
RUSSIAN JOURNAL OF EARTH SCIENCES, VOL. 15, ES4001, doi:10.2205/2015ES000558, 2015

Inverse problem in Parker’s dynamo
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The inverse solution of the 1D Parker dynamo equations is considered. The method is
based on minimization of the cost-function, which characterize deviation of the model
solution properties from the desired ones. The output is the latitude distribution of the
magnetic field generation sources: the 𝛼- and 𝜔-effects. Minimization is made using the
Monte-Carlo method. The details of the method, as well as some applications, which can be
interesting for the broad dynamo community, are considered: conditions when the invisible
for the observer at the surface of the planet toroidal part of the magnetic field is much
larger than the poloidal counterpart. It is shown that at some particular distributions of 𝛼
and 𝜔 the well-known thesis that sign of the dynamo-number defines equatorial symmetry
of the magnetic field to the equator plane, is violated. It is also demonstrated in what
circumstances magnetic field in the both hemispheres have different properties, and simple
physical explanation of this phenomenon is proposed. KEYWORDS: mean-field dynamo;

magnetic field; 𝛼-, 𝜔-effects; reversals.
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1. Introduction

The observed magnetic field in the various astrophysical
objects, like planets, stars and galaxies, is a product of the
dynamo mechanism. The dynamo theory, which first success
was concerned with the development of the mean-field dy-
namo [Krause and Rädler, 1980], to the present time trans-
formed to the new branch of physics, and combined recent
knowledges on the structure and evolution of the objects,
fluid dynamics, supercomputer modeling. To now it can de-
scribe many typical features of the magnetic field, known
from observations [Rüdiger et al., 2013], [Roberts and King,
2013].

As it usually happens during the development of the new
theory, the first approach is the direct solution of the model
equations with prescribed parameters, which are chosen due
to some a priori information on the system. Whether it
leads to the acceptable correspondence of the model with the
observations, the fine tuning of the model parameters starts.
This is the subject of the inverse problem, where basing on
the observations, and usually on the fixed equations, the
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governing parameters of the model are looked for.
There are different ways how it can be done. Here we con-

sider approach, where the desired parameters are the forms
of the spatial distribution of the energy sources in the dy-
namo equations. We limit our study to the simple, but well-
adopted in the dynamo community, 1D Parker’s equations
with the algebraic quenching, which are traditionally used
in the planetary, galactic, and stellar dynamo applications
[Rüdiger et al., 2013]. These equations describe evolution
of the axi-symmetric mean magnetic field, which depends
on the latitude 𝜗. The sources of the energy, the 𝛼- and
𝜔-effects, are the prescribed functions of 𝜗. The aim is to
find such distributions of 𝛼 and 𝜔 in 𝜗, which satisfy some
restrictions on the simulated magnetic field. The measure of
deviation of the model from the desired state is characterized
by the cost-function Ψ. To minimize numerical expenses we
decompose 𝛼 and 𝜔 in the Fourier series in the polar angle
𝜃 = 𝜋/2 − 𝜗, and rewrite Ψ in terms of the spectral coeffi-
cients, where only the first 𝑁 modes are used. Minimization
of Ψ, which can have quite complex structure, should be
done using some robust method. So far Ψ usually has local
minima, we used modification of the Monte-Carlo method,
the good candidate for the parallel simulations at the cluster
supercomputer systems, used in the work.

Below we consider some examples, which demonstrate im-
plementation of the method, and show how information on
the spatial spectrum of the magnetic field, its periodicity,
ratio of the poloidal and toroidal magnetic energies can be
used for the estimates of the optimal profiles of 𝛼 and 𝜔. We
stress attention that the inverse approach in dynamo appli-
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cations is very rare, compared to the direct simulations, and
only a few papers in this direction exist.

2. Dynamo in the Spherical Shell

We consider simple dynamo model in the spherical shell
[Ruzmaikin et al., 1988]:

𝜕𝐴

𝜕𝑡
= 𝛼𝐵 + ̂︀𝐿𝐴

𝜕𝐵

𝜕𝑡
= −Ω

𝜕

𝜕𝜃
𝐴+ ̂︀𝐿𝐵,

(1)

where 𝐴 and 𝐵 are the azimuthal components of the vec-
tor potential A, and magnetic field B = rotA, 𝛼(𝜃) is

the 𝛼-effect; Ω(𝜃) is the differential rotation, and ̂︀𝐿 =

𝜂

(︂
1

sin 𝜃

𝜕

𝜕𝜃
sin 𝜃

𝜕

𝜕𝜃
− 1

sin2 𝜃

)︂
is the diffusion operator with

𝜂 for the magnetic diffusion. System (1) is solved in the in-
terval 0 ≤ 𝜃 ≤ 𝜋 with the boundary conditions 𝐵 = 0 and
𝐴 = 0 at 𝜃 = 0 and 𝜋.

To exclude the exponentially growing solution of Eqs(1)
the 𝛼-quenching is used. The form of quenching depends on
the particular objects. In planetary and galactic dynamos
the simple algebraic form is acceptable. In the solar dy-
namo the dynamical quenching is usually used, see for details
[Kleeorin et al., 1995].

Here we consider the local form of the algebraic 𝛼-quen-
ching:

𝛼(𝜃) =
𝛼∘(𝜃)

1 + 𝐸𝑚
, (2)

with the magnetic energy 𝐸𝑚(𝜃) = (𝐵2
𝑟 +𝐵2)/2, and radial

component of the magnetic field 𝐵𝑟 =
1

sin 𝜃

𝜕

𝜕𝜃
(sin 𝜃 𝐴).

3. Inverse Problem

The direct solution of the system (1),(2) with the pre-
scribed profiles of 𝛼∘(𝜃) and Ω(𝜃) gives B(𝜃, t), which can
be compared with the observations. The disadvantage of
the direct problem is a pure knowledge on 𝛼∘(𝜃) and Ω(𝜃).
Thus, in the planetary dynamo these profiles are known only
from 3D simulations, see, e.g., [Reshetnyak, 2010]. For the
solar dynamo [Belvedere et al.,2000] information on Ω comes
from the helioseismology, however 𝛼-effect is still varies from
model to model. In galactic dynamo situation is similar to
the solar dynamo, that is why the simplest models of 𝛼∘ are
still so popular. These reasons motivate the inverse prob-
lem approach, where different profiles of 𝛼∘(𝜃) and Ω(𝜃) are
tested on observations.

Let introduce the cost-function Ψ(B, Bo), where B is the
model magnetic field, and Bo is the observable one. Then
Ψ has at least one minimum at B = Bo. The proper choice
of Ψ, and sufficient observations Bo make this minimum
global. Usually, observations do not cover the whole domain
of the magnetic field generation, either one observes such

properties of the magnetic field that magnetic field can not
be recovered in the unique way. Then Ψ has local minima as
well, and for minimization of Ψ one requires special efficient
methods, see review in [Press et al., 2007].

The next step is to simplify the problem and consider
only the large-scale features of profiles, e.g., the first 𝑁𝛼, 𝑁Ω

Fourier harmonics in 𝜃:

𝛼∘ =

𝑁𝛼∑︁
𝑛=1

𝐶𝛼
𝑛 sin(2𝜃𝑛), Ω =

𝑁Ω∑︁
𝑛=0

𝐶Ω
𝑛 cos(2𝜃𝑛).

Then, the problem reduces to the search of such C𝛼 and
CΩ that Ψ(C𝛼, CΩ) has minimum (maybe local). In gen-
eral case, study of the sequence of minima, obtained during
simulations, is interesting too.

The numerical details of the direct solver, based on the
central 2𝑛𝑑-order finite-difference approximation of the spa-
tial derivatives, and 4𝑡ℎ-order Runge-Kutta method for in-
tegration in time, are described in [Reshetnyak, 2014]. The
direct C++ solver was wrapped, using MPI interface, so
that at each computer node the direct problem (1),(2) for
the different (C𝛼, CΩ), given by the random generator, was
solved.

The random Gauss generator, with the mean value, equal
to the previous best choice, and standard deviation 3𝜎, gen-
erates set of (C𝛼, CΩ). It is supposed that (C𝛼, CΩ) should
be in the fixed region. After selection of (C𝛼, CΩ) at the
current iteration step, which corresponds to the minimal Ψ,
the new (C𝛼, CΩ) were generated, and then the next itera-
tion started. The shift of the mean value of (C𝛼, CΩ), which
is optional, helps to increase convergence of the process.
This method is modification of the Monte-Carlo method,
see the basic ideas in [Press et al., 2007].

To solve equations at Lomonosov’s supercomputer in Mos-
cow State University and the Joint Supercomputer Center of
RAS, 𝑁 = 101 grid points for the spatial approximation, the
time step 𝜏 = 10−5, and 𝒩 computer nodes from 10 to 100
for parallelization were used. Usually, number of iterations
was less than 10, and depended on 𝒩 . Application of MPI
and cluster computers for 1D problem is not crucial, but
it will be of great importance for the 2D code (with radial
dependence), which is under development now.

Further we consider some particular forms of Ψ and dis-
cuss the resulted profiles of 𝛼∘(𝜃) and Ω(𝜃) in details.

4. Ratio of the Poloidal and Toroidal
Magnetic Energies

The measure of intensity of generation sources in (1) is the

so-called dynamo-number, defined as: 𝒟 =
||𝛼∘|| ||Ω||𝐿3

𝜂2
,

where 𝐿 = 𝜋 is the spatial scale, and ||.|| is the norm of the
physical quantity, discussed below. Here we consider how
solution of (1),(2), with fixed ||𝛼∘|| and ||Ω||, depends on
the forms of profiles.

Having in mind that the both quantities 𝛼∘, Ω, can change
the sign, we introduce the following definitions of norms:
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Figure 1. Latitude dependence of 𝛼∘, Ω, and their product
𝛼∘Ω for minimal Ψ.

||𝛼∘|| = 𝜋−1
𝜋∫︀
𝑜

|𝛼∘| sin 𝜃 𝑑𝜃, and ||Ω|| = 𝜋−1
𝜋∫︀
𝑜

|Ω| sin 𝜃 𝑑𝜃. It

would correspond to the classical definition of the dynamo
number with the fixed amplitudes of 𝛼 and Ω for the uniform
profiles.

We look for such solutions of (1), (2), which for the fixed
||𝛼∘||, ||Ω||, have minimal, either maximal ratio ℛ of the
poloidal 𝐸𝑇

𝑝 = 𝐵2/2 and toroidal 𝐸𝑇
𝑝 = 𝐵2/2 magnetic

energies.
So far in many astrophysical applications only the one

component of the magnetic field (poloidal or toroidal) can
be observed, estimate of the whole magnetic energy 𝐸𝑚 =
𝐸𝑇

𝑚(1+ℛ) can vary from model to model, and amplitude of
its variations is the subject of active debates [Brandenburg
and Subramanian, 2005].

Figure 2. Latitude dependence of 𝛼∘, Ω, and their product
𝛼∘Ω for maximal Ψ.

Simple analysis of (1),(2) leads to the following predic-
tions:

ℛ =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
||𝛼∘||
||Ω||𝐿, 𝐸𝑚 ≪ 1

𝜂2

||Ω||2𝐿4
, 𝐸𝑚 ≫ 1,

(3)

that follows to that ℛ is defined by ||𝛼∘|| and ||Ω||. Our aim
is to find dependence of ℛ on these profiles.

Let introduce the cost-function Ψ = 1 − 𝑒−ℛ, and find
(C𝛼, CΩ), which extremum of Ψ. Latitude distributions of
𝛼∘ and Ω for the four cases 𝑁𝛼 = 𝑁Ω = 𝑀 with 𝑀 = 2 . . . 5,
and ||𝛼∘|| = 102, ||Ω|| = 102, are presented in Figure 1 and
Figure 2.
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Firstly note that some details do depend on 𝑀 . This
is natural for the small 𝑀 . However usage of the large 𝑀
would be inconsistent with the basics of the mean-field dy-
namo, where the large-scale fields are considered. In other
words, the number of harmonics 𝑀 should be much less than
the number of the grid points 𝑁 in the numerical scheme for
Eqs(1). It means that here we discuss only the large-scale
trends in the model, and they do exist.

Before to start the analysis of Figure 1 and Figure 2,
note that minimal (ℛ𝑚𝑖𝑛 ∼ 10−4) and maximal ℛ𝑚𝑎𝑥 ∼ 1
correspond to the different levels of the total magnetic energy
𝐸𝑚: for ℛ𝑚𝑖𝑛 one has 𝐸𝑚 ∼ 103, and for ℛ𝑚𝑎𝑥 – 𝐸𝑚 ∼ 1.
In agreement with estimate (3), the case ℛ𝑚𝑖𝑛 corresponds
to 𝐸𝑚 ≫ 1. On contrary, in the case ℛ𝑚𝑎𝑥, by some reasons,
there is suppression of the total magnetic field generation.

Following further note that due to our normalization, am-
plitudes of 𝛼∘, and Ω, see Figure 1 and Figure 2, do not
demonstrate significant differences. But as was already men-
tioned before, the measure of the field generation is the prod-
uct 𝒟. And this quantity does demonstrate the different
behaviour for two branches. For ℛ𝑚𝑖𝑛 (large 𝐸𝑚) there is
only one extremum of 𝛼∘Ω in the hemisphere. This helps to
generate the large-scale magnetic field.

For ℛ𝑚𝑎𝑥 (small 𝐸𝑚) the product 𝒟 oscillates in 𝜃 co-
ordinate. The scale of the fields is smaller than in the case
of ℛ𝑚𝑖𝑛, and as a result, the magnetic diffusion is larger.
Whether for ℛ𝑚𝑖𝑛 for all 𝑀 , the leading harmonic for 𝐵𝑟 is
stable quadrupole (Legendre polynomial with 𝑙 = 2), then
for ℛ𝑚𝑎𝑥 during the time solution switches from 𝑙 = 1
(dipole) to higher orders: even to 𝑙 = 10 at 𝑀 = 5. So
far the amplitudes of 𝛼∘ and Ω are of the same order in the
both cases, difference in ℛ is a product of low correlation in
space of 𝛼∘ and Ω, as well as of the energy sources with the
generated magnetic field. The first option is shown in Fig-
ure 1, where the maximum of the product near the equatorial
plane is clearly pronounced. On contrary, this correlation is
small in Figure 2. It supports suggestion that localizations
of the both energy sources (𝛼∘ and Ω) in the same place
helps to the large-scale magnetic field generation.

The test on the field configurations reveals that for ℛ𝑚𝑖𝑛

the both components of the quadrupole magnetic field have
maximum at the equator, so that in that region the products
of the magnetic field components and 𝛼∘, Ω are large, and
as a result, the magnetic field generation is enhanced.

For the case ℛ𝑚𝑎𝑥 correlation between the magnetic field
and energy sources is weak, and efficiency of the dynamo
mechanism is small. Situation can change if the meridional
circulation, providing transfer of the magnetic field from one
region of generation to the other, will be taken into account.
Then effective generation of the magnetic field with the dif-
ferent localizations of 𝛼∘ and Ω is possible.

5. Pure Dipole and Non-dipole Solutions

The another prediction of the linear analysis of Parker
equations with simple forms of 𝛼∘ and Ω is that alternation
of sign 𝒟 leads to the change of the symmetry of the leading
mode: the dipole mode switches to the quadrupole, and vice

versa. This change can also be accompanied with transition
from the stationary to oscillatory regimes. Using our ap-
proach we test whether this prediction is valid for complex
forms of 𝛼∘ and Ω in the non-linear regime.

Let introduce the cost-function Ψ = 1−𝑒
−𝑔21/

11∑︀
𝑙=2

𝑔2𝑙
, where

𝑔𝑙 are the spectral coefficients in decomposition on the Leg-
endre polynomials. The same norms ||𝛼∘|| and ||Ω||, as in
the previous section, were used. Minimum of Ψ corresponds
to the non-dipole configuration, and maximum limits to the
pure dipole field, respectively. As we will see, the two groups
with dipole (𝑙 = 1) and non-dipole (𝑙 > 1) configurations will
dominate.

The four runs with 𝑀 = 2 . . . 5 for minimal and maximal
Ψ were done. For maximal Ψ the stationary dipole solution
was observed for all the runs. The toroidal energy was 𝐸𝑚 ≈
650, and the poloidal one was two orders less. Exception was
the case with 𝑀 = 5 with 𝐸𝑇

𝑚 ≈ 100, and ℛ ≈ 0.1.
The regimes with minimal Ψ demonstrated various be-

haviour in time. Cases with 𝑀 = 2, 4 were the stationary
quadrupoles with ℛ ≈ 0.1 and 0.01, and 𝐸𝑚 ≈ 900, 40, re-
spectively. In the case 𝑀 = 3 we got ℛ ≈ 1, 𝐸𝑚 ≈ 10. The
dominant oscillatory mode was 𝑔𝑙 = 6. The last stationary
regime with 𝑀 = 5 corresponded to 𝑔𝑙 = 4.

The visual analysis of product 𝛼∘ Ω does not reveal any
significant differences between the branches of the minimal
and maximal Ψ. To test whether the sign 𝒟 plays the role,

we calculated integrals
𝜋/2∫︀
0

𝛼∘Ω 𝑑𝜃, for Ψ𝑚𝑖𝑛: 4.3 104, 2.7 104,

-4 103, -2 104, and for Ψ𝑚𝑎𝑥: 3.4 104, 3.2 104, 2.1 104, -5 103.
As we can see, the sign of the integral does not influence
on whether solution is dipole, either it is quadrupole. More-
over, there is no correlation of sign of 𝒟 with the symmetry
of the magnetic field over the equator plane in the non-linear
regime. This result demonstrates once more how predictions
of the linear analysis should be used carefully in the satu-
rated states.

6. Dynamo-wave Through Equator

The asymmetry of the magnetic fields over the equator
plane is well-known to observers. In geomagnetism this
problem was discussed in [Gubbins et al., 2000], where the
idea of the interplay of the dipole and quadrupole modes
was proposed. These two modes have similar thresholds of
generation and its superposition can enforce the total mag-
netic field in one hemisphere, and weaken it in the other one.
The paleomagnetic records, often based on the assumption
of the axial dipole, can not exclude this possibility even for
Phanerozoic.

In the solar dynamo asymmetry presents at least in two
forms: the difference between the magnetic fluxes from
two hemispheres is finite, and can change the sign in time
[Knaack et al., 2004]. The other remarkable phenomenon
is that during the Maunder minimum in the 17𝑡ℎ century
more than 95% of the sunspots were located in the southern
hemisphere of the Sun [Ribes and Nesme-Ribes, 1993].
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Another example of the break of the magnetic field equa-
torial symmetry demonstrates Mars’s crustal field [Stanley et
al., 2008]. This field is associated with the internal magnetic
field generated by the dynamo mechanism in the past.

The equatorial asymmetry of the magnetic field is allowed
by the dynamo theory as well. The 3D dynamo simulations
can reproduce this phenomenon for the particular set of pa-
rameters as for the spherically symmetrical boundary con-
ditions [Grote and Busse, 2000], [Busse and Simitev, 2006],
[Landeau and Aubert, 2011], as well as for the heterogeneous
heat flux at the outer boundary of the spherical shell [Stan-
ley et al., 2008], [Amit et al., 2011], [Dietrich and Wicht,
2013].

It should be noted that possibility of such asymmetries is
also interesting from the general point of view. It motivates
us to use the inverse approach to test this phenomenon at
the simple dynamo-model.

In assumption that dynamo wave, say for the field 𝐴, is
monochromatic, its phase velocity is 𝑉𝐴 = 𝐴′

𝑡/𝐴
′
𝜃. Informa-

tion on 𝑉𝐴 can be used to distinguish between the two cases:
the wave, which propagates through the equator plane, ei-
ther it vanishes at the plane, and then recovers with the
opposite sign in the second hemisphere2.

The mean value of 𝑉𝐴 in the equatorial band 𝜗 = ±𝜗𝑏 is

⟨𝑉𝐴⟩ =
𝜗𝑏∫︀

−𝜗𝑏

𝑉𝐴 𝑑𝜗. In assumption, that the band is narrow

enough, so that 𝑉𝐴 changes (if does) the sign only at the

equator, the normalized quantity ℱ = ⟨𝑉𝐴⟩ /
⟨⃒⃒⃒
𝑉𝐴

⃒⃒⃒⟩
ranges

in the interval [0, 1]. The case ℱ = 0 corresponds to the
vanishing wave at the plane 𝜗 = 0. The second extreme case
is |ℱ| = 1, when 𝑉𝐴 has the same sign over the whole band.

The proposed cost-function has the following form:

Ψ =
1

2

(︁
𝑒−|ℱ| + 𝑒−𝒢

)︁
. (4)

The first term in the sum in (4) corresponds to the de-
scribed above restriction on the wave behaviour in the band.
The second term helps to filter out the non-oscillatory solu-
tions:

𝒢 =
𝑓1

𝑓1 + 𝑓2
, 𝑓1 = 𝐸𝑚 − 𝐸𝑚, 𝑓2 = 𝐸𝑚,

where the overline means averaging over the whole space
and time. The case with 𝒢 ≪ 1 corresponds to the small
amplitude oscillations, compared to the mean level of 𝐸𝑚.
We do not interesting in this regime. The case with 𝒢 ∼ 1
corresponds to the large oscillations: e.g., for 𝐸𝑚 = sin2(𝜈𝜃),
and any integer 𝜈, 𝒢 ≈ 0.68.

The largest ℱ and 𝒢 provide minimum of Ψ in (4).
The simulated magnetic field, see the butterfly diagrams

in Figure 3, demonstrate the quite different behaviour in
the northern and southern hemispheres. In the northern
hemisphere it consists of two kinds of waves, which travel
to the poles at the high latitudes, and from the poles to the
equator in the band 𝜗 = ±𝜋/4. There are periodic reversals

2The third possibility, when the wave is reflected from the
equator plane, is not supported by the observations.

Figure 3. The butterfly diagrams for 𝐵, 𝐵𝑟 components
of the magnetic field, and phase velocity 𝑉𝐴 of the poloidal
magnetic field for 𝑀 = 2 and ||𝛼∘|| = |Ω|| = 50.

of the magnetic field, which correspond to the change of the
sign of 𝐵𝑟.

On the contrary, in the southern hemisphere the main
part of the magnetic field is constant in time. The poloidal
field 𝐵𝑟 is concentrated near the pole, and maximum of the
toroidal field 𝐵 is shifted to 𝜗 ≈ −𝜋/3.

This quite strange configuration of the magnetic field, at
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Figure 4. Latitude dependence of 𝛼∘, Ω, and their product
𝛼∘Ω with 𝑀 = 2.

least compared to the usual field states, corresponds to the
class of the hemispherical dynamo, mentioned in the begin-
ning of the section. Note that we did not use any imposed
asymmetry in the model, and this result is the intrinsic prop-
erty of the model, as it was discovered in some 3D simula-
tions.

Returning to the way how we get this solution, we remind
that the crucial point was selection of regimes with the non-
zero mean phase velocity 𝑉𝐴 of the radial magnetic field in
the equatorial band, see Figure 3. There are waves of 𝑉𝐴,
traveling from the north pole to the southern, with the con-
stant magnitude, except the region near the equator plane,
where 𝑉𝐴 is small. If resolution of observations is pure, then
it seems that the dynamo wave penetrates free through the
equator plane from one hemisphere to the other. The direc-
tion of this wave changes in time, however the mean value of
𝑉𝐴 over the time and space domain in Figure 3 is not zero.
It is this deviation from the zero value the cost-function (4)
detected.

The possible explanation of our hemispherical dynamo is
concerned with the spatial distribution of 𝛼∘ and Ω, obtained
in the inverse model, Figure 4.

We observe coincidence of 𝛼∘ and Ω extrema’s locations.
It results in the large product 𝒟. Situation is similar to
that one in Figure 1, where correlation of 𝛼∘ and Ω was
also strong. However, in that case extrema of 𝒟 were near
the equator plane, on contrary to the hemispherical dynamo,
where they are shifted to the middle latitudes. It is this shift
of maximum of the magnetic field generation helps to isolate
dynamo process in hemispheres from each other, and permits
different evolutions of the magnetic field in the hemispheres.
We emphasize that the observed flux, concerned with the
phase velocity 𝑉𝐴, is quite small, and does not change sit-
uation substantially. But as we demonstrated, this flux is
the result of the equatorial symmetry break, which leads to
the very different morphologies of the magnetic fields in the
hemispheres.

7. Conclusions

Having deal with the direct dynamo problem solutions, I
really enjoyed to work with the inverse problem approach for
this toy dynamo model. In spite of the fact that 1D model
itself is out of date, the level of abstraction in communi-
cation with the computer in the inverse approach is much
higher than in the direct problems. In the inverse approach
one formulates the properties of the desired solution, and
then tries to understand why the resulted parameters pro-
vide these properties. This process is much more intriguing
rather than to use the fixed parameters, and follow the re-
sults of the direct problem, where solution is already also
prescribed. However the latter approach can be used for the
more sophisticated models, its not the fact that the simpler
model in inverse approach will not give the better result due
to the finer tuning of parameters.

The obtained above results are the product of numerous
tries, when for many times I wandered why the computer
selected this or that particular regime. The lack of criteria,
which were used for the cost-function construction, some-
times resulted in the very unexpected results. Many restric-
tions, which are supposed by default, should be explained
straightforward to the computer. However the results are
worthy of these efforts. May be what is more important, is
that this approach stimulates understanding of the model.
With minimal number of criteria, it is possible to find scenar-
ios, which can be tested, using more complex models. This
inverse approach can be useful tool for asking a good ques-
tions, even the answers would be quite wrong. As regards
to the simplicity of the considered model, estimates of the
required computer time shows that the inverse method, con-
sidered here, can be extrapolated to the higher dimensional
models as well.

Acknowledgment. The author is grateful to I. Aleshin for

stimulating discussions. The author also acknowledges financial

support from RFBR under grants 15-05-00643, 15-52-53125.

References

Amit, H., U. R. Christensen, B. Langlais (2011), The
influence of degree-1 mantle heterogeneity on the past dy-
namo of Mars, Phys. Earth Planet. Int., 189, 63–79,
doi:10.1016/j.pepi.2011.07.008

Belvedere, G., K. Kuzanyan, D. D. Sokoloff (2000), , A
two-dimensional asymptotic solution for a dynamo wave in the
light of the solar internal rotation, Mon. Not. R. Astron. Soc.,
315, 778–790. doi:10.1046/j.1365-8711.2000.03458.x

Brandenburg, A., K. Subramanian (2005), Astrophysical
magnetic fields and nonlinear dynamo theory, Phys. Rep., 417,
1–209, doi:10.1016/j.physrep.2005.06.005

Busse, F. H., R. D. Simitev (2006), Parameter depen-
dences of convection-driven dynamos in rotating spherical fluid
shells, Geophys. Astrophys. Fluid Dynam., 100, 341–361,
doi:10.1080/03091920600784873

Dietrich, W., J. Wicht (2013), A hemispherical dynamo
model: Implications for the Martian crustal magnetization,
Phys. Earth Planet. Int., 217, 10–21, doi:10.1016/j.pepi.2013.
01.001

Grote, E., F. H. Busse (2000), Hemispherical dynamos
generated by convection in rotating spherical shells, Phys. Rev.
E, 62, 4457–4460, doi:10.1103/PhysRevE.62.4457

6 of 7

http://dx.doi.org/10.1016/j.pepi.2011.07.008
http://dx.doi.org/10.1046/j.1365-8711.2000.03458.x
http://dx.doi.org/10.1016/j.physrep.2005.06.005
http://dx.doi.org/10.1080/03091920600784873
http://dx.doi.org/10.1016/j.pepi.2013.01.001
http://dx.doi.org/10.1016/j.pepi.2013.01.001
http://dx.doi.org/10.1103/PhysRevE.62.4457


ES4001 reshetnyak: inverse problem ES4001

Gubbins, D., C. N. Barber, S. Gibbons, J. J. Love (2000),
Kinematic dynamo action in a sphere. II Symmetry selection,
Proc. R. Soc. Lond. A, 456, 1669–1683, doi:10.1098/rspa.
2000.0581

Knaack, R., J. O. Stenflo, S. V. Berdyugina (2004), Periodic
oscillations in the north-south asymmetry of the solar magnetic
field, Astron. Astrophys., 418, L17–L20, doi:10.1051/0004-
6361:20040107

Kleeorin, N., I. Rogachevskii, A. Ruzmaikin (1995), Mag-
nitude of dynamo-generated magnetic field in solar-type con-
vective zones, Astronomy and Astrophysics, 297, 159–167,
doi:10.1098/rsta.2000.0565
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