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[1] This paper is devoted to the detection of anomalies by the fuzzy comparison algorithm
for recognition of signals (FCARS). The algorithm is a result of soft (based on fuzzy

mathematics) modeling of interpreter’s logic and continues in this direction the difference
recognition algorithm for signals (DRAS) and the fuzzy logic algorithm for recognition of
signals (FLARS), previously developed by the authors. A characteristic feature of FCARS
is a more comprehensive use of the so-called fuzzy comparisons introduced by the authors.
This makes FCARS more versatile and adaptive than DRAS and FLARS. INDEX TERMS: 8419
Volcanology: Volcano monitoring; 8494 Volcanology: Instruments and techniques; 9805 General or Miscellaneous:
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1. Introduction

[2] Generally accepted algorithms used for the identifica-
tion of anomalies from records of signals are mostly based
on statistical and frequency-time analyses. Presently, ap-
proaches to the solution of this problem involve the use of
artificial intelligence, and this direction of research is the
subject of the present paper addressing the fuzzy compari-
son algorithm for recognition of signals (FCARS). The algo-
rithm is a result of soft (based on fuzzy logic) modeling of
the logic of an interpreter attempting to detect anomalies in
signal records. We utilized the formulation of such a logic
proposed by Neimark [1966] for its “probabilistic” modeling.

2. Detection of Anomalies

[3] Using the monograph [Kedrov, 2005], we present here
a review of actual systems of detection of anomalies (applied
mainly in seismology). The goal of this far from being ex-
haustive overview is to compare FCARS with the difference
recognition algorithm for signals (DRAS) and with the fuzzy
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logic algorithm for recognition of signals (FLARS) [Guvishiani
et al., 2003, 2004], implementing the difference-from-moving
average (DMA) approach.

[4] According to [Kedrov, 2005], the complete cycle of the
procedure of detecting anomalies from signal records is di-
vided into three stages: predetection, discovery (detection),
and processing of the anomaly discovered. Algorithms of
anomaly detection are mostly based on a combination of the
statistical approach and the spectral-time analysis (STA).
The latter is a method of statistical analysis designed for
the study of frequency characteristics of a stationary ran-
dom process with discrete time or a time series. The STA
is based on a combination of diverse spectral, asymptotic,
and functional techniques that is often strongly constrained
by the physical essence of events studied and, for this rea-
son, is fairly illustrative [Prokhorov, 1999]. We give brief
characterization of some of these systems.

5] 2.1. System SESMO1 [Kedrov, 2005] is in-
tended for real-time detection of short-period seismic anoma-
lies in time and frequency domains. The algorithm uses eight
Butterworth filters encompassing with overlap the entire fre-
quency response band of an anomaly. This algorithm uses
three-component polarization analysis.

6] 2.2. Autoregressive moving average (ARMA)
models [Kedrov et al., 2000]. This type of algorithms of
anomaly detection is based on the use of adaptive and match-
ing filters. The algorithm of such a detector is constructed
in terms of an autoregressive description (ARMA models)
of seismic analyses and noise. The related filtering consists
in a continuous analysis of noise. Based on this, the type
of data is predicted that should be recorded in a subsequent
moment. If the prediction of noise accumulated until the
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current time moment fails, there is made a suggestion that
a desired anomaly is recorded.

(77 2.3. Maximum likelihood [Kushnir and Mos-
tovoi, 1990]. Methods of anomaly detection based on the use
of maximum likelihood filters are difficult to be utilized for
real-time detection of anomalies. In this case, the detection
procedure involves real-time continuous estimation of spec-
tral properties of noise under the condition that parameters
of an anomaly are known either completely or partially.

8] 2.4. Recognition with training [Haries and
Joswig, 1985]. For detecting local or regional low-amplitude
anomalies in a region of interest, known anomalies are STA-
analyzed to construct a set of typical patterns. A new
anomaly in the given region is detected by comparing it with
the available patterns. This comparison is based on a coher-
ence value specified for several levels of the signal intensity.

9] 2.5. Neural networks [Romeo, 1994]. This ap-
proach consists in the modeling of researcher’s capabilities
by means of a specially constructed neural network. The
network is a multilayer perceptron. Input parameters that
were used in this network are absolute values of seismic wave
spectral amplitudes in nine frequency bands. At the output,
the discovered anomalies are classified as local, regional, or
teleseismic anomalies or as noise of two types.

3. Detection of Anomalies by Fuzzy Logic
Methods

(10 The DMA-based algorithms DRAS and FLARS
[Guishiani et al., 2003, 2004] are an alternative approach
(with respect to the methods presented in section 2) to
modeling of human reasoning and actions in search for
anomalies. DRAS and FLARS are an attempt to model
the logic of a researcher recognizing an anomaly from visual
inspection of a record for an automated use of this model in
analysis of large sets of data that cannot be manually pro-
cessed. These algorithms yield estimates for boundaries of
sought anomalies and subdivide them morphologically into
initial, central, and final stages, identifying strong and weak
phases in the central stage [Guishiani et al., 2003]. The
algorithms are rather versatile due to a wide set of “recti-
fications” [Guishiani et al., 2003, 2004] arising in modeling
interpreter’s work.

[11] In a simplified form, work of an interpreter detecting
an anomaly by visual inspection of a record is understood
here as follows. Initially he looks over the record, estimat-
ing activity of its fragments in terms of positive numbers and
mentally assigns the inferred numerical estimates to the frag-
ments or their centers. Thus, the interpreter passes from the
initial record to a nonnegative function that can be naturally
called “rectification” of a record. Actually, larger values of
this function (rectification) will correspond to record points
that are more active from the standpoint of sought signals.
Further, the interpreter searches for rises in the record recti-
fication that correspond to the most active record fragments.
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Thus, the interpreter works at two levels, local (rectification
of a record) and global (search for rises in the rectification).

[12] Naturally, the proposed simplified model of inter-
preter’s logic cannot be regarded as unique and/or universal.
Moreover, interpreter’s reasoning is largely determined by
the concrete type of anomalies (data) in question. However,
in our opinion, the rectification process functions, one way
or other, in any case.

[13] 3.1. Local level: Construction of record rec-
tification. An anomaly in a record (time series) is an am-
biguous notion changing its form both from one record to
another and within one record. Similarly to other intuitively
clear mathematical notions (e.g., an element of a set), we do
not attempt to give its strict definition. Anomalous nature
is clear from examples given by experts. In terms of the
DMA approach, a set of rectifications open for updating is
applied for adequate modeling of “anomalies” (higher activ-
ity zones). Now we pass to exact constructions.

[14] Let a discrete positive semiaxis be R = {kh, h > 0,
k=1,2,...} and let y = {yx = y(kh)} be a finite time series
(FTS) defined in the interval (recording period) T € R;.
We introduce a local survey parameter A > 0 multiple of
h:A € R} and define a local survey fragment of the record
y with a center at kh € T as the interval

k. %4_1
Ayf{yk_%,...,yk,...,yk+%}ER .

[15] Definition 1. If J = {AFy} is a set of local
survey fragments of the record y and if ® : J — RT,
where R is the set of positive real numbers, we define
a rectification of y on the basis of ® as the superposition
k= Afy — o(AFy) = oy (k).
here a rectifying functional.

[16] A rectification determination can be regarded as suc-
cessful if anomalies identified by an interpreter are mapped
onto rises in the rectification. Accordingly, the presence of
training data (i.e. results obtained by an interpreter from
processing of a sufficiently long record fragment) is beneficial
to the construction of a rectification. Examples of rectifica-
tions:

(1) survey fragment length,

The mapping @ is called

A
k+——-1
k " h
Ly = >y -y
j=k-2
(2) survey fragment energy,
ke
k h 2
E(A%) = (yj - Z?k) ;
A
j=k— ﬁ
where A
ket o
_ h _
Yk A1 h Yj
—
J h
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Figure 1. Rectification examples: (a) record of the electric self-potential near La Fournaise Volcano
(Reunion Island, France; N—S DON station, 8-9 March 1998); (b) the same record rectified by the energy
functional; (c) result of rectification by the length functional.

[17] Many other types of rectification were used in
[Guishiani et al., 2003, 2004; Zlotnicki et al., 2005]. At a
local level common to algorithms of the DRAS and FLARS
families, the rectification ®, is constructed and specified for
a record y. This transformation of a record is the first stage
of visual analysis performed by an interpreter.

[18] 3.2. Global level: Search for rises in a rec-
tification. Examples show that a rectification topography
can be rather complex (Figure 1). The activity of anomalies
cannot be invariably high and they can be inhomogeneities
(activity intervals are several and they are divided by “quiet”
points). The corresponding rectification intervals are oscil-
lating rises. It is natural to seek a “platform”, i.e. a con-
nected base of such a rise, and to detect sought “spikes”
against this base. A procedure required for the determina-
tion of rises in the curve ®,(k) does not reduce to simple
selection of points in accordance with their heights. This
procedure should combine a union process (search for plat-
forms) and a subdivision process (extraction of spikes within
platforms). The algorithmic implementation of this logic at
a global level divides algorithms into the DRAS and FLARS
families and enables differentiation between concrete imple-
mentations within each family.

[19) 3.3. DRAS: The global level [Guishiani et
al., 2003]. A record is first divided into background (quiet)
and potentially anomalous (disturbed) parts. Connected re-
gions in the disturbed part serve as bases (platforms) of rises.
Farther, DRAS identifies undoubtedly anomalous fragments
on the platforms.

[20] To implement this procedure, the algorithm uses one-
side measures Lo®y (k) and R,®, (k) that quantify, on the
[0, 1] scale, the quietness of the rectification ®,, left and right
of the point kh, detecting points whose ordinates exceed a
level o [Guishiani et al., 2003]. The latter is a free parameter
of the algorithm called the vertical level of background. In
other words, the quietness to the left (right) of the point kh
in the record y is modeled in DRAS as a fuzzy subset on the
recording interval T' with the measures Lo ®y (k) (Ra®y(k)).
Using the conjunction min(La®y(k), Ra®y(k)), provides for
the possibility of versatile treatment of ®, excesses over the
level ce. With the so-called horizontal level 5 € [0, 1] being
properly adjusted, DRAS extracts only sufficiently dense (in
time) excesses and takes no account of insignificant frag-
ments considering them as background. This is attained by
dividing the recording interval T' into background (quiet)
and potentially anomalous (disturbed) parts:

T=BUP,
B= {kh eT: min(Latby(lc),Ra@y(k))Z ﬁ} 7

P={kheT: min(La®y(k), Ra®y(k))< 5}

[21] The set P is the union of the connected compo-
nents P, : P = UN_,P,. Tt is these components that
are processed by DRAS at the second stage of the global
level. Identification of significantly anomalous intervals A,
in P, is based on monitoring of the difference Do ®,(k) =
Lo®y(k) — Ra®y(k), which is reflected in the name of the
algorithm (difference recognition algorithm for signals). The
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beginning of the anomaly A,, coincides with the first max-
imum of Da®y(k) in P,. Actually, the difference between
the quiet level to the left and the disturbed level to the right
is most pronounced for the first time precisely at this point.
For the same reason, the end of the anomaly A,, coincides
in time with the last negative minimum of D,®,(k) in P,.
This procedure of identification of anomalies A,, is described
in detail in [Guishiani et al., 2003].

[22] Free parameters of DRAS are the rectifying functional
® and the following positive values: the local survey window
A < |T|, the vertical level of background «, the global sur-
vey window A > A, and the horizontal level of background
B € [0.5,1]. Accordingly, the algorithm can also be written
as DRAS(®, A, o, A, 3).

23] 3.4. FLARS: The global level [Guishiani
et al., 2004]. As distinct from DRAS, the FLARS algo-
rithm first identifies significantly anomalous intervals and
then the set of these intervals is supplemented with poten-
tially anomalous intervals, thereby forming an “aureole” of
an identified anomaly. Thus, FLARS divides, in two stages,
the recording interval into three subsets (T’ = AUPUB) de-
noted as follows: A, anomalous points; B, quiet background
points located sufficiently far from the anomaly; and P, po-
tentially anomalous, disturbed points covering a rather long
interval (formally, they are not anomalous but lie sufficiently
close to the points A and therefore “feel” the influence of the
latter).

[24] We remind the reader that the DRAS choice of ex-
treme points is based on analysis of the vertical level o imme-
diately in the rectification ®,. FLARS forms indirectly the
set of anomalous points A, using the search for extreme val-
ues on a ¢, topography with the help of a fuzzy extremality
measure p(k) taking values from the interval —1 < u(k) <1
[Guishiani et al., 2004]. The measure is constructed on ®,
on the basis of fuzzy comparisons (5) and the vertical ex-
tremality level 7 € [—1,1]. The T interval is divided into a
set of significantly anomalous points A and its complement
A:

T=AUA, A:{kheT:,u(k)>7'} ,

A:{kheT:p(k)gr}.

Like DRAS, the FLARS algorithm divides the set of nonano-
malous points is subdivided into background and potentially
anomalous components with the help of the alternating one-
sided measures £,®,(k) and R,P,(k) and the horizontal
background level

pgel-1,1]:
B = {kh €A: max(ff@y(k),%Tq)y(k))ﬁ ﬁ} )

p= {kh cA: max<£,.<l)y(/€), m7¢y(k)>> 5} .

Note that, due to the normalization p(k) € [—1,1], the
FLARS choice of the extremality level 7 is somewhat sim-
pler compared to DRAS: 7 is usually set equal to 0, 0.5, or
0.75. A detailed description of FLARS is given in [Guishiani
et al., 2004].

[25] Free parameters of FLARS are the rectifying func-
tional ® and the following positive values: the local survey
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window A < |T|, global survey window A > A, and vertical
level of extremality 7. Accordingly, the algorithm can be
designated as FLARS(®, A, A, 7).

4. Fuzzy Comparisons

[26] In many cases, the usual difference measure of the
excess of one number over another is overly rough. In par-
ticular, DMA algorithms require finer constructions for the
comparison of numbers.

[27]  Definition 2. Fuzzy comparison n(a,b) of real
numbers a and b quantifies the degree of excess of b over a
on a [-1, 1] scale:

n(a,b) = mes(a < b) € [-1,1] . (1)

(28] Thus, fuzzy comparison can be realized in terms of
any function f(a,b), f : R® — [~1,1] that increases with
b at a fixed a and decreases with increasing a at a fixed b
(in this case, the increase and decrease have usual mean-
ing); in addition, the following boundary conditions must be
fulfilled:

li ==+1
Vo, lip_f(a.d)

Vb lim f(a,b) = F1

a—+too
Vaf(a,a) =0 .

[29] Actually, such functions will possess properties that
are naturally required for comparison of numbers.

(30] If n(a,b) is a fuzzy comparison and 1) is a monotoni-
cally increasing mapping of the segment [-1, 1] into itself, the
superposition (¢ o n)(a,b) is also a fuzzy comparison called
a 1-induced variation of n. The choice of ¢ allows one to
strengthen or weaken the basic comparison n.

(31] In algorithms of the DRAS and FLARS families, it
is sufficient to use fuzzy comparisons defined on positive
numbers. Actually, records are processed by these algo-
rithms through their rectifications taking solely positive val-
ues. We introduce the following family of basic fuzzy com-
parisons n,(a,b), v > 0 and their variations of a specific
type n~.(a,b).

[32] Definition 3. Ifa,b € R, then
(i) nu(a,b) = b-a 1 for any v >0 and
(a” +b")v
(ii) we set nyw (a, b) = ¥ (ny(a, b)) for any v € (—1,1), where
—Ltell
vi=1 14 te[-1,9]
1 +,y7 7’y *

[33] This variation is correct: no.(a,b) = 1o (nl, (a, b))z

ny(a,b), so that n, becomes larger at v > 0 and smaller
at v < 0. In what follows, the comparison n(a,b) means a
value of ny,(a,b), v >0, -1 <y < 1.
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[34] We need to extend n(a, b) to the concept of fuzzy com-
parisons n(a, A) and n(A,a) of an arbitrary number a > 0
with an arbitrary weighted set of numbers

N
A = {(CLZ‘7’LUZ‘)

1
ai, i =1,...,N}.
and each of its variants formalizes in a unique way the no-
tion “large (small) as compared with A (modulus of A)”.
The value n(a, A) = mes(a < A) is understood as a func-
tion meaning that R™ belongs to the fuzzy notion “small
compared to A modulus,” while n(A,a) = mes(A < a)
means that R* belongs to the fuzzy notion “large compared
to A modulus”. In our further development of the DRAS
and FLARS algorithmic constructions, we used the follow-
ing three extensions.

[35] Binary extension:

, a; € Rﬂ 0 < w; is the weight of

Such an extension is not unambiguous,

Zn(a, a;)w;
np(a, A) = =1 €[-1,1]
'
N (2)
Zn(ai,a)wl
ny(A,a) = =2 el-1,1] .

[36] Gravitational extension: Let grA be the center of
gravity of the set A, i.e.

N
E a; Wy

=1 .
grd=——:;
D
i=1
then
ng(a, A) = n(a,grA) € [-1,1]
ng(A,a) =n(gra, a) € [-1,1] .
[37] o-extension: The left moment
ol(a, A) = (Z(a —ai)w; :a; < a)

is an argument in favor of the maximality of a compared to
A modulus. Accordingly, the right moment

o' (a,A) = <Z(ai —a)w; : a; > a)

is an argument in favor of the minimality of a compared to
A modulus. Then,

ne(a, A) = n(al(a,A), o"(a, A))E [-1,1]

no(a, A) = n(g’“(a, A), ol(a,A))G ~1,1] . )

[38] It is natural to set that, if the validity of a certain
property is expressed in terms of the [-1, 1], then a value
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from [0.5, 1] ([0, 0.5]) means a strongly (weakly) extremal
manifestation of this property. Following these lines, we for-
malize the notions “large” and “small” with respect to the
weighted set A (modulus of A).

[39] Definition 4. Based on a given fuzzy comparison
n (for a given weighted set A) and its extensions n(A, a) and
n(a, A), a number a > 0 is defined to be
(I) strongly (weakly) large if

n(A,a) € [0.5,1] (n(A, a) € [0,0.5])
and (II) strongly (weakly) small if
n(a, A) € [0.5,1] (n(a7 A) € [0,0.5]) .

[40] Example. The extremality measure (k) in FLARS
(the FLARS measure) is obtained as a result of comparison
(2) of the rectification value ®,(k) with the weighted set

Im®, (k) = { (¢y(E), 5k(E)>, ke T}, where 8 (k) is a model
of global survey on the segment [a, b] of the record y at the
point k :

(k) = n(Im, (k), @, (k)) |
where
_ -4
(Sk(k) =1-

max<|k —al, |k — b|)+1 .

[41] The standard FLARS [Guishiani et al., 2004] is ob-
tained with the use of o-extension (4). Alternative FLARS
versions can be constructed using the binary (2) and gravi-
tational (3) extensions, which lead to more “rigid” FLARS
models. The distinctions in the “rigidity” of decision making
on the basis of these three FLARS versions are illustrated
by the following synthetic example (Figure 2).

[42] Example. The local survey parameter A in DRAS
and FLARS quantifies the closeness of the record y in the
recording interval T'. Using fuzzy comparisons, the choice of
this parameter can also be made automatic as follows. Let
dT = {|/~: K k#Eke T} be the set of all nontrivial

distances on T'. Then, an element A strongly minimal with
respect to moddT (see Definition 4) is found by solving the
equation

n(A,dT) =0.5 .

5. FCARS: Global Level

[43] Like DRAS and FLARS, FCARS (Fuzzy Comparison
Algorithm for Recognition of Signals) uses at a local level
the procedure described in section 3.1 and providing FTS
rectification. At a global level, the FCARS search for os-
cillating rises in a rectification can be described as follows.
Significant vertical spikes are first detected in the rectifica-
tion. Their fairly dense clusters and adjacent features are of
interest. Points lying inside such clusters are considered as
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Figure 2. Examples of FLARS applications with various extensions of fuzzy comparison. Recognized
anomalous intervals are colored red. (a) Soft (standard) o-construction with n, defined by formula (4);
(b) moderate binary construction with n, defined by formula (2); and (c) rigid gravitational construction

with ng defined by formula (3).

anomalous without regard for values taken by the rectifying
function at these points. Small rectification values at these
points can imply only a short-term weakening of a signal due
to its inhomogeneity. Such points form central parts of rises
in accordance with clusters of the aforementioned vertical
spikes.

[44] Points lying to the left and to the right of the dense
clusters can be of two types: these are either quiet, back-
ground points near a given cluster or disturbed points of the
record that are not necessarily extremal in the rectification
and form the initial and final stages of the signal.

[45] Thus, we can draw the following conclusion: anoma-
lies in a record y correspond to oscillating rises of the rectifi-
cation ®,. Bases of the anomalies are connected sets in the
initial recording interval that consist of points extremally
horizontally close to vertically extremal points of the recti-
fication.

[46] Precisely this definition of a rise serves as a basis for
the FCARS global level. FCARS modeling is based on fuzzy
comparisons and monolithicity [Bogoutdinov, 2006]. Fuzzy
comparisons are instrumental to a correct formulation of the
notion of vertically extremal spikes in a rectification. The
degree of extremal horizontal proximity to the spikes is de-

scribed in terms of proximity measures. Further, likewise
with the help of fuzzy comparisons, the shell of the rise
(anomaly) base is formed by filling gaps in dense clusters
of vertically anomalous spikes with horizontally extremal
points.

[47] The properties of proximity measures are used for
locating the central part of the rise in this shell. The rise
foot is finally extracted after the localization of the side parts
of the rise using fuzzy logic and fuzzy comparisons. Below
we present an exact description of the FCARS.

[48] 5.1. FCARS: Vertical subdivision (the first
variant). In this case, the vertical measure of anomalous-
ness p" (k) € [—1,1] at the point k is defined as a fuzzy com-
parison of Im®, with the rectification value at this point:

1 (k) = n(Im,, B, (k) |

where n(A,a) is defined by formulas (2)—(4) (i.e. n is the
binary, gravitational, or T-extension of the fuzzy comparison
1 (,8)).

[49] Let as ) be the strong (weak) level of extremality
with respect to the modulus of Im®,, that is as () is the
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solution of the equation
n(Im<I>y, as>: 0.5(n(1mc1>y, ) = 0) .

Definition 5

[50] (a) The point k is of the vertically background type
if (k) <0 @y(k) < .

[51] (b) The point k is vertically anomalous if u"(k) >
0.5 < oy(k) > as.

[52] (c) The point k is vertically potentially-anomalous if
v (k) €10,0.5] & @y (k) € [w, as].
Let vB, vA, and vP, denote respective sets of vertically-
background, vertically anomalous, and vertically potentially-
anomalous points. Then the recording period under consid-
eration can be represented as T = vBUvAUVP.

53] 5.2. FCARS: Vertical subdivision (the second
variant). In this case, the vertical measure of anomalous-
ness p” (k) at the point k is the FLARS measure, defined by
(5), and

T=vBUVAUVP ,

where
vB={keT:u(k) <0},
VA = {k eT: (k) > 0.5} ,
and
vP = {Ic eT: (k) e [0,0.5]} .
[54] 5.3. FCARS: Horizontal subdivision. We

introduce the left and right measures of proximity to the
vertically anomalous subset vA in the model of local survey

o (k)
Loaihy () = Z&k(l_c) ke (VAO [k ﬁ,k}) |
S 6u(k) ke [k - %k}
_ (6)
Rua®y(k) = Z6k(k) Ij - gVAm {k’kz %]> )
Souk) ke [kk+ ]
where _

[55] Note. Measures (6) are connected with the DRAS
standard background measures L., and Rq, [Gm’shiam’ et
al., 2003] via fuzzy negation:

Lya®y, =1—- Lo Py, Roa®y=1—-Ro P, .
[56] The fuzzy disjunction
prva(k) = max(Lya®, (k), Ra®, (k)

is a measure of anomalousness with respect to vA in T and
formally characterizes the bilateral proximity to vA in T.
The measure pyva in turn serves as a basis for the construc-
tion of the horizontal anomalousness measure p" in FCARS:

(k) = n(Im(aen). (V) -
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[57] Definition 6. (A) The point k is of the horizon-
tally background type if u"(k) < 0.

(58] (B) The point k is horizontally anomalous if
(k) > 0.5.

[59] (C) The point k is horizontally potentially-anomalous
if u"(k) € [0,0.5).

[60] Let hB,hA, and hP, denote respective sets of
horizontally-background, horizontally anomalous, and hor-
izontally potentially-anomalous points. This triad pro-
vides a horizontal subdivision of the recording interval
T:T=hBUhAURP.

[61] The set hB being considered as background, its com-
plement hA U hP in T is the disjunctive union of non-
background intervals P,, : hA U hP = Uﬁle P,. The
FCARS processes on such of them that intersect with
hA(Py UhA # @): it is the points of hA that are considered
as actually anomalous because they lie in a neighborhood
where the concentration of points with vertically extremal
values of the rectification ®, is horizontally extremely high.

[62] Thus, we have P, N hA # @. We will determine the
boundaries of an anomaly s in P,,, i.e. the rise platform
in the rectification ®, corresponding to this anomaly. For
this, we need the following statement according to which an
anomalous interval in P,, necessarily contains points that
are anomalous both vertically and horizontally.

[63] Statement 7. If P, = [b,e] € hRAUAP, P,NhA # ©
then P, NVANhA # Q.

[64] Proof. Let k™ € [b,e] N hA and k* ¢ vA. If k" is
anomalous on the left, the interval [b, k*] necessarily contains
vertically anomalous points because otherwise all points to
the left of k* up to the point b-1 inclusively would be
horizontally anomalous, which contradicts its vertical back-
ground property. If k™ is a point vertically anomalous in
[b,k*] and closest to k*, then Lya®y, (k™) > L,a®y(k").
Consequently, k** is a horizontally and vertically anomalous
point: k™ € P, NvA N hA. The right-hand case is treated
analogously. Thereby, the statement is proven.

[65] Let ba(ea) is the first (last) point in the intersection
P,NhANvA. The segment [ba, ea] in FCARS is considered
as the central part of the signal s, which means that its
boundaries bs and e, lie in the intervals [b,ba] and [ea, €],
respectively.

66] 5.4. FCARS: anomaly boundaries. As re-
gards verticality, two types of points are present in the in-
terval [b,ba]: background points with p¥(k) < 0 and non-
background points with p'(k) > 0 (see Definition 5). The
“logic” of the beginning of an anomaly s is formulated as
follows: the point bs in the interval [b, ba] should lie as far
as possible to the right of background points and to the left
of nonbackground points.

[67] Now we formalize this logic on the basis of fuzzy com-
parisons. Let

C= {k € [b,bal : 1 (k) < 0}

e D:{ke[b,bA]:uV(k)zo}.

The function n(C, k) (n(k, D)
that k lies the to right of C' (to the left D). Their fuzzy

) is the measure of the fact
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Figure 3. FCARS processing of a seismic record (2 June 2006): (a) vertical subdivision of the record;
(b) horizontal subdivision of the record; (c) identification of the beginning and end of the anomaly.

conjunction min (n(C, k), n(k, D)) is the measure of the fact
that £ lies to the right of C' and to the left of D. Therefore,
the anomaly beginning bs can be naturally set equal to the

absolute maximum of this conjunction in the interval [b, ba]:
bs = arg max [min (n(C’, k), n(k, D))} .
(b,04]

[68] The anomaly end e in the interval [ea, €] is defined
quite analogously:

[min((k,C),n(D,k))] .

es = arg max

[ease]

Figure 3 presents results obtained by FCARS processing of
a seismic record.

[69] Free parameters of FCARS are the rectifying func-
tional @, local survey window 0 < A < |T'|, and the fuzzy
comparison (n) of positive functions. Accordingly, the algo-
rithm can also be written as FCARS(®, A, n).

5.5. Comparative analysis of FCARS with DRAS
and FLARS.

[70] 1. Constructively, proximity measures in FCARS co-
incide with background measures in DRAS.

[71] 2. The set of anomalies hA C T in FCARS is formed
“almost in the same way” as in FLARS.

[72] 3. As distinct for DRAS and FLARS, the choice of
the free parameters o and 8 in FCARS is fully automated.

[73] 4. FCARS differs basically from DRAS and FLARS
by the block determining anomaly boundaries (subsection

5.4.): it uses the vertical subdivision T = vB + vA + vP
(Definition 5).
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