RUSSIAN JOURNAL OF EARTH SCIENCES, VOL. 12, ES4001, doi:10.2205/2012ES000516, 2012

Plastic stress_field reconstruction based on stress
orientations data

P. Haderka! and A. N. Galybin®

Received 15 May 2012; accepted 17 May 2012; published 5 June 2012.

This paper presents an investigation of the applicability of the stress trajectories concept
and the stress trajectories — slip lines alternations method to geomechanical problems. We
extend our approach introduced for the stress analysis of two-dimensional plastic bodies
to the problem of the stress reconstruction in plastic regions of the lithosphere. The
method is developed for the Cauchy boundary value problem and utilizes the data on
principal directions as one of the boundary conditions. For this purpose the first order
stress indicators of the World stress map (WSM) project database (release 2008) are
utilized in computations. The set of considered boundary conditions is supplemented by
the normal derivatives of the stress orientations. Complete formulation of the problem
involves a yield condition. Although the general approach is not limited to a specific yield
criterion, present calculations are performed for the Mohr-Coulomb criterion. Applications
of the method include the stress reconstructions in three regions of the Earth’s crust (Swiss
Alps, Tibetan plateau and Eastern Anatolia). The continuous boundary conditions are
derived by an averaging method applied to the discrete data in immediate vicinity of the
starting boundary. Thereafter, for the chosen strength parameters of the Mohr-Coulomb
theory (friction angle and cohesion), the unique grids of stress trajectories and slip lines
are determined. These fields are further compared against the WSM data available inside
the regions. The computations are made for different strength parameters in order to
provide the best fit to the data. The results of the analysis are presented as two plane
fields: the map of normalized mean stresses and the grid of corresponding trajectories
of principal directions. The normalization parameter is unknown (it represents an initial
value of the mean stress in a single node of the boundary), which is a consequence of
non-uniqueness of the stress reconstruction problem based on the data on stress orientations
alone. The reconstructed stress orientations are compared with the observations from the
WSM database. KEYWORDS: Numerical approximations and analysis; geomechanics; plasticity;

mechanics, theory, and modeling; rheology: crust and lithosphere.
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1. Introduction indicator of plate-driving forces. Numerous authors [Becker
et al.,[2005} DeMets et al.,[2005} Flesch et al.,[2007} Kreemer

. . o . . et al., 2003} Lund and Townend, Mukhamediev et
I(?entlﬁcatmn of stress fields }ns&de tectomf: plates is an es- al., Steinberger et al., discuss the importance
sential part of any global relatlve-.plate-mouon m_Odel [Gor- of studying lithospheric stresses and their impact on geody-
don, Sutherland, as 1t serves as an Important ., ...;.s of the Earth crust. This study is aimed at the identi-

fication of tectonic stresses in some regions of the globe that

1Escad Design GmbH, Donauwdrth, German
& y could be considered as plastic. First order stress indicators

2Schmidt Institute of Physics of the Earth, Russian Academy

of Sciences, Moscow, Russia of the World Stress Map (WSM) project database [Heid-

bach et al.,|2008] are utilized to evaluate the magnitudes of
Copyright 2012 by the Geophysical Center RAS. intraplate stresses. The numerical method is based on the
http://elpub.wdcb.ru/journals/rjes/doi/2012ES000516.html stress trajectory concept and presents further development
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of the approaches reported by Galybin and Mukhamediev
for elastic solids and by Haderka and Galybin
for plastic media.

Methods widely accepted for stress modeling are based
on finite element analyses in view of gravitational potential
energy (GPE) predictions [Bird, 11999} England and
Molnar, Humphreys and Coblentz, |2007]. The main
effort, as identified by Sonder and Jones 1999:, is invested
into identifying the forces driving and resisting the inter- and
intra-plate deformations. Different estimates of the bound-
ary forces [Coblentz et al., , forces arising from lateral
density variations [Andewey et all, Golke and Coblentz,
and their combinations [ Vergnolle et al., are cho-
sen such that the model predictions fit the observed stress
indicators. Justifications of the methods in view of WSM
data were shown in [Chang and Lee, Cloetingh and
Wortel, Coblentz and Sandiford, Zoback et al.,
. Alternatively, velocities determined by the Global
Positioning System (GPS) at different sites could be utilized
[DeMets et al., (1990} England and Molnar, Flesch et
al., McClusky et al., .

However, model predictions resulting from various esti-
mates of driving forces lead to inconsistent and contradic-
tory results [Sonder and Jones, [1999]. The common sign
described in Gélke and Coblentz [1996], is twofold, (1) the
invariant nature of the stress orientations, and (2) the great
dependence of the stress magnitudes, to the boundary condi-
tions used. Moreover, often the methods are based on elastic
assumption regarding the lithosphere, whereas Vergnolle et
al. argue that the differences between model predic-
tions and stress indicators may also arise from non-elastic
rheology. Pauselli et al. [2010] report, that the composi-
tion, structure, temperature and deformation conditions all
affect the rheology.

In contrast to FEM based GPE prediction methods, we
suggest using the WSM stress indicators as boundary condi-
tions in the direct formulations of boundary value problems
(BVP) and hence overcoming the necessity for estimation of
boundary conditions crucial in inverse problems. We pro-
pose to employ a plastic model with friction to describe the
state of failure equilibrium of intraplate continental crust.
In this case, the governing equations consist of the differ-
ential equations of equilibrium (DEE) and a criterion that
imposes certain algebraic relationships on the stress com-
ponents. The assumption of plastic rheology has been ac-
cepted in [Hieronymus et al., Molnar and Tapponier,
Stein et al., Zoback et al.,|2007]. None of these
studies however made direct use of the WSM data for the
formulation of BVP. It is explained by the fact that the clas-
sical formulations assume specification of boundary stresses
while the majority of data are given on the stress orienta-
tions, therefore restricting the straightforward application
of the conventional techniques. In the approach proposed
by Haderka and Galybin the orientations of principal
stresses are considered as one of the possible boundary con-
ditions for solving the BVP of plane plasticity. This opened
a possibility to model non-elastic stress fields without know-
ing reliable information on the boundary stress magnitudes.

Fundamentals of the non-elastic stress modeling are de-

veloped in works of Hill |1950] and Sokolovskii [1965]. In
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particular, it is shown that for two dimensional problems (in
which the conditions of limiting equilibrium apply) the gov-
erning equations are presented by the system of partial dif-
ferential equations (PDE) of hyperbolic type. Two distinct
families of the characteristics of this system coincide with
the slip lines, which are also observed by experiments. For
hyperbolic systems of PDE, several BVP can be formulated,
the key one being the Cauchy BVP. In this case the problem
consists of solving a system of two PDE (that is obtained
by substitution a yield criterion into the DDE) with cer-
tain conditions prescribed along a starting boundary (which
is nowhere coincident with a characteristic of the system).
When only statically determined bodies are considered the
solution can be built independently of the kinematic equa-
tions. For briefness the conventional methods are further
abbreviated by SL (slip lines). The solution of the Cauchy
BVP by means of the SL approach is restricted to an area
referred to as the characteristic triangle (or the domain of
dependence). This area is bounded by the starting boundary
and two characteristics of different families emanating from
the ends of the boundary. It has to be emphasized that it
is not straightforward to determine the solution beyond the
boundaries of the characteristic triangle. Other, additional
assumptions have to be taken into account as e.g. by Cox
or more recently by Martin .

In contrast to the SL approach we propose to build a so-
lution to the problem by using the trajectories of principal
stress. The stress trajectories, according to Frocht , are
defined as curves the tangents to which at every point coin-
cide with the directions of principal stresses. Because there
exist two principal stresses in plane problems, there will be
two distinct and orthogonal families of trajectories; one cor-
responding to the major and another to the minor principal
stress. Similarly to the SL approach, the solution of the
BVP along stress trajectories leads to a network built by
the two orthogonal families. However, this network does not
coincide with the characteristic grid. In other words, there
exist regions of the reconstructed stress trajectories grids
located outside of the domain of dependence. The implica-
tions of this fact are discussed in great detail in Haderka and
Galybin . This approach is abbreviated as ST (stress
trajectories) further on.

We further use both approaches in turn and introduce
the ST-SL alternations method (for detail see [Haderka and
Galybin, ) It is shown how slip lines and stress tra-
jectories built by the respective approaches are utilized for
further extension of the stress field. Numerical tests revealed
that the accuracy of this method is comparable to that ob-
served in the conventional SL approach, which is explained
by the similar finite difference techniques used.

Applications of the developed approaches are presented
for the problems of stress field identification in plastic re-
gions of the lithosphere. Following Regenauer-Lieb [1999)] it
is assumed that the rheology of the lithosphere satisfies the
Mohr-Coulomb theory of limiting equilibrium and hence can
be modelled as a plastic medium with friction and cohesion.
These parameters can be found by fitting the predicted stress
orientations to the WSM data. The results of the analysis
and the comparisons with the available data are shown in
section 4.
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2. Background
2.1. SL Approach in Plastic Media

The DEE for a plane problem can be written in terms of
the mean stress P and the maximum shear stress 7 in the
following form:

Oz P + c0s(20)0, T + sin(20)9, 7 — 27 sin(260) 0,0 +
27 cos(26)9,6 = 0,
02 P + sin(20)0, 7 — cos(20)0y, T + 27 cos(260)0,0 +

27 sin(260)0,60 = 0. (1)

Here, symbols 0., 0, stand for differential operators. The
stress functions P, 7 are functions of the Cartesian coordi-
nates x, y. They represent the sum and the difference of the
principal stresses o1, o2, respectively:

o1+ o2
P=
2 7

70'1—0'2

, (1>20,02<01) (2
Angle 6 denote the orientation of the major principal stress
o1 measured counter-clockwise with respect to the positive
direction of the x-axis (it is accepted that compression is
negative).

In problems of plane plasticity a yield criterion has to
be specified additionally to equation , In the works by
Hill and Sokolovskii , where the solution of this
system for plastic media is developed, the Mohr-Coulomb
yield criterion is utilized. It can be presented in the form:

®3)

where the maximum shear stress is expressed as a linear
function of the mean stress via the angle of internal friction,
1, and cohesion, C'. It should be noted that yielding criterion
is valid if the maximum shear stress in does not vanish
and the normal stresses on the slip lines are compressive
(negative).

Integration of in view of and the boundary condi-
tions leads to four characteristic equations; two of them for
identification of the slip lines:

T=Ccosp— Psiny, 7>0

dy = dxtan(f +¢) (4)

and two for the relationships valid along the slip lines:

dP* +2P" tan pudf = 0 (5)
Equations define the relationships between the mean
stress and the principal directions valid along the slip lines
(P* represents the mean equivalent stress, P* = P—C cot u).
Equations define two families of isogonal lines inclined to
the direction of the major principal stress o1 at the angles:

(6)

™

+e=
£

n
+2

From the latter relationship it is evident that this inclination
depends on the angle of internal friction.
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Figure 1. Mutual arrangement of the stress trajectories
and the slip lines.

Solution of systems and is performed numerically
by employing the finite difference method (see [Sokolovskii,
for detail). Equations () allow for the identification
of nodal points represented as intersections of tangents to
the slip lines (emanating from boundary nodal points, see
Figure 1). Reconstructed slip lines form a zone of limiting
equilibrium presented by a grid where two characteristics
of different families intersect at the angle 2. The result-
ing stress field is found in an area that has the form of a
curvilinear triangle. As mentioned previously, this area is
referred to as the characteristic triangle or the domain of
dependence.

For completeness it has to be mentioned that if the angle

0 in is:
(M)

then the SL approach fails as the nodal points can not be
identified. Since is valid everywhere along the slip lines,
none of these lines can be used as a stand-alone starting
boundary.

9:&5:%77, m=20,1,2,...

2.2. Integration of the DEE Along Stress
Trajectories

The present approach is based on utilizing the stress tra-
jectories instead of the slip lines in solving the BVP intro-
duced in the previous section. The relationship between the
orthogonal families of stress trajectories (specified by the
tangents ts, t4) and the slip lines (specified by the tangents
ta, tg), are given as:

Ga=0—c, B=0+¢ (8)

where &, B represent the tangent angles between the slip lines
a and § and the z-axis, respectively (see also|Figure 1). The
system in can be rewritten along the stress trajectories,
hence representing the Lamé-Maxwell form of the DEE (e.g.
in [Kuske and Robertson, [1974]), which can be written as:
adsP + 9,0 =0, bOyP+ 96 =0 9)
The arc lengths s, g are measured along the stress trajec-
tories of the first and second family, respectively. The co-
efficients and are functions of spatial coordinates; for the
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‘ —e— ST approach = @ = SL approach
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/ Principal orientations
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s trajectory

q trajectory 1

Figure 2. The grids of stress trajectories and slip lines and the comparison of the principal stress
orientations obtained by the different methods (top), and fields of mean stress (bottom) for a = —1,

b =140, c=—0.02, d = 0.72.

Mohr-Coulomb yield criterion they have the form:

_1 14 sinp
" 2Ccosp— Psinp

Equations @ in view of form a closed system and,
together with the boundary conditions, constitute the BVP
for plastic media.

A method for solution of (ED along the stress trajecto-
ries for a general, explicit yield criterion has been developed
by Haderka and Galybin . Here we focus on the Mohr-
Coulomb criterion and the boundary conditions specified
in terms of orientations of the principal stress and their nor-
mal derivatives (6, 0,.0).

Similarly to SL, the solution is performed numerically by
the finite difference approach and it is decoupled into two
steps for the determination of the stress trajectories and
the relationships along them. Based on the definition of
the stress trajectories, the nodal points are sought as the
points of intersections of two different, orthogonal families
which emanate from neighboring nodes on the boundary.
The curvilinear families of trajectories are approximated by
polygons, hence the used piecewise linear approximation in-
troduces some errors in the identification of the intersection
points of trajectories. However, these errors are not sig-
nificant and they are of the same order as in the SL ap-
proach where the same approximation is accepted (see )
The mean stresses and the orientations are calculated at the
new nodes by continuation of their boundary values by using
expansions into Taylor’s series along the stress trajectories
(derivatives of the order greater than one are neglected). The
introduced directional derivatives along the trajectories (Os
and d,) are then transformed into the tangential and normal
derivatives with respect to the contour (9; and 0,), respec-

1 1—sinp 1
==-—''b 10
@ 2Ccosp— Psinpy’ (10)

tively). Once the derivatives of the orientations are known
(9:0 can be retrieved from the information along the starting
boundary and 9,6 is specified in boundary conditions) the
derivatives of the stresses are determined from @[) Hence,
the determined derivational terms satisfy the DEE and are
consequently used to recalculate the sought mean stresses
and the orientations at the new nodal points. However, it
has to be noted that the mean stress P can be determined
only in a normalized form, thus its initial value remains un-
known. With a sufficiently dense stress trajectories network
the set of values (P; and 0; ) at every point z;; presents
an approximate solution to the BVP. An overview of the
equations obtained by the described numerical integration
of the BVP and the inherent limitations are presented in
Appendix A.

2.3. Comparison of SL and ST Approaches for
Linearly Varying Boundary Conditions

In order to illustrate that both approaches produce close
results we conduct numerical tests for the Mohr-Coulomb
criterion. Boundary conditions are given in terms of orien-
tations and their normal derivatives. It is assumed that they
both have linear distributions along the starting boundary,
i.e. 0 =ax+band 9,0 = cx + d on a part of the z-axis.
Following the classical approaches it is also assumed that all
the variables having the dimension of stresses are normalized
with respect to cohesion, C.

Typical solutions to systems @), and , obtained
by using the ST and SL approaches, respectively, are shown
in For visual comparison, the results are plotted
for the stress trajectories grid (full lines with circles) and
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the slip lines grid (dashed lines with dots). Orientations
of the major principal stress obtained by the different ap-
proaches are shown by short line segments top).
Additionally, the reconstructed fields of the mean stresses
are presented in the bottom pictures in

From the top picture in it is evident that the
results of the different approaches are obtained at different
nodes. Therefore a numerical procedure is developed in or-
der to compare these results. It involves linear interpolation
of the values obtained by the SL approach at the nodal points
found in the ST approach. Triangular elements are built for
this purpose, such that the nodes of the SL approach present
their vertices. Linear interpolation is performed to find the
stress orientations at the nodes of the ST approach, lying
inside the triangular elements. The results of comparisons
are summarized in [Table 11 Columns 2 and 3 of the ta-
ble show the maximum observed differences obtained by the
two approaches for orientations (Af) and stresses (AP), re-
spectively, depending on the increasing number of boundary
nodal points. It has been found that the maximum differ-
ences Af and AP decrease with the denser discretisation
(number of nodes n increases) of the boundary.

The results obtained by the two approaches are in good
agreement, however, the deviation of the results may in-
crease (depending on the boundary conditions) when the
nodes in the ST approach cross the boundaries of the do-
main of dependence (specified by the slip lines). These ob-
servations suggest that, while the results of the ST approach
are unique, the identified stress field might comprise regions
(lying outside of the domain of dependence of the bound-
ary segment) where the real stress field is no longer depen-
dent on the boundary conditions along the starting bound-
ary. Therefore, the solution in these regions, obtained by
the ST approach, can be considered as an extrapolation of
the real solution (see [Haderka and Galybin, for more
details).

3. Reconstruction Based on Alternations of
SL and ST Approaches

The method of alternations is developed for the starting
boundaries along which relationship @ are valid in the case
of the slip lines or for the case of the stress trajectories.
It is shown that the mean stresses and the stress orientations
identified along these lines can be utilized for further exten-
sion of the stress field (beyond the boundaries of the recon-
structed triangles). For this purpose it is assumed that the
whole domain is in state of limiting equilibrium and that
the boundary conditions allow for such extension. In the
following examples boundary conditions along the starting
boundary are specified according to

3.1. Stress Trajectory as a Starting Boundary

Let us assume that the stress trajectories grid, shown in
and, in particular, the legs of the characteristic tri-
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Table 1. Results of comparison of the ST and SL ap-
proaches: Starting boundary

n AP, x10 AG, ° x 10°

5 8.2 3.2

10 6.7 3.4

15 9.0 3.0
20 8.8 2.7
25 8.2 2.6
30 8.1 24
35 7.6 2.3
40 7.3 2.2

angle, are known. While the ST approach can not utilize this
information because of the limitation in , there are no
restrictions in the SL approach to use these curves as start-
ing boundaries to perform computations. In [Figure 3| (top)
two additional characteristic grids (to those in [Figure 2|) are
shown which emanate from the s-trajectory and from the
g-trajectory (dash-dotted lines with squares).

Maps of the mean stress in the extended region and inside
the characteristic triangle built from the starting boundary
are presented in (left) and (right), respectively. The
contours of triangles obtained by the different methods are
emphasized with full thick lines. The results obtained for
different starting boundaries are tested for accuracy as de-
scribed in the following sub- section.

3.2. Slip Line as a Starting Boundary

In the case when the starting boundary is an existing
slip line, both numerical procedures, developed in previous
sections for the ST and SL approaches, fail to give reliable
results. However, the ST approach can be modified following
the idea mentioned in Haderka and Galybin ,

Let us consider a field of slip lines obtained from cal-
culations by the SL approach. One possible configura-
tion is presented in where only a part of a slip
field is shown (represented by slip lines ag_1, ag, k1 and
B, Bj+1). Taking into account the known relationships be-
tween the slip lines and the stress trajectories, one can find
the nodal points z; as intersections of the former with the
latter.

Slip lines between the layers k and k — 1, are given by
the nodes zj x—1, zj+1,k—1 and z;x, 2j+1,% available from the
previous calculations (they belong to the characteristic tri-
angle). The nodes zjk+1, zj+1,6+1 and the slip line ap41
which passes through them are unknown. Because of the
expression in the position of the stress trajectories s; i,
¢j,r is known at these nodes. Therefore, the nodal points
Zj k+1, Zj+1,k+1 can be found as the intersections of s; i, Bj+1
and ¢;4+1,5, B, respectively. After identification of z; k1,
Zj+1,k+1, the mean stresses and the orientations are sought
at these points by employing a finite difference form of DEE
@. Details of the numerical analysis together with the cor-
responding relationships are presented in Appendix B.
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—6— ST approach

— @ - SL approach
=8 - SL approach from “s” and “q” trajectory

/ Principal orientations

o slip line

Figure 3. Stress orientations found by the SL method propagated from stress trajectories of the ST
method (top). For comparison, the slip lines grid from the starting boundary is also shown. Correspond-

ing fields of the mean stresses (bottom).

An application of this method for the Mohr-Coulomb cri-
terion is presented in|[Figure 5| The slip lines grid in[Figure 2|
(top) is considered and the legs of the characteristic triangle
are taken as the starting boundaries. The solution proceeds
layer by layer until the nodal points of the ST approach
(dashed lines with crosses), and the stresses and orientations
at them, are found.

In we also provide an overview of all the grids
obtained by the approaches at hand. It can be observed that
the stress trajectories built for different starting boundaries
are in perfect correlation. The same applies for the slip lines.
A numerical comparison of the P- and 0-fields at the nodal
points of the different approaches has also been performed
and the maximum absolute errors are given in [Table 2

The results are in good agreement in the areas where the
identified stress trajectories and the slip lines grids overlap.

4. Modeling of the Stress Fields in Regions
of the Earth’s Crust

In this section the developed approaches are applied to the
problem of stress reconstruction in some areas of the Earth’s
crust. Three particular regions are considered and investi-

gated in view of the WSM data. As there is no information
available regarding the stress magnitudes, the boundary con-
ditions are posed in terms of # (WSM database release 2008
is considered, [Heidbach et al., ) and 0,0. Moreover,

Figure 4. Field of slip lines and stress trajectories passing
through the same nodal points.
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T@ A

(b)

Figure 5. (a) The ST method propagated from the slip lines of the SL method. (b) Overview of all
reconstructed grids. (¢) Map of mean stresses obtained from the starting boundary and the slip line grid.
(d) Map of mean stresses obtained from the starting boundary and the stress trajectory grid.

only the data of quality A-C (see details of data classifica-
tion in [Zoback and Zoback,[1991]) are taken into account.
Computational areas chosen for the analysis are the Alps
region, a region in Tibet (both parts of the Eurasian plate)
and a region in Eastern Turkey (a part of the Anatolian and
Arabian plate). Lithospheric body forces, from which the
stresses arise, are a consequence of high topography of these
regions, as each of these areas belongs to a mountain massif.
Therefore, the methods in plasticity can be considered as
more adequate. Moreover, following the research of Ghosh

Table 2. Results of comparison of the ST-SL alternations
method

n AP, x10 AB, ° x 10?

5 14.4 7.1

10 13.0 10.7

15 9.6 7.9
20 9.2 6.7
25 8.8 5.9
30 8.5 5.5
35 8.4 5.8
40 8.1 5.5

et al. , these areas represent the zones of strike-slip
type of faulting which are dominated by plastic deformation
[Fossen, [2010]. Characteristic sizes of all these areas are
significantly less than the radius of the Earth, therefore they
can be considered in plane assumption.

Application of the method of alternation is performed for
straight starting boundaries. This simplification is not vital
but rather used because of the nature of the data (which
are scattered in the whole region). An averaging method
is introduced to transform the discrete data into continuous
boundary conditions. For this purpose the moving window
method is used. Thus, an elongated rectangle is introduced
at the vicinity of the starting line and all WSM data falling
within this rectangle are selected. Consequently, the mean of
the orientations inside the area is associated with the bound-
ary condition § and the standard deviation is associated with
the normal derivative of the principal orientations, 0,6.

The numerical calculation begins with the identification
of the stresses along the starting boundary from and
(A.4). Here, the strength parameter C' is chosen to be equal
to unity during the whole analysis whereas p varies between
5° and 40° in order to achieve the best correlation of the
results. The free parameter in ; namely the mean stress
P;j i, can be chosen arbitrarily (in the calculations the value
is set to unity).

Solution proceeds in accordance with relationships (A.2)—
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Figure 6. Topographic map of the Swiss Alps with the WSM data (CASMO map generated by the
WSM website, [Heidbach et al., [2008]). Starting boundary is defined by end points A: N48°~E7.5°and

B: N47.6°—E9.3°.

till the stress trajectory grid is built. Using the idea of
alternations, the identified legs of the stress trajectories tri-
angle are taken as starting boundaries for the SL approach.
Next, using the slip lines reconstructed by the SL approach,
the stress field is extended by the ST approach as described
in sub-section 3.2 (similarly to. The results of the
calculations for different regions are presented in the follow-
ing sub-sections.

4.1. Alps region — 6°E—10°E and 46°N—49°N

Based on observations available for the western European
stress province, the stress orientations are characterized by
almost homogeneous NW-SE inclinations [Ahorner,
Miiller et al., [1997]. This feature of the West European
stress field is however locally disturbed by the Alpine geo-
logic structure [Grinthal and Stromeyer, Mdiller et al.,
. We focus on the Swiss Alps region with the computa-
tion domain bounded by the lakes Konstanz and Geneva on
the north-east and north-west, respectively and lake Mag-
giore on the south (see.

The solution obtained for this region by the ST-SL alter-
nation method is shown in Boundary conditions
identified along the starting boundary (specified along the
full thick line in are 0,0 = 109° and 9,,0,,0 = 0.46.
The results of the analysis are shown for the friction angle
of u=15°.

The stress trajectories grid, presented by dots in[Figure 7|
(top, left), is built from the starting boundary. Nodes of the
slip lines grid are presented by circles. It can be noted that
the starting boundaries of the SL approach coincide with the
stress trajectories. Finally, information along the slip lines
is used to extend the solution area once more. These grids

are presented by the nodes in the form of small triangles.
The map of the mean stresses is shown in (bottom,
left). The pictures on the right t two in-
serts that show the predicted and observed stress orientation

data used for the analysis of the accuracy in the stress field
reconstruction.

4.2. Tibet Region — 75°E-95°E and 24°N—44°N

The extensive Himalayan-Tibet dataset of the WSM
project (see shows that the region of interest is
dominated by a N—S oriented stress field in the centre of Ti-
betan plateau [Chamlagain and Hayashi, with a slight
eastern trend south of the Tarim basin. These observations
agree well with the GPE-prediction based models of Ghosh
et al. [2009] and the quasi-rigid block-model based on GPS
data reported in Thatcher . We focus on the region
located between the Tarim basin on the north and the Hi-
malayas on the south.

The reconstructed grids of slip lines and stress trajecto-
ries and the identified stress distribution for this region are
shown in Here, the same style as in the preced-
ing sub-section is adopted for marking the results obtained
by different methods. The results are shown for u = 25°,
the boundary conditions found from the data analysis are
9]‘,0 = 79.890 and 6n9j,0 = 0.08.

4.3. Eastern Anatolia — 33°E-51°E and 31°N-45°N

The Eastern Anatolia region represents an example of a
continental collision zone [Keskin, [2007]. The analysed area
lies in eastern part of the Anatolian plate and extends to
the Arabian plate. The former, being surrounded by the

8 of 15



ES4001

HADERKA AND GALYBIN: PLASTIC STRESS FIELD RECONSTRUCTION

=—— ST approach = @& = ST, approach / Principal orientations

ey =1.40% -

dey =20.27%

\

Figure 7. The grids of slip lines and stress trajectories and the map of normalized mean stress for the
Alps region (left). Visual and numerical comparison of the reconstructed and observed orientations 6 in
two areas (right). Detail I. identifies a relative error of de; = 1.40% and in detail II. it is de2 = 20.27%.
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Figure 8. Topographic map of the Tibetan plateau with the WSM data (CASMO map generated by
the WSM website, [Heidbach et al.,[2008]). Starting boundary is defined by end points A: N37°-E78°and
B: N86°-E28°.
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Figure 9.

The grids of slip lines and stress trajectories and the map of normalized mean stress for the

region in Tibet (left). Visual and numerical comparison of the reconstructed and observed orientations 6
in two areas (right). Detail I. identifies a relative error of de1 = 13.5% and in detail II. it is dex = 27.3%.

Furasian, African and Arabian plate, has very active tecton-
ics. Stress regime in the study area has a strike-slip charac-
ter. Results by Yilmaz et al. predict ENE-trending of
stress in Eastern Anatolia, whereas, the Five Domain model
by Dwivedi and Hayashi gives the principal stresses
trending NE to E.

The starting boundary ranges from the Anatolian-Arabic-
African triple junction up to the eastern termination of the
Northeast Anatolian Fault Zone and it runs alongside the
Eastern Anatolian Fault Zone (Figure 10). For the third
investigated region the analysis of the data gave the following
conditions along the starting line, 650 = 82.33° and 0,0;,0 =
0.1. The results are shown in [Figure T1|for the friction angle

of 27°. The marker style is adopted from the sub-section 4.1.

As evident from the figures in this example, in some re-
gions the results correlate to a good degree of accuracy
whereas in others the accuracy of the predicted orienta-
tions is fair. However, it follows directly from the nature
of the observed orientations that a good correlation cannot
be achieved in this area because of the randomness present
in the data. One way to improve the certainty of the re-
sults is to use the data of the highest quality (WSM rank
A) in this region. However, it has to be noted, that the in-
accuracies can also stem from the choice of the constitutive
law (rheology), adoption of the 2D model or other, including
geological, effects.
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Figure 10. Topographic map of the Eastern Anatolian region with the WSM data (CASMO map
generated by the WSM website, [Heidbach et al.,[2008]). Starting boundary is defined by end points A:
N37°-E36°and B: N41°-E45°.
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Figure 11. The grids of slip lines and stress trajectories and the map of normalized mean stress for the
region in Eastern Anatolia and Arabic plate (left). Visual and numerical comparison of the reconstructed
and observed orientations 6 in two areas (right). Detail I. identifies a relative error of de; = 41.4% and
in detail II. it is des = 1.05%.

11 of 15



ES4001

A y S
j+Lk

dj+2.k ’
‘\

7 ~ 7

Dk Zjsk+

4

HADERKA AND GALYBIN: PLASTIC STRESS FIELD RECONSTRUCTION

ES4001

Zjk X

Figure 12. Segments of straight lines approximating the originally curvilinear stress trajectories (left).
Approximated and real intersection of the stress trajectories (right).

5. Concluding Remarks

Applicability of the ST-SL alternation method, developed
for the limiting equilibrium analysis of two-dimensional plas-
tic bodies, has been studied to address the geomechani-
cal problem of stress reconstruction in the Earth’s crust.
Namely, identification of stress fields in mountain regions
of the crust has been of the main concern. Discrete data
on stress orientations taken from the WSM database have
been utilized for numerical analysis, the stress magnitudes
remained unknown. The data have been treated by a spe-
cially developed procedure to obtain continuous functions
of the orientations of the principal stress and their normal
derivatives along the starting boundary. As a result, the
proposed numerical procedure allowed for the unique identi-
fication of the stress trajectories grid (or the slip lines grid).
The mean stresses are found in the normalized form such
that the normalization parameter remains unknown, which
emphasizes the non-uniqueness of the stress reconstruction
problem based on stress orientations alone.

The numerical scheme has been developed for the Mohr-
Coulomb criterion which is widely accepted for modeling of
stress fields in plastic regions of the lithosphere. The cri-
terion contains two parameters controlling the stress fields;
the angle of internal friction and cohesion. The latter has
been used for normalization of stresses, while the former can
be estimated from the best fit of the predicted stress orien-
tations and the external data, i.e. for data that have not
been involved in the identification of the boundary condi-
tions by the moving window method. It should be noted
that the Mohr-Coulomb yield condition does not limit the
ST approach and the ST-SL alternations method. It has
been proved in previous studies that some other criteria are
also admissible.

The method has been applied to reconstruct plastic stress
fields in three different regions of the Earth’s crust. In par-
ticular, the best-fit model of the Swiss Alps region predicts
the NNW stress orientation with a NW trending near Lake

Maggiore. For the vast part of the Tibetan plateau, the
maximum compressive stresses are oriented in North direc-
tion with the exception of the south-eastern part where a
NNW trend has been observed. Stress orientations in the
eastern Anatolia and Arabian plate show NNE to NE direc-
tions. In general, in all the regions analysed, the numerical
modeling satisfactorily predicts the data on the WSM stress
indicators (calculated relative errors are within the expected
errors inherent in the data). However, the predictions are
less accurate for the north-eastern Anatolian region which
can be explained by the high level of WSM data scattering.

The analysis performed on the basis of plastic rheology
has shown satisfactory agreement between the predicted and
observed stress orientations in some mountain regions of the
lithosphere. This justifies the existing opinion [Fossen,
that plastic deformations are dominant in geodynamics of
the regions of strike-slip type of faulting. In comparison with
the conventional methods the applied numerical procedure
leads to mechanically justified solutions within significantly
large areas (in comparison with the conventional methods,
SL formulations, of two dimensional plasticity). It is impor-
tant that the method allows for the reconstruction of the
fields of maximum shear stresses and mean stresses, which
cannot be obtained by any pure interpolation or statistical
methods.

Acknowledgments. The work is partly supported by the
RFBR Grant 11-05-00970.

Appendix A: Numerical Solution by the ST
Approach

Nodal points of the solution are sought as the intersections

of two different families s; and gj41,1 (see [Figure 12| left
for notations) which emanate from two neighboring nodal
points on the boundary. The unknown node z; x41 near the
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vicinity of the boundary is sought as:
Zi k1 = 2k + 05 00H

Zjk+1 = Zj+1,k T ié;‘fl’keiej“*k (A1)
The fact that both relationships in (A.1)) should specify the
same nodal point allows for the determination of the un-
known distances 5;?,2, (53(.1)1’ . as follows:

(s)
51',16 1
=
5@ cos(0j,k — 0j11,%)
i1k
cosOjy1k  Sinbji1k Re(zj41,6 — 2j,k)

(A.2)

Sinej,k —COSQj,k Im(szrl,k - Zj,k)

The accuracy of the utilized piecewise linear approxima-
tion is illustrated in (right). The mean stresses
and the principal directions at the new nodal points z; x41
are calculated by means of the Taylor’s expansion as:

Pj k41 Pjx 0s Pk
= 46t
J.k

0j,k

(A.3)

) k41 050;,k

Derivatives of the order higher than one are neglected.
Derivational terms on the right-hand side of are un-
known and are yet to be determined. Based on the bound-
ary conditions, posed in terms of orientations € and their
normal derivatives 0,6, the numerical procedure utilizes the
transformation formulas between the directional derivatives
along the stress trajectories (s,q) and the tangential and
normal directions to a contour (¢,n). DEE () in view of
this transformation (DEE in terms of normal and tangential
derivatives) can be written in the form:

0 Py ajkcoséik  ajksing;k
= X
OnPj i —bjksingjr  bjkcos;k
+siné;r  —cosék 0405,k
(A.4)
—cosje  —singjk Onbj,k
or equivalently:
. —1
OnPj i sin&; —cos&jk
= X
Onbjik —bjrcosik  ajrsin;k
—ajkcosie  singk 0¢Pj i
(A.5)
bjksing;r  —cos&jk Ot Pj s

It should be noted that the tangential derivatives in the
equations above can be expressed via the values of 6 and
P on the k-th layer by the forward finite differences:

0t Pj i Piv1k — Pjk

1

 Jzirk — 2kl

(A.6)

0:0; k Oit1,6 — Ok
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Notations aj i, bk refer to the values at the node z; 5 of
the corresponding coefficients introduced in (10). It can be
readily observed that by substitution of the second equation
in into the tangential and normal derivatives of
P can be found directly. These derivational terms (along the
tangent and the normal) specify the directional derivatives
in the Taylor’s expansion . As the result, the unknown
stress field P is found in the normalized form such that the
initial value of P; remains unknown.

Since (A.4)) and the boundary conditions now allow for
recalculation of the stresses from along the start-
ing boundary the solution further continues with equations
(A.5) and (where, the unknown normal derivatives are
sought as functions of the known values along the boundary).

One obvious limitation of the method is the existence of
the inverse matrix that becomes singular if its determinant
vanishes, which yields:

ajkbjr =0 cosp =0 (A.7)

in (A.4)) or:

— bj,k — (aj,k + ij@) Ccos 2§j,k =0 (A8)

aj,k

in (A.5). Note, that the restriction in (A.7) implies non-
physical values for the friction angle that usually varies in

the range (0, 7/4).

Appendix B: Numerical Analysis — Starting
From a Slip Line

The finite difference form of equation @ written with
respect to the point z; 5 and along trajectories s; x, ¢j+1,k—1,
yields:

Pitikt1 — Pk | ik — 161

ajk =0
Asjk Agjy1,k—1 ’
Pix = Pitik-1 | Ojv1,641 — 05k
b, —0. (B
Agjy1,k—1 AS;k
Here, Asjr = |zj+1,k+1 — 25,k and Agjr16-1 = |25k —

Zj+1,k—1| determine the distances between the given nodes
(see |[Figure 4)). Similarly this scheme can be applied for the
trajectories s;j k-1, ¢j+1,k at the point 241 which gives:

Ojer1 — 041,k
Agjr1k

Pivis — Pjr—1
Asj,k—l

ajt1,k =0

Oj+1.6 =05 k-1
Asjp—1

Pjkt1 — Pivik

=0
Agjt1,k

b1k (B.2)
Because of the piecewise linear approximation adopted for
the ST approach, some errors are introduced. The averages
of the solutions in (B.1]) and (B.2) at the node z;11,x+1 have
been used to improve accuracy.
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