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monitoRing by Discrete mathematical analysis (SARD) and aimed at seismic
level assessment. It is based on application of well-proven algorithms of
Discrete Mathematical Analysis (DMA) for the study of earthquake catalogs.
The possibility of applying the proposed method for the territory of California,
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Introduction

The problem of reliable estimation of seismic
hazard is an important task not only for seismol-
ogy, but for all geophysical studies. Its solution
is of great social and economic importance. The
urgency of the problem rapidly increases with the
vigorous growth of urban territories. According
to the UN statistics, seismic catastrophes account
for more than 50% of the total number of natu-
ral disasters and dominate all types of catastro-
phes. Earthquakes are the most complex natural
phenomena associated with the dynamics of litho-
spheric plates, the accumulation of tectonic stresses
and their drops. Strongest earthquakes lead to se-
rious economic and financial loss and numerous ca-
sualties. A significant part of the territory of the
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Russian Federation (about 25%), which resides 27
Russian regions with a population of more than 20
million people, is situated in seismic zones. Here,
recreational facilities are developing rapidly.
Over the past 35 years in many countries, which

are characterized by significant seismic activity, in-
cluding occurrence of strongest earthquakes, scien-
tific research on the creation of methods for earth-
quake prediction has been significantly developed.
The experience amassed in international geophysics
testifies that the creation of systems of complex ob-
servations, providing for the required sampling rate
in space and time, a continuous collection of prog-
nostic data with the leading role of seismological
observations, is of fundamental importance for the
successful solution of the problem of determining
the place, time and strength of the expected earth-
quake [Laverov et al., 2008]. The countries that
have reached the highest level of methods and tech-
niques for seismic risk assessment and earthquake
prediction are Japan, the USA and China. China
has the most powerful system of seismological mon-
itoring, oriented on earthquake prediction. Several
thousand seismic stations operate in the USA. In
most earthquake-prone areas, for example in Cal-
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ifornia, the density of the seismic network is such
that the average distance between stations is about
10 km. Seismological monitoring of the territory
of USA is carried out by the US Geological Sur-
vey (http://www.usgs.gov/). High density of net-
works of seismological and geophysical observations
is typical for the territory of Japan. However, in
comparison to China, research on earthquake pre-
diction in Japan is coordinated to a much lesser
extent.
The state of seismological observations in Rus-

sia is characterized by departmental disunity of the
conducted work, decrease in the level of financial
support of observational networks, and technical
deterioration of equipment [Laverov et al., 2008].
Currently there are no sufficiently developed ob-
servational networks for monitoring within seismi-
cally active regions of Russia. All these factors sig-
nificantly reduce the provision of seismic safety for
the population over the territory of this country.
In this regard, the development of a mathematical
approach for monitoring the rate of seismic regime
in the regions of Russia on the basis of discrete
mathematical analysis (DMA) is certainly topical.
To predict an earthquake means to determine

with sufficient reliability its location, time and mag-
nitude. Hence, it is necessary to know how and
where the earthquake source is being prepared and
to monitor the successive stages of its development.
The physical and geological basis and the princi-

pal possibility of forecasting earthquakes are deter-
mined by two conditions. First, the strength of the
rocks composing the Earth’s crust is heterogeneous:
the stronger sections alternate with the weak ones.
Secondly, the stresses accumulate slowly, for hun-
dreds of years. Under these conditions, the prepa-
ration of a large rupture is preceded by successive
acts of destruction of many less durable sites, each
of which causes a small earthquake. Observing the
weak seismicity, it is possible to identify the place
and estimate the strength of a future strong earth-
quake.
Typically, medium-term precursors appear sev-

eral years or months before the main strong earth-
quake [Novikova and Rotvain, 1996]. They are
based on the following characteristics of the seis-
mic flow: the level of seismic activity, its varia-
tions over time, and the spatiotemporal grouping
of earthquakes [Keilis-Borok et al., 2001].
A new approach to the analysis of geophysical

data (discrete mathematical analysis, DMA), cre-
ated and developed at the Geophysical Center of
the Russian Academy of Sciences, is based on fuzzy
mathematics and provides efficient monitoring of
dynamic geophysical processes irregular in time
and space, highlighting the background or normal
component of the behavior of these processes and
the anomalous component. At the same time, dur-
ing such monitoring, the researcher himself deter-
mines the “virtual” nodes of the grid. They may
not coincide with the nodes of real observations
and there may be more of them than nodes of real
observations.
DMA makes it possible to monitor the time-

and space-dependent finite dynamic process. The
essence of monitoring includes digitization, topo-
logical filtration, association with monitoring nodes,
the aggregation of time series, and finally recogni-
tion of quiet/anomalous structures.

DMA-Monitoring of Seismic Level

Discrete mathematical analysis is a new approach
to data analysis, developed at the Geophysical Cen-
ter of the Russian Academy of Sciences. DMA is a
series of algorithms aimed at solving the main tasks
of data analysis: clustering and tracing in multi-
dimensional arrays [Agayan et al., 2014; Agayan
and Soloviev, 2004; Gvishiani et al., 2017b, 2017c;
Mikhailov et al., 2003; Soloviev et al., 2016; etc.],
morphological analysis of surface [Gvishiani et al.,
1994, 2008d; etc.], search for anomalies and trends
in records [Gvishiani et al., 2003, 2004, 2008a,
2008b, 2008c; Soloviev et al., 2012a, 2012b; etc.].
All DMA algorithms are united by a common for-
mal basis, based on fuzzy comparisons of numbers
and proximity measures in discrete spaces. The
idea of DMA is to create discrete analogues of the
concepts of classical mathematical analysis: limit,
continuity, smoothness, connectivity, monotonicity,
extremum etc. DMA algorithms and their combi-
nations provide a way to monitor the seismic pro-
cess, irregular both in time and in space.
Let’s consider an example: 𝑋 is any seismic cat-

alog in the domain Ω. The essence of monitoring:
0. The beginning is digitization. In time it is

division into equal intervals {𝛿𝑡𝑖}. In space it is se-
lection of monitoring nodes {𝜔𝑗} in the domain Ω.
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1. Clustering (topological filtration – allocation
of a reference dense subset 𝑌𝑖 in the image 𝑋(𝛿𝑡𝑖)
of the process 𝑋 in the interval 𝛿𝑡𝑖 by means of the
algorithm discrete perfect sets (DPS) [Gvishiani et
al., 2013a, 2013b, 2013c]: 𝑌𝑖 = DPS(𝑋(𝛿𝑡𝑖)).
2. Transfer of clustering to the monitoring nodes

(the spatial grid of interest) is the construction of
the fuzzy activity measure 𝜇(𝜔𝑗)(𝑖) ∈ [0, 1] [Soloviev
et al., 2013] by the DMA methods for each node 𝜔𝑗

relative to the process 𝑋 for the period 𝛿𝑡𝑖 through
the proximity 𝜔𝑗 to 𝑌𝑖.
3. Postulation – monitoring Mon(𝑋) is the ag-

gregation of time series in the monitoring nodes
{𝜇(𝜔𝑗)(𝑖)}.
4. Statistical, wavelet and DMA-analysis Mon(𝑋)

with subsequent conclusions on the grid 𝜔𝑗 . In par-
ticular, recognition of quiet/anomalous structures
within a grid.
SARD (Seismic Activity monitoRing by Discrete

mathematical analysis) [Dzeboev, 2017], a method
we apply here, continues a series of the DMA meth-
ods successfully applied to the analysis of earth-
quake catalogs. The seismic process is analyzed by
studying its behavior at the nodes of the coordi-
nate grid with a given interval (reference points)
and constructing measures of activity. As a mea-
sure of activity, we use the value 𝜇, determined by
the algorithm of topological filtration (clustering)
DPS [Agayan et al., 2014; Gvishiani and Dzeboev,
2015; Gvishiani et al., 2013a, 2013b, 2016, 2017c]
or its adaptive version A-DPS (adaptive discrete
perfect set).
The DPS algorithm is the part of DMA [Gvishi-

ani et al., 2008a], an algorithmic approach that is
being developed in the Geophysical Center of RAS
under the leadership of A. D. Gvishiani. It is in-
cluded in its DMA-clustering block [Agayan and
Soloviev, 2004; Gvishiani et al., 2008d]. DMA-
clustering algorithms solve the problems of topo-
logical filtering of multidimensional data sets, high-
lighting in these arrays the most significant parts
and cutting off the non-essential ones. DPS is
the result of further development of ideas pre-
sented in [Agayan et al., 2014]. As the results
of the research showed [Gvishiani et al., 2013a,
2016; etc.], it can be used for recognizing the lo-
cations of strong earthquakes’ possible occurrence
along with the classical EPA method (Earthquake-
Prone Areas recognition) [Gvishiani and Dubois,
2002, Gvishiani et al., 2017a; Soloviev et al., 2014].

The calculated measure 𝜇 varies within the inter-
val [−1, 1]. In contrast to the classical measure of
seismic activity [Riznichenko, 1967], the measure 𝜇
reflects the relative density of epicenters that varies
over time in comparison with the spatial environ-
ment. A local increase in time of the parameter
𝜇 may reflect an increase in the activity of weak
earthquakes, often accompanying the final stage
of the preparation of a strong earthquake [Keilis-
Borok et al., 2001; Kossobokov and Shebalin, 2003].
Thus, the variation of 𝜇 in time can be also used for
diagnosis of periods of seismic hazard level increase
and for estimating the forthcoming earthquake lo-
cation.
By the monitoring of seismic activity, we mean

the analysis and study of the behavior of the set of
time series for measure 𝜇 at the reference points.
Time series are constructed with a constant step.
At each step, the time interval 𝑡𝑖 is considered. For
each interval, with the use of the DPS or A-DPS
algorithm, a dense subset of epicenters of earth-
quakes (clusters) is allocated. The idea of applica-
tion of the DPS algorithm (𝛽, 𝑞) for solving the
task of seismic activity monitoring is to use its
free input parameter 𝛽 – the level of the maximum
density of the determined dense clusters of epicen-
ters of earthquakes (we used the input parameter
𝑞 to calculate the localization radius). Parameter
𝛽 ∈ [−1, 1] allows the results of the DPS analy-
sis of the earthquake catalog for a certain period of
time 𝑡𝑖 to be transferred to the nodes of the regular
geographic grid covering the investigated region by
constructing for each node the measure 𝜇(𝑡𝑖) of the
activity of the seismic process in its vicinity for the
period of time 𝑡𝑖. For this purpose, the earthquake
catalog is preliminarily divided into time intervals
𝑡𝑖. For each 𝑡𝑖, a DPS clustering of the earthquake
catalog with discretely varying values of parameter
𝛽 is carried out and a measure 𝜇(𝑡𝑖) correspond-
ing to the maximum parameter 𝛽* ∈ [−1, 1] is as-
signed to each grid node, at which the node is close
to the distinguished DPS(𝛽*, 𝑞)-clusters of earth-
quake epicenters. If the node is not close to any
of the subsets selected by the DPS algorithm, then
its measure of activity is −1.
Since the seismic process in a certain spatial

neighborhood is irregular in time, and the change
in the level of its activity, often indicating an in-
crease or decrease in potential seismic risk, occurs
over a certain time interval, when assessing seismic
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activity at time 𝑡𝑖, it is necessary to take into ac-
count its time memory. For this, at each instant
of time 𝑡𝑖, the value of measure 𝜇 is recalculated
with respect to the memory in the time interval
[𝑡𝑖−Δ, 𝑡𝑖−1] in the form of power averaging with
weighting coefficients:

𝜇Δ(𝑡𝑖) =

⎛⎜⎜⎜⎝
Δ∑︀

𝑘=1

𝑎𝑘𝜇(𝑡𝑖−𝑘)
𝑝

Δ∑︀
𝑘=1

𝑎𝑘

⎞⎟⎟⎟⎠
1/𝑝

∈ [0, 1],

𝑎𝑘 =
1

𝑘
, 𝑘 = 1, . . . ,Δ

The measure 𝜇Δ varies on the interval [0, 1]. It
should be noted that the calculation of the measure
𝜇Δ over a period of time 𝑡𝑖 is performed without
the involvement of 𝜇(𝑡𝑖), and the values of measure
𝜇 for Δ of the preceding time periods are used.
Thus, we get that the value of 𝜇Δ(𝑡𝑖) is a kind
of forecast for a period of time 𝑡𝑖. In the future,
under the monitoring of seismic activity, we mean
the analysis and study of the behavior of a set of
time series of the measure 𝜇Δ at the grid nodes.

The Results of Applying the SARD
Method

California

Testing of the SARD method was carried out for
the territory of California and the adjoining states
of the USA within 30–44∘ N, 113–126∘ W. The
ANSS catalog (Advanced National Seismic Sys-
tem) for the period 1962–2015 was used. Earth-
quake epicenters with magnitude 𝑀 ≥ 2.9 were
chosen, because their representativeness in the cat-
alog during the considered period was sufficient.
We used the following values for the input pa-
rameters: 𝑞 = −2.0, time period 𝑡𝑖 − 1 month,
latitude-longitude grid spacing – 0.5∘, spacing by
𝛽 − 0.05, Δ− 12 months, 𝑝 = 2.
The analysis of the results of seismic activity

monitoring obtained with the help of the developed
method was carried out for the period 1980–2015.
Since 1980, the catalog is fairly complete for the
entire studied area.

Figure 1. Value of the measure 𝜇Δ on April 1,
2010. The 𝑀 = 7.24 earthquake epicenter on April
4, 2010 is shown with white asterisks.

As an example, Figure 1 shows the spatial dis-
tribution of the measure 𝜇Δ on April 1, 2010. It
is easy to see two zones with large values of 𝜇Δ.
This is the zone in the south of central California
near the border with the state of Nevada and the
zone on the border with Mexico. Inside the second
zone falls the epicenter of the 𝑀 = 7.2 earthquake
on April 4, 2010, located in the north of Mexico.
Slightly smaller values of 𝜇Δ are fixed in two zones:
the coast of central California and the ocean near
the coast in northern California. In April 2010,
earthquakes with 𝑀 = 4.0 − 4.5 occurred in these
zones.
Within the considered period 258 seismic events

with 𝑀 ≥ 5 occurred in the studied area including
the aftershocks and 146 main shocks. A significant
part of them occurred with the activity measure
𝜇Δ exceeding the level of 0.45.
We evaluated the effectiveness of the method

using an error diagram [Molchan, 1991; Shebalin,
2006]. The considered space and time are divided
into cells of 1 month × 0.5∘. If we introduce the
threshold 𝜇0 for the measure 𝜇Δ, then exceeding
this threshold can be considered as a prediction of
an earthquake with 𝑀 ≥ 5 in a given spatial cell
during the subsequent time interval. We specified
earthquakes with 𝑀 ≥ 5 with epicenters outside
the cells with prediction as missed targets. Their
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Figure 2. Error diagram for California. Thick
dark line shows the relationship between the per-
centage of missed targets and the percentage of
declared alarms for all earthquakes with 𝑀 ≥ 5 in
the studied area, thin light line shows only major
shocks with 𝑀 ≥ 5.

proportion is shown in the error diagram along the
ordinate axis (Figure 2). The abscissa shows the
probability of an accidental earthquake 𝑀 ≥ 5 in
a cell with a prediction in accordance with a given
model of seismicity [Shebalin et al., 2014]. As a
rule, the simplest model of seismicity is used, in
which the probability of an earthquake is propor-
tional to the number of earthquakes registered in a
given cell, with a magnitude, for example, 𝑀 ≥ 4.
Therefore, the probability of accidental entry is
often interpreted as the proportion of space-time
of alarms weighted by seismicity [Kossobokov and
Shebalin, 2003]. The greater the deviation of the er-
ror diagram from the diagonal (the diagonal corre-
sponds to random guessing), the more effective the
algorithm is [Shebalin, 2006]. It can be seen from
the diagram that the effectiveness of the devel-
oped method of monitoring the level of the seismic
regime is considerably high. The results obtained
are significantly different from random guessing.

Kamchatka

The SARD approach has been implemented for
the seismically active region of the Kamchatka
Peninsula. The catalog of earthquakes of Kam-
chatka and the Commander Islands (Kamchatka
branch of the Geophysical Service of Russian
Academy of Sciences. Earthquake catalog of the
Kamchatka Peninsula and the Commander Islands,
http://www.emsd.ru/sdis/earthquake/catalogue/
catalogue.php) for the period 1962–2015 was used
with a depth of hypocenters not exceeding 70 km
[Fedotov and Solomatin, 2015; Levina et al., 2013].
The catalog contains earthquakes with 𝑀L ≥ 3.5,
where 𝑀L is the Kamchatka regional magnitude
[Abubakirov et al., 2018]. We used the following
values for the input parameters: 𝑞 = −2.5, time
period 𝑡𝑖 – 1 month, latitude-longitude grid spac-
ing – 0.5∘, spacing by 𝛽 – 0.05, Δ – 12 months,
𝑝 = 2.
The analysis of the results of the monitoring of

the level of seismic activity in Kamchatka, obtained
with the SARD method, was carried out according
to earthquake data since 1980, due to the fact that
from that time the catalog is sufficiently complete
for the entire studied area.
For the period 1980–2015 in Kamchatka, ac-

cording to the catalog (Kamchatka branch of
the Geophysical Service of Russian Academy
of Sciences. Earthquake catalog of the Kam-
chatka Peninsula and the Commander Islands.
(http://www.emsd.ru/sdis/earthquake/catalogue/
catalogue.php), there were 6 earthquakes with
𝑀L ≥ 6.5 without excluding the aftershocks. Five
of them occurred when measure 𝜇Δ exceeded
the level of 0.45, three of them occurred with
𝜇Δ > 0.55.
Figure 3 provides an example of the spatial dis-

tribution of the values of measure 𝜇Δ on March
1, 1992 (Figure 3a) and December 1, 1997 (Fig-
ure 3b), white asterisks show epicenters of earth-
quakes with 𝑀L ≥ 6.5, that occurred on March 2,
1992 and on December 5, 1997, respectively.
Figure 3 shows the zones with high values of the

measure of seismic activity 𝜇Δ along the coast of
central Kamchatka. It can be seen in Figure 3a that
the epicenter of the earthquake that occurred on
March 2, 1992 with 𝑀L = 6.6 (𝑀GCMT

w = 6.8), is
located in the northeast of Avacha Bay in the zone
for which the values 𝜇Δ > 0.64 were the maximum
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Figure 3. a) the value of the measure 𝜇Δ on March 1, 1992, white asterisk shows the
epicenter of the earthquake on March 2, 1992 with 𝑀L = 6.6 (𝑀GCMT

w = 6.8); b) the
values of the measure 𝜇Δ on December 1, 1997, white asterisk shows the epicenter of the
earthquake on December 5, 1997 with 𝑀L = 7.0 (𝑀GCMT

w = 7.8).

for the entire region in the figure at the beginning
of the corresponding month. The epicenter of the
earthquake on December 5, 1997 with 𝑀L = 7.0
(𝑀GCMT

w = 7.8) is located in the southeast of the
Kamchatka Gulf in the zone with values 𝜇Δ > 0.56
and is shown in Figure 3b with white asterisk.
We evaluated the effectiveness of the developed

method using error diagram [Shebalin et al., 2014]
(Figure 4). For this purpose, the considered time
and space were divided into cells. The earthquake
forecast with 𝑀L ≥ 6.5 was estimated as exceed-
ing a certain threshold by measure 𝜇Δ. Errors
such as “missed targets” were the earthquakes with
𝑀L ≥ 6.5, falling beyond the cells with accurate
prediction. In the error diagram (Figure 4), the ab-
scissa shows the probability of an accidental earth-
quake with 𝑀L ≥ 6.5 in the cell with a predic-
tion, the ordinate shows the fraction of errors such
as “missed targets”, the diagonal corresponds to
random guessing [Dzeboev, 2017; Shebalin et al.,
2011]. To estimate an accidental entry of a strong
earthquake in a cell with a prediction, the simplest
model of seismicity was used in which the probabil-
ity of an earthquake is proportional to the number
of earthquakes with 𝑀L ≥ 5.5 recorded in a given
spatial cell [Kossobokov and Shebalin, 2003; She-
balin et al., 2014]. The greater the deviation of the
error diagram from the diagonal, the more effective
the algorithm is [Shebalin et al., 2011]. Figure 4
shows that the proposed method is effective. The
presented results differ from random guessing.

The Caucasus

We use the SARD method for the territory of
the Caucasus within 40–44∘N and 41–51∘E. The

Figure 4. Error diagram for Kamchatka. Thick
dark line shows the relationship between the pro-
portion of missed targets and the proportion of de-
clared alarms for all earthquakes with 𝑀L ≥ 6.5 in
the studied area, thin light line shows only major
shocks with 𝑀L ≥ 6.5.
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Figure 5. a) the values of the measure 𝜇Δ on December 1, 1994, white asterisk shows
the epicenter of the earthquake on December 12, 1994 with 𝑀 = 5.1; b) the values of the
measure 𝜇Δ on September 1, 1999, white asterisk shows the epicenter of the earthquake
on September 19, 1999 with 𝑀 = 5.4.

catalog of earthquakes was compiled using the
catalogs “Earthquakes in the USSR” (1962–1991)
[Nauka, 1997] and “Earthquakes of Northern Eura-
sia” (1992–2008) [GS RAN, 2013] with depths of
hypocenters not exceeding 70 km. To monitor the
level of activity of the seismic process, we chose
the epicenters of earthquakes with 𝑀 ≥ 3.0. It is
worth noting that in connection with the absence
of a homogeneous catalog of magnitudes for the
considered region. The known correlation relation-
ships between magnitudes were applied [Bormann,
2012; Rautian et al., 2007]. We used the following
values for the input parameters: 𝑞 = −3.0, time
period 𝑡𝑖 – 1 month, latitude-longitude grid spac-
ing – 0.5∘, spacing by 𝛽 – 0.05, Δ – 12 months,
𝑝 = 2.
Analysis of the results of the monitoring of the

level of seismic activity in the Caucasus obtained
with the help of the SARDmethod has been carried
out based on earthquake data since 1990. From
that time the catalog is sufficiently complete for
the entire studied area.
In 1990–2008, in the Caucasus, according to the

compiled catalog, more than 100 earthquakes with
𝑀 ≥ 5.0 occurred excluding the aftershocks. Most
of them occurred at the measure 𝜇Δ exceeding the
level of 0.5.
Figure 5 provides an example of the spatial dis-

tribution of the values of measure 𝜇Δ on December
1, 1994 (Figure 3a) and September 1, 1999 (Fig-
ure 3b), white asterisks show epicenters of earth-
quakes with 𝑀 > 5.0, that occurred on December
12, 1994 and September 19, 1999, respectively.
In Figure 5a the earthquake epicenter with 𝑀 =

5.1 was located in the area, for which the values
of 𝜇Δ > 0.55 were the maximum for the entire
region in the figure at the beginning of the corre-

sponding month. The epicenter of the earthquake
in Figure 5b with 𝑀 = 5.4 is shown with white
asterisk, located within the area with the values of
𝜇Δ > 0.65.
To evaluate the effectiveness of the SARDmethod

we constructed an error diagram [Shebalin et al.,
2011] (Figure 6). The earthquake forecast with
𝑀 ≥ 5.0 was estimated as exceeding a certain
threshold by measure 𝜇Δ. Errors such as “missed
targets” were the earthquakes with𝑀 ≥ 5.0, falling

Figure 6. Error diagram for the Caucasus. Thick
dark line shows the relationship between the pro-
portion of missed targets and the proportion of de-
clared alarms for all earthquakes with 𝑀 ≥ 5.0 in
the studied area, thin light line shows only major
shocks with 𝑀 ≥ 5.0.
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beyond the cells with accurate prediction. To es-
timate an accidental entry of a strong earthquake
in a cell with a prediction, the epicenters of the
earthquakes with 𝑀 ≥ 4.0 were used. Figure 6
shows that the proposed method is effective. The
presented results differ from random guessing.
It is worth noting that the results of applying the

SARD method for the territory of the Caucasus are
less representative than for Kamchatka and even
more so for California [Dzeboev, 2017]. One of the
possible reasons may be the known heterogeneity
of the catalog.

Conclusions

∙ A new mathematical method SARD is pro-
posed for monitoring the level of the seis-
mic regime for estimating the probability of
a strong earthquake.

∙ The possibility of using SARD for the terri-
tory of California, the Kamchatka Peninsula
and the Caucasus is shown.

∙ To evaluate the effectiveness of SARD we con-
structed an error diagram which showed that
the proposed method was effective. The ob-
tained results differ from random guessing.
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