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Global warming in mathematical model of multifractal
dynamics
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In this work the variations of global temperature that have occurred in the period from
1860 up to now are analyzed on the basis of the concept of multifractal dynamics. The
multifractal curve describing dynamics of global temperature for this period of time has
the following values of fractal dimensions over 5 periods lasting for 30–31 years each,
accordingly: D1 = 1.140;D2 = 1.166;D3 = 1.141;D4 = 1.203;D5 = 1.183. Such relatively
small values of fractal dimensions are indicative of essentially determined character of
processes responsible for variations of global temperature. Our predictive estimates provide
0.5◦C increase in global temperature by 2072, thereby confirming maintenance of the
tendency of global warming in the near future. KEYWORDS: Fractal, multifractal dynamics,

global warming, climate, global temperature.
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Introduction

The meteorological data for the period from 1850 till now,
let Jones and Wigley [1990] to deduce that the planet climate
had warmed, and this change in temperature is 0.5◦C. In
the nature of things, the question now arises of whether this
conclusion is true. The more intricate question is the one of
possibility of further warming. There are a lot of facts which
undoubtedly have an effect on measurement data thereby
causing an apparent warming effect.

In the circumstances concerned, the mathematical climate
modeling assumes great importance.

There are no any models in view which describe with the
specified degree of accuracy complex atmospheric and ocean
physics, which can prove that greenhouse gas emission essen-
tially affects the Earth’s climate fluctuation. In whole, tem-
perature increase is in keeping with the previous industrial
revolution in consequence of which it has been established
that the concentration of carbon dioxide and other green-
house gases was essentially increased in the atmosphere.

About fifty years ago the attempts to determine the Earth
temperature trends were taken. But initially, it was impos-
sible because of the fewness of the view points. Since 1850
all National Weather Services have been concordantly col-
lecting and maintaining temperature data. Gradually, the
weather surveillance network extended over the world, and
by the end of 1950 it covered Antarctica. However, even
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at the present time in some regions especially in the ocean
areas having rugged depth contour, measurements are taken
seldom enough. But the partial covering doesn’t constitute a
serious problem; it is compensated by satellite observations.

Notwithstanding the fact that the observational data de-
note the temperature rise over the last 120 years, there are
a lot of questions to decide. That is, how considerable the
warming trend is? What is the reason for it? Is it connected
with the greenhouse effect?

The key factors affecting the average
annual temperature variations

The majority of year to year variations of climate are con-
nected with the internal factors including the atmosphere
circulation change. For longer spaces of 2 - 8 years the cli-
mate variations are generally determined from the vertical
convection current changes in the ocean and from the ocean
surface temperature. The slow temperature response of the
oceans results in considerable climatic variations for decades
and for a longer time [Jones et al., 1990]. In climate mod-
eling the temperature inertia effect of the oceans is taken
into consideration as a random noise representing observ-
able high-frequency year to year variations of average global
temperature.

About a half value of warming observed last century we
can assign to natural internal variations as throughout the
duration of this century the resulting low-frequency vari-
ations of temperature have reached 0.2–0.3◦C. There is a
counter point of view such as the warming value was as high
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Figure 1. Graph of yearly average temperature variations over the period of 30 years.

as 0.7–0.8◦C, but it was considerably reduced by decreas-
ing of temperature because of internal factors[Jones et al.,
1990].

There are various external factors affecting the global cli-
mate. One of these factors is a solar fluctuation. Satel-
lite observations show the solar radiant flux varies within
0.1% over the 11-year solar cycle. It corresponds to alter-
ing the radiation value falling into the stratosphere within
0.24 W m−2.

The climate doesn’t respond these changes immediately.
The temperature inertia of the oceans prevents the climate
from responding quickly. At that, the actual temperature
variations will not exceed 0.03◦C. For longer time intervals
the solar radiation value could alter considerably. The inter-
val between mass advances of glaciers correlates to extended
periods of low activity of the Sun such as Maunder’s, Istrer’s,
and Wolff’s minimums in 1645–1715, 1450–1550, and 1280–
1350, correspondingly.

Anyway, there have not been founded any extended peri-
ods of anomalous solar activity since the event of Maunder’s
minimum. At the present time the effect of solar radiation
on the year to year variations of average global temperature
on a scale of a century is indefinite but subject to be solved
by means of extant and projected satellite measurements.

As for the internal factors, before everything else, we can
point out a volcanic activity as a factor affecting the climate.
The volcanic explosions resulting in injection of great quan-
tity of dust and sulfates into the stratosphere can cause a
substantial fall of temperature in minimal time. In several
months after eruption, the temperature condition becomes
having repercussions. This temperature effect at the mea-
sured level can be observed within the space of two years.
For the time being, it is difficult to draw precise conclu-

sions of the effect of volcanic activity on long-period climatic
changes.

As was mentioned above the greenhouse effect can play a
heavy role in the case of global warming. There is solid data
for greenhouse gas concentration throughout the past few
decades. Since 1765 the ambient carbon dioxide concentra-
tion has increased from 280×10−9 to 350×10−9, the methane
concentration – from 800 × 10−12 to 1700 × 10−12, and the
nitrogen oxide concentration has increased from 285× 10−9

to 310× 10−9. The chlorfluorcarbon concentration for some
time past (about 40 years), has increased from zero value to
10−12 [Jones et al., 1990].

The estimates show that change in greenhouse gas con-
centration results in change in radiation balance equivalent
to solar radiation enhancement by 1%. Consequently, the el-
evated concentration of greenhouse gases can result in global
temperature increase by 0.8–2.6◦C. Yet by virtue of the tem-
perature inertia of the ocean, the global warming effect is
decaying considerably. It shows the value of 0.5–1.3◦C. Con-
sequently, the observed warming of 0.5◦C is at the limit of
compliance with a possible greenhouse gas effect [Jones et
al., 1990].

Many uncertainties in diagnosis of causes of warming
can’t be eliminated by virtue of the fact that there are no
necessary archival data. It is impossible to give an unam-
biguous interpretation to global warming over the past cen-
tury.

The resolution of available uncertainty is possible by
means of enhancement of the models valuating the green-
house effect contribution and giving more correct prediction
of variations of climate which are to come.

The work objective is formulation of a mathematical
model independent of the particular composition of the sys-
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Figure 2. Graph of yearly average temperature variations over the period of 60 years.

tem responsible for global temperature variations. This
model is based on the multifractal dynamics model [Man-
delbrot, 1982], [Kudinov et al., 2011] offering an opportunity
to describe the processes with the parameter time depen-
dency reported in terms of multifractal curves.

Self-similarity of global temperature
variations

The first person who turned his attention to a self-similar
behavior pattern of dynamic characteristics of systems was
Benoit Mandelbrot [1982], an originator of fractals.

Mandelbrot found out that arbitrary external cotton price
variations can follow the hidden time-dependant mathemat-
ical order which can’t be described by standard curves.

Benoit Mandelbrot addressed himself to the question of
cotton price statistics observed over a long period of time
– there was reliable data on these prices for more than a
century. The price variations throughout the day seemed
to be unpredictable but the computer analysis could trace
the price tendency. The analysis developed a graph showing
the price variations over the day certain superimposed on a
longer period of time. Mandelbrot traced the symmetry in
long-period and short-period price variations. This finding
turned out to be a complete unexpectedness for economists
who had used mathematics for calculations only. And Man-
delbrot himself was surprised at his own findings. Later it
was found that he intuitively had begun devising a recursive
(fractal) technique in the economic field. The more specific
technical term for similarity between the parts and the whole
is “self-affinity”. This term is connected with the big-name

concept of fractality called “self-similarity” in which every
detail of a picture is scaled down or enlarged in the equal
ratio.

We shall illustrate a self-similar rate of yearly average
global temperature curves graphically.

Let us construct the global temperature history graphs
covering the periods of 30 years (1850–1880), of 60 years
(1850–1910), and of 155 years (1850–2005) by applying the
data from [Brohan et al., 2006]. These graphs are given in
Figure 1, Figure 2, and Figure 3.

As is clear from the figures, the rates of the graphs do
not change in spite of the fact that every time the scale is
changing about twice-three times as much.

Mathematical model of multifractal
dynamics and the catastrophes of this
model

We shall summarize the elements of multifractal dynamics
[Kudinov et al., 2011].

Definition: Let y(t) be a multifractal curve describing
the dynamics of the value we are interested in and having
the defined fractal dimension value of Di on the intervals of
time Ti (i = 1, 2, 3 . . . n).

If the rate Xi of the linear trend yi(t) approximating this
function on the interval Ti with the required degree of accu-
racy, is only depends on Di then the given type of dynamics
we will designate as multifractal.

In this case in [Kudinov et al., 2011] we offer the following
approach: the multifractal process dynamics on the intervals
Ti (t0i < t < t0i+1, Ti = t0i+1− t0i) can be divided into two
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Figure 3. Graph of yearly average temperature variations over the period of 155 years.

components by means of using the idea of the linear trend

yi(t) = yi(t) + ỹi(t), (1)

where yi(t) is a linear trend of the process varying with time
smoothly; ỹi(t)(t) - are fast oscillations with respect to a
trend. It is suggested that |yi(t)| � |ỹi(t)(t)|, and the curve
yi(t) is a multifractal one. The trend line yi(t) has a unit
fractal dimension, and ỹi(t) has a fractal dimension of Di.

As the measure of error for the model we will take a value
of ∆i = max |ỹi(t)| on the run under review Di. Over the
whole run under review the error common value is as ∆ =
max∆i, i = 1 . . . n.

It is suggested in the multifractal dynamics model that
the tangent of the linear trend angle y(t) is a function of the
fractal dimension D

ỹi(t) = Xi(Di)(t− t0i).

In our situation, under the character of y(t) we can see a
global average annual temperature.

The significant instant of the approach [Kudinov et al.,
2011] is a possibility of describing of catastrophes within its
limits.

In the segments of the multifractal curve with a constant
value of D the slope ratio of the linear trend (the average
velocity of the corresponding process) according to [Kudinov
et al., 2011], is a function of D and to be determined from
the solution of the cubic equation

A(D)X +BkX
3 = η. (2)

It’s conveniently to choose a scale enabling to meet the
condition |X| � 1.. The parameter η describes an effective
action of external factors on the system under investigation.

For the function A(D), let us choose the following analytic
representation [Kudinov et al., 2011]

A (D) =


(D0 −D)−1 if 1 ≤ D ≤ D0,

(D0 −Dk)−1(D0 −D)−1(D −Dk)
if D0 ≤ D ≤ 2

. (3)

The formula (3) offers to describe the variety of behaviors
of the linear trend X(D).

The model parameters D0, Dk, Bk and η are to be se-
lected from the best possible fit with experimental results.

In case that D < Dk, we can neglect Bk member; in this
case the following linear approximation is true

X = η(D0 −D). (4)

In the range of values of D the equation (2) has one real
root determined by formula (2).

When D goes to Dk, the situation is altering essentially,
and we can’t neglect Bk member in (2) in the circumstances.

The equation (2) can be obtained as extreme points of
the Fractal Determining Function (FDF):

V (X) =
1

4
X4 +

a

2
X2 + bX (5)

The factor 1
4

is chosen for reasons of convenience. The
control parameters in (5) will be a and b, correspondingly.

The extreme points of (5) are to be defined from the fol-
lowing conditions: ∂V

∂X
= 0. As a result, we will obtain the

following equation:

X3 + aX + b = 0 (6)

The critical point Xk corresponds to a = 0. In case of
b 6= 0, the analytic view of Xk(a, b) is given in [Kudinov et
al., 2009].
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Figure 4. Graph of yearly average temperature variations over the period from 1850 to 2005.

In (5) the catastrophe germ is equal to (1/4)X4, and this
implies that the catastrophe of A3 type exists in this model,
if a = 0, b = 0. Moreover, if b parameter depends on η(b =
−η/Bk) parameter that a will be a complicated function of
the parameters D0, Dk, Bk , D of the fractal model. From
(3) we can obtain

a(D) =


B−1

k (D0 −D)−1 if 1 ≤ D ≤ D0

B−1
k (D0 −Dk)−1(D0 −D)−1(D −Dk)

if D0 ≤ D ≤ 2
. (7)

From (7) this implies that the catastrophe of A3 takes place
if D = Dk and η= 0. In this case the separatrix equation
has the following view:

η= ± 2√
27

(−A(D)

Bk
)

3
2

(8)

Global temperature analysis in the
multifractal dynamics model with
consideration for a linear trend

The data observed for past 160 years show [Brohan et al.,
2006] that the global temperature ToC oscillates near the
equilibrium value. On this basis, let us make a replacement

T = u+ T0.

The global temperature curve u showing the temperature
from 1850 is given in Figure 4, on a basis of data from [Bro-
han et al., 2006].

Based on the multifractal dynamics model [Kudinov et
al., 2011], let us classify the total time interval (160 years)
under 5 segments Ti (i = 1, 2, 3, 4, 5), and perform a linear
trend approximation of u u in each of them, i.e.

ui = u0i +Xi(Di)(t− t0i) + ũi = ui + ũi (9)

Function Xi(Di) should satisfy the equation (2). The value
∆i= max |ũi| is an approximation error.

The computational results of ∆i, Di, Xi are given in
Table 1, and the linear trend approximation is shown in
Figure 5.

The experimental results are in keeping with the multi-
fractal dynamics model [Kudinov et al., 2011] well enough
if for the first three periods i = 1, 2, 3 there have been
chosen D0=1.157 and η = 0.862 ◦C yr−1, and over the last
two periods i = 5, 6 there have been chosen D0=1.201 and
η = 0.995 ◦C yr−1. The difference can be noticeable for X1

only and it will be approximately 30%. This may be due to
all manner of inaccuracies of global temperature measure-
ments in the initial period of instrumental measurements.
Some increase of η factor in 4 and 5 periods, in comparison
with 1, 2, and 3 periods is valid, and this event characterizes
the Sun activity and the dynamic activity of the atmosphere

Table 1.

i 1 2 3 4 5

Ti, year 30 31 30 31 30

Xi,
oC

year
0,0089 -0,0081 0,0135 -0,0016 0,0183

Di 1,140 1,166 1,141 1,203 1,183

∆i 0,2624 0,229 0,1987 0,2281 0,1976
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Figure 5. Graph of linear trend approximation of yearly average temperature variations.

of the Earth providing for redistribution of resulting solar
energy.

From the existing experimental results, the critical value
of Dk whereby A(Dk) = 0 cannot be defined. Its value is
assumed to be known like in the financial processes [Kudinov
et al., 2009] belonging to 1.67 ≤ Dk ≤ 1.75 interval. By
virtue of the fact that all Di values are notably less than
Dk, we can suggest there should not be any catastrophes
in the global temperature dynamics in accordance with the
multifractal dynamics model. There is no reason to wait for
their appearance now.

The sufficiently low values of Di ≤ 1.201 fractal dimen-
sions, in comparison with Gaussian value of 1.5 suggest
the essentially determined nature of processes responsible
for the global temperature dynamics. The rise of η factor,
∆η = 0.133 ◦C yr−1, in 1950 in our model counts in favor
of a global warming trend at the present day.

A slight growth of D0 from 1.157 to 1.201 over the same
period, gives evidence of a slight increase of chaotization of
global temperature.

Considering that the global temperature dynamics pro-
cess is an oscillating one, in the adjacent time intervals Ti

the velocity values of Xi linear trends change sign, in other
words, there is good reason to believe that for the next in-
terval T6 ≈ 31 year we will have X6 < 0. This points to the
possibility of reduction of the global temperature trend in
this period. The estimated specific value of reduction rate
of u we will present in the following section.

Table 2.

i 1 2 3 4 5

X,
oC

year
-0,017 0,021 -0,015 0,020 -0,017

Global temperature analysis in the
multifractal dynamics model with
consideration for a nonlinear trend

This section integrates the results obtained in earlier sec-
tions for a nonlinear trend. This will permit the trend func-
tion to be not only continuous throughout the observation
interval but a differentiable one. It should be done in such
a way that all primary virtues of the linear trend to be pre-
served. For that purpose we offer to change (9) in the fol-
lowing manner

ui = u0i +Xi(Di)(t− t0i)+

+
X

(nl)
i (Di, Di+1)

7T 6
i

· (t− t0i)7 + ũi = ui + ũi
. (10)

It follows from (10) that almost in all intervals Ti the
values of (9) and (10) are close except for the field near t0i+1.
In this field the nonlinear seventh degree term is significant
enough and allows to perform a smooth junction from Xi

slope ratio to Xi+1. Let the values of Xi factors be the same
that in the preceding section in the case of a linear trend.
u0i and X

(nl)
i factors will be calculated from the condition

for continuity and smoothness, ui. From this the following
conditions follow

u0i+1 = u0i +XiTi + 1
7
·X(nl)

i Ti

Xi+1 = Xi +X
(nl)
i

. (11)

In this respect the values of u0i and X
(nl)
i are to be de-

termined from best possible fit with the experimental results
according to the least square method. The resultant numeric
values of X

(nl)
i are shown in Table 2.
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Figure 6. Graph of nonlinear trend approximation of yearly average temperature variations.

The nonlinear trend approximation of the experimental
results (10) is given in Figure 6.

Values X
(nl)
i have turned out to be the values of the same

order as the values of the linear trend factors Xi, including
the sign-changing behavior. This points to the trend behav-
ior has been changing since all time intervals Ti started.

Forecast for global temperature linear
trend dynamics u.

The periods of global temperature linear trend variations
Ti have turned out to be the values of the order of 30 – 31
years. This value is close to the tripled period of 11-year
period of solar activity. There is no any reliable proof of
relation of these processes in view.

In this model the forecast periods i = 6, 7 must have
the following values: T6=31 years, T7=30 years. On the
supposition of X6 = X4 and X7 = X5, which is equivalent
of maintenance of a trend for last two periods i = 4, 5,
we find out ∆u6 ≈ −0.0016 · 31◦C =-0.05◦C and ∆u7 ≈
0.0183 · 30◦C =0.55◦C. By summing the resultant values up
we find out ∆u6,7 = 0.50◦C, that is in 61 years the average
global temperature should increase by 0.50◦C. This is an
added reason for the global warming trend.

A somewhat different forecast follows from the nonlinear
trend model. According to this model, X6 = X5 + X

(nl)
5 =

0.0013◦C, and thus we have ∆u6 = 0.040◦C. Instead of tem-
perature drop of 0.05◦C, we have a slight 0.04◦C growth for
average global temperature in 31 years or in 2042.

Conclusion

The analysis and the forecast for yearly average tempera-
ture change we have carried out within the framework of the
multifractal dynamics, show that the global warming trend
should continue for the coming 60 years. Over this period the
global temperature linear trend should rise by about 0.5◦C.
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