash-dotted
line - M2 approach. Thick horizontal solid line -
target value of the automodel index 𝑞 = 0.3.

Figure 5. ”Magic number” 10𝑞 − 2𝑝 depending
on non-dimensional coordinate 𝑥𝑔/𝑈2 for wind ve-
locity 𝑈 = 10 m/sec. ZRP approach - solid line;
dashed line - M1 approach; dash-dotted line - M2
approach. Thick horizontal solid line - automodel
destination value 10𝑞 − 2𝑝 = 1.

Figure 6. Angular averaged wave energy spec-
trum decimal logarithm depending on the fre-
quency decimal logarithm for wind velocity 𝑈 = 10
m/sec. ZRP approach – solid line. The fittings
∼ 𝑓−4 and ∼ 𝑓−5 – dashed and dash-dotted lines,
correspondingly.

The check of calculated “magic number” (10𝑞 −
2𝑝) (see Eq.(4)) is presented on Figure 5. It ex-
hibits asymptotic convergence of ZRP model to the
target value of 1, while M1 and M2 models con-
verge to the slightly lower values 0.8÷0.9 somewhat
slower along the real space coordinate. Particu-
larly obvious in M1 and M2 approaches oscillations
can be explained by Fourier space discreteness, dis-
cussed above.
Angular averaged wave energy spectrum decimal

logarithm for ZRP approach is shown on Figure 6
as the function of frequency decimal logarithm for
𝑥 ≃ 20 km. One can distinguish its following parts:

∙ the spectral peak

∙ the inertial band close to 𝜔−4 stretching from
the spectral peak area to the start of the ”im-
plicit” wave energy absorption at 𝑓𝑑 = 1.1 Hz

∙ high-frequency tail 𝑓−5, beginning from 𝑓𝑑 =
1.1 Hz

Angular averaged wave energy spectrum decimal
logarithm for M1 approach is shown on Figure 7
as the dependence on the frequency decimal log-
arithm, for the coordinate value 𝑥 ≃ 20 km. It
can be seen that no any part of the spectral tail
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Figure 7. Angular averaged wave energy spec-
trum decimal depending on the frequency decimal
logarithm for wind velocity 𝑈 = 10 m/sec. M1
approach - solid line. The fittings ∼ 𝑓−4, ∼ 𝑓−5

and ∼ 𝑓−8.4 - dashed, dash-dotted and dotted lines
correspondingly.

can be approximated by ∼ 𝜔−4 fitting. The single
domain, which could be fitted by power function,
is 𝑓 > 1.1 Hz, with ∼ 𝜔−8.4 spectral dependence.
Such rapidly decaying spectra, however, were never
seen in the natural experiments.
Angular averaged wave energy spectrum deci-

mal logarithm, depending on the frequency, for
M1 approach, is shown on Figure 8, for the co-
ordinate value 𝑥 ≃ 20 km. The spectral domain
0.5 𝐻𝑧 < 𝑓 < 1.2 𝐻𝑧 can be fitted by ∼ 10−3.3𝑓 ,
which has never been seen in the natural experi-
ments either.
Appearance of both exponential and power-like

spectra for intermediate and high frequency ranges,
correspondingly, for M1 approach, finds its expla-
nation from Figure 9. It shows that significant part
of the wave breaking absorption is localized in the
area of the intermediate frequencies, right adjacent
to the spectral peak area. Such localization of the
wave-breaking absorption causes exponential decay
at the intermediate frequencies of the spectral tail.
Angular averaged wave energy spectrum decimal

logarithm, depending on the frequency decimal log-
arithm, for M2 approach, at the coordinate 𝑥 ≃ 20
km, is shown on Figure 10. As in ZRP approach,

one can distinguish the following parts:

∙ the spectral peak

∙ the inertial band close to 𝜔−4, stretching
from the spectral peak area to the start of
the “implicit” absorption 𝑓𝑑 = 1.1 Hz

∙ high-frequency tail 𝑓−5, beginning from 𝑓𝑑 =
1.1 Hz

That observation confirms the concept of nonlin-
ear interaction domination in the hierarchy of the
source terms in Eq.(1), which exhibits itself in the
formation of 𝜔−4 spectral tail in the inertial fre-
quencies range, stretching from the spectral peak
area up to the beginning of the absorption range
𝑓𝑑 = 1.1 Hz.

Conclusions

M. Donelan set of wind input and nonlinear
wave-breaking absorption (cited as M1 approach)
is one of the well-known and widely cited models,
applied to the wave energy transfer equation. We
performed numerical comparison of M1 approach
with recently developed ZRP approach and “arti-
ficial” M2 approach (which is, in fact, the modi-
fied M1 approach) for stationary version of energy

Figure 8. Angular averaged wave energy spec-
trum decimal logarithm depending on the fre-
quency for wind velocity 𝑈 = 10 m/sec. M1 ap-
proach - solid line, fitting ∼ 10−3.3𝑓 - dashed line.
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Figure 9. Angular averaged wave energy wind
input < 𝑆𝑖𝑛 >= 1

2𝜋

∫︀
𝛾𝑖𝑛(𝜔, 𝜃)𝜀(𝜔, 𝜃)𝑑𝜃 (dotted

line), wave breaking energy absorption < 𝑆𝑑𝑖𝑠𝑠 >=
1
2𝜋

∫︀
𝛾𝑑𝑖𝑠𝑠(𝜔, 𝜃)𝜀(𝜔, 𝜃)𝑑𝜃 (dashed line) and angualar

averaged spectrum < 𝜀 >= 1
2𝜋

∫︀
𝜀(𝜔, 𝜃)𝑑𝜃 (solid

line) depending on the frequency 𝑓 (solid line).

transfer Eq.(1), describing wind waves excitation
off the shore line.
ZRP and M1 approaches use different methods

for their derivation: ZRP uses the automodel solu-
tions of HE together with experimental data, while
M1 applies purely experimental observations for its
composition. The “artificial” M2 approach inte-
grates the properties of ZRP as well as M1 one.
The comparison shows that there is substan-

tial discrepancy between ZRP and M1 approaches.
Whereas ZRP model exhibits automodel proper-
ties, which are the hallmarks of the nonlinearity,
M1 approach demonstrates just a few of them, with
slow asymptotic approach to the theoretically pre-
dicted values.
In addition, ZRP and M2 exhibit power-like 𝜔−4

spectra, whereas M1 possesses exponentially decay-
ing behavior in the intermediate frequencies range.
The reason of exponential tail appearance is dis-
similarity in wave energy absorption localization:
while ZRP approach relies of high-frequency ab-
sorption, M1 model utilizes intermediate wave num-
bers wave energy absorption. Also, ZRP approach
replicates the full wave energy and the average fre-
quency actions of experimentally gathered data.
It is quite interesting, that M2 “artificial” ap-

Figure 10. Angular averaged wave energy
spectrum decimal logarithm depending on the fre-
quency decimal logarithm for wind velocity 𝑈 = 10
m/sec. M2 approach - solid line. The fittings
∼ 𝑓−4 and ∼ 𝑓−5 - dashed and dash-dotted lines
correspondingly.

proach enhances automodel properties of M1, i.e.
full wave energy, average frequency indices, “magic
numbers” as the functions of coordinate automodel
behavior, as well as the properties of angular inte-
grated spectra, like ∼ 𝜔−4 spectral tails. This ob-
servation evidences the fact that the substitution
of the quite complex nonlinear wave-breaking ab-
sorption in M1 approach by fairly simple “implicit”
absorption 𝜔−5 for high wave-numbers spectral tail
improves the quality of M1 approach, provided that
the wind wave energy input sheltering coefficient is
re-tuned.
Outlined research leads to the conjecture that

the wide class of source terms, utilized in ensem-
ble with exact expression for nonlinear interac-
tion source term 𝑆𝑛𝑙 and “implicit” high frequency
wave-breaking absorption, results in better con-
sistency with theoretically forecasted automodel
properties of the energy transfer equation, spectral
shapes and data of the field experiments.
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