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1. Introduction

One of the most astonishing laws of Nature was estab-
lished by P. Bird [2003]. He found that the cumulative
number (𝑁) of the lithospheric plates in dependence on their
areas (𝑆) is described by

𝑁(≥ 𝑆) = 7𝑆−𝑛, 𝑛 = 0.33. (1)

From the distribution he excluded Pacific and continen-
tal plates Africa, Antarctica, North America, Eurasia and
Australia; South American plate is in the distribution. Four
smallest plates like Manus are also out of it. According to
Barenblatt [2003] the dependence in consideration may be
called an intermediate asymptotic for about 40 plates left
out of 52 considered by Bird [2003].

Such a dependence did not give a rest for this author dur-
ing several years and he did not left attempts to find a simple
explanation in the hope that the equation (1) is a manifesta-
tion of some deep and general science. An explanation was
found at the end [Golitsyn, 2008] with the help of the theory
of similarity and dimension. In that case it was supposed
that a number of plates we see after the break up of Gond-
vana is due to the mantle convection. The mantle convection
causes the geodynamics, the earthquakes arising mostly at
the boundaries of the plates, the consequent quakes support
the faults etc. The intensity of the convection can be de-
scribed by the chief single parameter: the rate of generation
of its kinetic energy per unit mass 𝜀. Its mean rate is of order
10−11𝑚2𝑠−3 [Golitsyn, 2007] as a drive for geodynamics and
seismicity. The value of 𝜀 was chosen later as a governing
parameter of the plate formation and 𝜀 and area 𝑆 give for
the cumulative number of plates which has the dimension of
frequency or inverse time

1A. M. Obukhov Institute of Atmospheric Physics, RAS,
Moscow, Russia

Copyright 2017 by the Geophysical Center RAS.

http://elpub.wdcb.ru/journals/rjes/doi/2017ES000607-res.html

𝑁(≥ 𝑆) = 𝐴(𝜀/𝑆)1/3. (2)

An important moment in these arguments is that the cu-
mulative distribution has the dimension of frequency and its
inverse value is called the mean expectation time for an event
with size ≥ 𝑆 to happen [Feller, 1968] when one deals with
empirical non-normalized probabilities called histograms.

2. Discussion

Unfortunately the determination in the value of coeffi-
cient 𝐴 in (2) has been done erroneously in 2008, and also
the choice of the governing parameters may be always in
doubt especially without any underlying model. Therefore
we decide to return to the problem. The problem evidently
belongs to the class of stochastic processes developing under
the action of multitude of random forces. The initial idea
was proposed by A. N. Kolmogorov [1934]. In other words
the forcings are 𝛿(𝑡)-correlated. For such a description he
has proposed to use the Fokker-Plank equation
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where 𝑃 (𝑟, 𝑢, 𝑡) — is the probability density for a fluid
particle with velocity 𝑢 to be in the coordinate 𝑟 in the time
moment 𝑡; 𝜀 is the rate of the generation (dissipation) of the
particle kinetic energy (per unit mass). This equation was
solved by Gledzer and Golitsyn [2010] at the initial condition
𝑃 (𝑟, 𝑢, 𝑡 = 0) = 𝛿(𝑢)𝛿(𝑟) i.e. with delta-like conditions.
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In order to obtain the distribution for velocities 𝑃 (𝑢, 𝑡)
for arbitrary coordinates one should integrate (4) by 𝑟 from
−∞ to ∞. Distribution on coordinates at any velocities
is obtained by integration of (4) over velocities. However
the solutions will be for an infinite ensemble. However it is
always necessary to know how fast solutions for finite en-
semble approach to that ones for the infinite ensemble. For
this Gledzer and Golitsyn [2010] integrate equations

𝑢𝑖 = 𝑎𝑖, 𝑥𝑖 = 𝑢𝑖, (7)

where 𝑖 = 1, 2, . . . 𝑁 — the general number of couples of
such equations at 𝑎𝑖 random 𝛿-like accelerations which are
modeling the energy input to our system. In this case for
𝑁 → ∞ the second moments for velocities and coordinates
are calculated as ⟨︀

𝑢2(𝑡)
⟩︀
= 𝜀𝑡, (8)
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The second moments for velocities are similar to the sec-
ond moment for coordinate shift in the theory of Brownian
motion and called the random walk in the coordinate space:
⟨Δ𝑥2(𝑡)⟩ = 2𝑛𝐷𝑡 with 𝐷 the diffusion coefficient and 𝑛 is
the space dimension. Here eq. (3) describes the diffusion
in the velocity space with 𝜀 as the diffusion coefficient in
that space [Obukhov,1959]. The formula (8) multiplied by
𝑚/2 justifies the proportionality of energy on time, usually
obtained by dimensional analysis as was first proposed for
lagrangian fluid particle in 1944 by Landau (see Monin and
Yaglom, [1975]).

For us here more interesting is eq. (9). We equate rms
shift of coordinate square to the area 𝑆 covered during ran-
dom walk in the velocity space, as was first done by Batch-
elor [1950] for atmospheric turbulence: 𝑆 = 𝜀𝑡3. With such
argumentation the time dependence

𝑆(𝑡) =
𝑎

3
, (10)

where 𝑎 is a numerical coefficient representing, say, empty
parts of the area, covered during random walk in the velocity
space. Then use the definition of the cumulative distribution
of probabilities as the frequency or inverse time of expecta-
tion to get an object with size, 𝑆 in our case, use the time
from (10) and obtain

𝑁(≥ 𝑆) =
(︁ 𝑎𝜀

3𝑆

)︁1/3

. (11)

Golitsyn [2007] has estimated the rate of generation of
kinetic energy 𝜀 driving the geotectonics and seismicity as
10−11𝑚2𝑠−3. With this value converting 𝑚2 into steradian
for our planet we get 𝜀 = 406𝑠𝑡𝑟/𝑠3. Comparing (11) with

(1) we obtain 7 =
(︁𝑎𝜀

3

)︁1/3

, wherefrom 𝑎 = 2.5. Due to the

cubic root from (𝑎𝜀) eq. (11) depends only weakly from both
𝑎 and 𝜀. At this moment it is proper to recall Albert Einstein
who said in 2011, as quoted by P. Bridgman [1922]: right

formulas obtained by dimensional analysis should not have
very large or very small numerical coefficient when compared
to experimental values. There is no prove of this idea but
our case with finding that the numerical coefficient 𝑎 is of 2.5
supports well the intuition of Einstein expressed over a cen-
tury ago. The combination of the solutions of the FPO equa-
tion (3) allows one also to obtain the time structure function
for the velocity 𝑢(𝑟, 𝑡) proportional to time 𝑡 and expressing
it from (9) to obtain the Kolmogorov-Obukhov expressions
for the small-scale turbulence in the inertial interval, also for
the Richardson-Obukhov law for the turbulent diffusion ex-
pressing 𝐾 = 𝑑⟨𝑥2⟩/𝑑𝑡 according to G. I. Taylor [1915]. The
last deserves a special consideration. Nevertheless, all this
is the consequence of the probability theory at the hypoth-
esis on the markovian character of forcings on the system
without viscous dissipation, which reveals the scale (9).

Acknowledgment. I am very grateful to V. A. Kossobokov

who have sent me the paper by Bird, [2003] soon after its pub-

lications and to V. F. Pisarenko who was explaining me various

aspects of statistics and seismology.

References

Barenblatt, G. I. (2003), Scaling, 171 pp., Cambridge
University Press, Cambridge.

Batchelor, G. K. (1950), The application of the similarity
theory of turbulence to atmospheric diffusion, Quarterly Jour-
nal of the Royal Meteorological Society, 76, No. 328, 133-146,
doi:10.1002/qj.49707632804

Bird, P. (2003), An updated digital model of plate
boundaries, Geochem. Geophys. Geosyst., 4, No. 3, 1–52,
doi:10.1029/2001GC000252

Bridgman, P. (1922), Dimensional Analysis. 1st ed, 2nd ed.
1931, Yale Univ. Press, New Haven.

Feller, W. (1968), Introduction into the Theory of Probability
and its Application, 1, 528 pp., John Wiley and Sons, N.-Y..

Gledzer, E. B., G. S. Golitsyn (2010), Scaling and finite
ensembles of particles in motion with the energy influx, Doklady
Physics, 433, No. 8, 369–373, doi:10.1134/s102833581008001x

Golitsyn, G. S. (2007), Energy cycle of geodynamics and
seismic process, Izv., Phys. Solid Earth, 43, No. 6, 443–446,
doi:10.1134/S1069351307060018

Golitsyn, G. S. (2008), Size distribution of the number
of lithospheric plates, Izv., Phys. Solid Earth, 44, No. 3,
175–180, doi:10.1134/S1069351308030014

Kolmogorov, A. N. (1934), Zufallige Bewegungen (Zur
Theorie der Brownschen Bewegung), Annals of Mathematics,
35, No. 1, 116–117, doi:10.2307/1968123

Monin, A. S., A. M. Yaglom (1975), Statistical fluid me-
chanics: Mechanics of turbulence, 874 pp., MIT Press, Cam-
bridge, Massachusetts.

Obukhov, A. M. (1959), Description of turbulence in terms
of lagrangian variables, Advances in Geophysics, 6, 113,
doi:10.1016/S0065-2687(08)60098-9

Taylor, G. I. (1915), I. Eddy motion in the atmosphere,
Philos. Trans. R. Soc. Lond. A., 215, No. 523–37, 1–26,
doi:10.1098/rsta.1915.0001

G. S. Golitsyn, A. M. Obukhov Institute of Atmospheric Physics,
RAS, Moscow, Russia. (gsg@ifaran.ru)

2 of 2

https://doi.org/10.1002/qj.49707632804
https://doi.org/10.1029/2001GC000252
https://doi.org/10.1134/s102833581008001x
https://doi.org/10.1134/S1069351307060018
https://doi.org/10.1134/S1069351308030014
https://doi.org/10.2307/1968123
https://doi.org/10.1016/S0065-2687(08)60098-9
https://doi.org/10.1098/rsta.1915.0001

	Abstract
	1. Introduction
	2. Discussion
	References

