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The mean-field dynamo model in geodynamo
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The 2D Parker’s mean-field dynamo equations with a various distributions of the 𝛼- and
𝜔-effects are considered. We show that smooth profiles of 𝛼 and 𝜔 can produce dipole
configuration of the magnetic field with the realistic magnetic energy spectrum. We
emphasize that fluctuating 𝛼-effect leads to increase of the magnetic energy at the small
scales, breaking the dipole configuration of the field. The considered geostrophic profiles of
𝛼 and 𝜔 correspond to the small-scale polarwards/equatorwards travelling waves with the
small dipole field contribution. The same result is observed for the dynamic form of the
𝛼-quenching, where two branches of the weak and strong solution coexist.
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1. Introduction

The last decades demonstrated impressive success of the
three-dimensional geodynamo modeling. It appears that
combination of the compositional and thermal convection
can drive the dynamo mechanism, transforming the heat and
kinetic energies to the energy of the magnetic field. To the
moment, the various 3D geodynamo models can reproduce
the main features of the observable geomagnetic field: the
dipole structure, reversals and excursions of the field, as well
as the regimes without reversals, which correspond to the
chrons, well known in palaeomagnetism [Roberts and King,
2013].

However analysis of the data simulated in the 3D models
sometimes is not easier task rather the analysis of the ob-
servations itself. Moreover, due to specific of the 3D model-
ing, which requires the detailed resolution of the small-scaled
turbulence, it appears impossible to reproduce the long-time
sequences of the magnetic field evolution, compared with the
paleo- and archemagnetic observations. Note that from the
point of view of the observer, information that can be de-
rived from the bulk of 3D data in the models, is excessive,
because it can not be verified by the observations with the
pure resolution.

The tendency of the geodynamo development only proves
this statement: to reach the desired parameter regimes of the
magnetohydrodynamic (MHD) process in the turbulent liq-
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uid core one needs at least 1024 grid points for the data sim-
ulations that corresponds to the Reynolds number Re = 109.
In the same moment, the direct observations of the geomag-
netic field, limited by the screening of the low-conductive
mantle, are bounded with the first decade of the spherical
functions (more precisely 𝑛 ≤ 13) [Finlay et al., 2010]. It
means that scale to scale comparison of 3D simulations with
observations is only possible in the negligible part of the spa-
tial scales, involved into the simulations. On the other hand,
the time scales in 3D models are order of magnitude shorter
than the geological times.

This discrepancy results in renovation of the quite old
mean field approach in geodynamo, which is able to re-
produce behavior of the large-scale magnetic field. In its
turn, simulated large-scale magnetic field already can be eas-
ily compared with the observations. Due to reduction of
the 3D basic equations to the axi-symmetric form, this ap-
proach permits to simulate long-term evolution of the mag-
netic field, compared with the palaeomagnetic records.

The mean-field theory was developed by the two inde-
pendent scientific groups. The exhaustive theoretical back-
ground was elaborated in the German group [Krause and
Rädler, 1980], mostly concentrated on the astrophysical ap-
plications. The main result of the theory is the description of
the large-scale magnetic field generation with the conductive
turbulent medium and velocity shear. The back-reaction (or
quenching) of the magnetic field onto the flow was intro-
duced by the damping of the turbulence.

The other, geophysical approach, developed by the Rus-
sian scientist S. I. Braginsky, included influence of the mag-
netic field onto the large-scale velocity field. The famous
geodynamo Z-model could reproduce the dipole structure of
the magnetic field and made a remarkable insight into the
physics of the liquid core [Braginsky, 1975]. One of the cru-
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cial points of this model is existence of the strong magnetic
wind, which corresponds to the large magnetic field counter-
part to the azimuthal force in the Navier-Stokes equation.
That was the reason of the too strong toroidal magnetic field,
compared to the poloidal part.

Only latter it was recognised that influence of the mag-
netic field on the flow is a very delicate process [Branden-
burg and Subramanian, 2005; Hejda and Reshetnyak, 2010]:
magnetic field does not change the cyclonic form of the flow
essentially, as well as it does not produce too large azimuthal
velocity [Jones, 2000]. This is the motivation to consider the
classical mean-field dynamo equations without back-reaction
of the magnetic field on the large-scale flow, using only
𝛼-quenching, concerned with the damping of the turbulence
by the large-scale magnetic field. So far the kinetic energy of
the turbulence is smaller than that of the large-scale velocity,
suppression of the turbulence looks more acceptable.

This approach is supported by the new knowledge on the
hydrodynamic of the liquid core: the spatial distribution of
the differential rotation and kinetic helicity in the rotating
spherical shell, where the geostrophic state holds [Reshet-
nyak, 2010]. The other point is the study of the more com-
plex quenching mechanisms of the 𝛼-effect [Kleeorin et al.,
1995], developed after the first success of the mean-field the-
ory, and its influence on the magnetic dipole behavior.

We also consider applications of the popular approach
of the fluctuating 𝛼-effect [Hoyng, 1993], and discuss con-
straints on the amplitude of such fluctuations, which follows
from the form of the spatial spectrum of the geomagnetic
field [Langel, 1987].

2. Basic Equations and Methods of
Solution

The mean magnetic field B is governed by the induction
equation

𝜕B

𝜕𝑡
= ∇×

(︁
𝛼B+V ×B− 𝜂 rotB

)︁
, (1)

where V is the large-scale velocity field, 𝛼 is the 𝛼-effect,
and 𝜂 is a magnetic diffusion.

The magnetic field B =
(︀
Bp, Bt

)︀
has two parts: the

poloidal component Bp = ∇×A, and the toroidal compo-
nent Bt, where A is the vector potential of the magnetic
field.

The principal point of the mean-field dynamo theory is
the separation of the physical fields onto the large- and
small-scale counterparts. Information on the large-scale ve-
locity field is described by V, and on the small-scale fields
fluctuations by the 𝛼-effect.

Usually, it is supposed that the mean field B has axial
symmetry. This assumption follows from the effect of the dif-
ferential rotation, which suppresses deviations of the frozen
magnetic field into the flow from the axial symmetry.

Due to the axial symmetry of the magnetic field, vector
potential A and Bt have the only one azimuthal component
in the spherical system of coordinates (𝑟, 𝜃, 𝜙): A(𝑟, 𝜃) =

(0, 0, 𝐴), and Bt(𝑟, 𝜃) = (0, 0, 𝐵). Then the poloidal field
can be written in the form:

Bp =

(︂
1

𝑟 sin 𝜃

𝜕

𝜕𝜃
(𝐴 sin 𝜃) , −1

𝑟

𝜕

𝜕𝑟
(𝑟 𝐴) , 0

)︂
. (2)

In terms of scalars 𝐴 and 𝐵 Eq (1) is reduced to the
following system of equations:

𝜕𝐴

𝜕𝑡
= 𝛼𝐵 + (V × B)𝜙 +

(︂
∇2 − 1

𝑟2 sin2 𝜃

)︂
𝐴

𝜕𝐵

𝜕𝑡
= rot𝜙 (𝛼B+V × B) +

(︂
∇2 − 1

𝑟2 sin2 𝜃

)︂
𝐵,

(3)

where the subscript 𝜙 corresponds to the azimuthal compo-
nent of the vector.

Eqs (3), solved in the spherical shell 𝑟𝑖 ≤ 𝑟 ≤ 𝑟∘ with 𝑟𝑖 =
0.35, 𝑟∘ = 1, are closed with the pseudo-vacuum boundary

conditions: 𝐵 = 0, and
𝜕

𝜕𝑟
(𝑟𝐴) = 0 at 𝑟𝑖 and 𝑟∘ and 𝐴 =

𝐵 = 0 at the axis of rotation 𝜃 = 0, 𝜋. The simplified form
of the vacuum boundary condition for 𝐴 is well adopted in
dynamo community, and presents a good approximation of
the boundary with the non-conductive medium [Jouve et al.,
2008]. The reason why the vacuum boundary condition is
used at the inner core boundary is discussed in [Reshetnyak,
2013] and concerned with the weak influence of the inner
core on the reversals statistics of the magnetic field [Wicht,
2002].

In the general case velocity V is a three-dimensional vec-
tor, as a function of 𝑟 and 𝜃. Further we consider only the
effect of the differential rotation, concerned with the 𝜙 com-
ponent of V, leaving the input of the meridional circulation
(𝑉𝑟, 𝑉𝜃) out of the scope of the paper.

For the quite large amplitudes of 𝛼 and V solution (𝐴, 𝐵)
grows exponentially, and one needs to introduce the feed-
back of the magnetic field onto the sources of the input en-
ergy 𝛼 and V. As we already mentioned above, we concen-
trate our study on the feedback of the magnetic field onto
the 𝛼-effect, responsible on the production of the large-scale
poloidal magnetic fields by the small-scaled turbulence. This
approach let us to bypass solution of the Navier-Stokes equa-
tion, which, at least in the geodynamo, is the most difficult
part of the full dynamo problem. We recall that turbulent
convection presents at the small scales, where the magnetic
field is already absent due to the high magnetic diffusion.
The ratio of the diffusion scales of the velocity and mag-
netic fields is of the order of the Roberts number q = 10−5,
which is quite small in the liquid core. However the mag-
netic field is not generated at the small-scaled part of the
kinetic energy spectrum, to get a self-consistent solution for
the velocity field, one needs to solve the Navier-Stokes equa-
tion in the full range of scales. This task is still out of reach
of the modern computer facilities.

Here we specify two forms of the 𝛼-quenching. The first
one, the so-called algebraic quenching, originates from the
simple idea of the damping of the 𝛼-effect’s amplitude with
the mean magnetic field:

𝛼 =
𝛼∘(𝑟, 𝜃)

1 +
𝐸𝑚(𝑟, 𝜃)

𝐸∘
𝑚

, (4)

2 of 7



ES2001 reshetnyak: the mean-field dynamo model ES2001

where 𝐸𝑚 = 𝐵2/2 is the magnetic energy, and 𝐸∘
𝑚 is the

constant parameter. The choice of this parameter relates
to our assumptions on the ratio of the kinetic to magnetic
energies, and depends strongly on the angular rotation of
the body [Reshetnyak and Sokoloff, 2003].

The more sophisticated form of the 𝛼-quenching follows
from [Pouquet at al., 1976], [Zeldovich at al., 1990], where in-
fluence of the magnetic field onto the 𝛼-effect was described
by the magnetic pat of the 𝛼-effect, so that the total ef-
fect is the sum: 𝛼 = 𝛼ℎ + 𝛼𝑚. Here 𝛼ℎ and 𝛼𝑚 are the
hydrodynamic (the so-called kinetic 𝛼-effect) and magnetic
parts, correspondingly. The damping of 𝛼 means generation
of 𝛼𝑚 with the opposite sign to 𝛼ℎ. This idea was formu-
lated latter in the form of the evolutionary equation for 𝛼𝑚

[Kleeorin et al., 1995], see for details Section 6. This kind
of the 𝛼-quenching, derived from the basic MHD equations,
leads to oscillations in the system, and was used in the solar
dynamo to mimic the solar cycle of the magnetic activity.

The differential operators in Eqs. (3)–(4) were approx-
imated with the second-order central-differences scheme in
space, and integrated in time using the second-order Runge-
Kutta method. These algorithms resulted in C++ object
oriented code with use of Blitz++ C++ library for the eas-
ier compact operations with the arrays. The post-processor
graphic visualization was organized using the Python graphic
library MatPlotlib. All simulations were done under the
Linux OS.

The code passed the set of the benchmarks. The first one
is the free-decay mode test for the diffusion operator in the
equation:

𝜕𝐴

𝜕𝑡
=

(︂
∇2 − 1

𝑟2 sin2 𝜃

)︂
𝐴, (5)

with 𝐴 = 0 at the axis and at 𝑟 = 𝑟𝑖, and
𝜕

𝜕𝑟
(𝑟 𝐴) = 0 at

𝑟∘.
Simple analytic solution of (5) for testing can be written

in the form:

𝐴 = 𝑒𝛾 𝑡
(︁
𝑗1(

√
𝜆 𝑟) + 𝐶 𝑦1(

√
𝜆 𝑟)

)︁
𝑃 1
1 , (6)

where 𝑃 1
1 is the associated Legendre polynomial of degree 1,

and order 1, and 𝑗1, 𝑦1 are the spherical Bessel functions of
the first and second kind. Note, that in contrast to the scalar
Laplace equation, where the axially symmetric meridional
part of the solution is described by 𝑃 0

𝑙 , the order of our
vector diffusion operator’s eigenfunctions is shifted by one,
and corresponds to 𝑃 1

1 .
Putting expression for 𝐴 (6) in (5), and using boundary

conditions for 𝐴 at the radial boundaries, one has condition
of solvability for 𝜆. Solution of this transcendent equation,
using package of the analytic algebra SymPy for the Python,
gives 𝜆 = 4.8732823108648490873, that leads to 𝐶 =
0.380157168844938 and 𝛾 = −23.74888048138824458988.
This estimate of 𝜆, 𝐶, and 𝛾 is enough to satisfy to the
boundary conditions with the double precision accuracy,
used in the program. Using (6) as the initial condition, we
simulated Eq (5) and obtained the decay rate equal to the
analytic 𝛾 with the accuracy up to 0.5% for 𝑁𝑟 ×𝑁𝜃 mesh
grid points, with 𝑁𝑟 = 𝑁𝜃 = 101.

The other test was the benchmark on the threshold of
the magnetic field generation, the Case 𝐴′ from [Jouve et
al., 2008], which was also passed successfully.

3. Simple Forms of 𝛼-𝜔 Profiles

We start from the simple forms of the 𝛼-effect and az-
imuthal velocity 𝑉𝜙, adopted in the mean-field dynamo.

From the general arguments it is known that the 𝛼-effect
has the dipole symmetry in respect to the equator plane. We
also assume that it is positive in the northern hemisphere,
so that

𝛼∘ = 𝐶𝛼 sin

(︂
𝜋
𝑟 − 𝑟𝑖
𝑟∘ − 𝑟𝑖

)︂
sin(2𝜃), (7)

where 𝐶𝛼 is a positive constant. This assumption is in agree-
ment with that fact that kinetic helicity 𝜒 is negative in the
northern hemisphere and 𝛼 ∼ −𝜒 [Krause and Rädler, 1980].
In (7) 𝛼 vanishes at the poles, which, as we see below, is also
the good approximation of the real 𝛼-effect, derived from 3D
models [Reshetnyak, 2010]).

For the azimuthal velocity we take

𝑉𝜙 = 𝐶𝜔(𝑟 − 𝑟𝑖)(𝑟∘ − 𝑟)𝑒
−0.7−1

(︁
𝜃 − 𝜋

2

)︁2

sin(𝜃), (8)

where 𝐶𝜔 is the amplitude. This profile is symmetric to the
equator plane and has maximum at the equator for 𝐶𝜔 > 0.

As follows from analysis of 1D Parker’s equations, which
can be derived from Eqs (3), neglecting 𝑟-derivatives, solu-
tion depends on the product of 𝒟 = 𝐶𝛼 𝐶𝜔, called the dy-
namo number. Change of the sign of 𝒟 leads to the change
of direction of propagation of the dynamo wave. In general,
in 2D case this statement is not correct, and the direction
of the wave propagation depends on the spatial distribution
of 𝛼 and 𝑉𝜙. It means that choice of signs of 𝐶𝛼, 𝐶𝜔 needs
additional information.

The positive sign of 𝛼 follows from the simple relation
𝛼 ∼ −𝜒 between the 𝛼-effect and kinetic helicity 𝜒, which is
negative in the northern hemisphere. From 3D geodynamo
simulations follows that 𝑉𝜙 has maximum in the bulk of the
liquid core at the equator plane [Reshetnyak, 2010]), what is
also is in agreement with the helioseismological observations
in the solar convective zone [Belvedere et al., 2000]). These
two arguments fix the signs of 𝐶𝛼 and 𝐶𝜔.

Integration in time of Eqs (3)–(4) with 𝛼∘, and 𝑉𝜙, given
by (7)–(8), with the time step 𝜏 = 10−6, leads to the quasi-
periodic oscillatory solution, which has the dipole symmetry
for 𝐵𝑟 and 𝐵, and the quadrupole type for 𝐵𝜃, see Figure 1.
Note that magnetic field is mostly concentrated inside of
the spherical shell, in spite on the penetrating poloidal com-
ponent of the field outside of the shell. Solution is highly
non-linear, what is proved by the very irregular distribution
of the 𝛼-effect, damped with the magnetic field, see Eq (4).

Evolution of the axi-symmetric magnetic dipole 𝑔01 , which
contributes to the axi-symmetric form of the Mauersberger-
Lowes spectrum [Langel, 1987] 𝑆𝑙 = (𝑙 + 1)

(︀
𝑔0𝑙
)︀2

, corre-
sponds to the regime in oscillations, where the mean level
of the field is larger rather the amplitude of its fluctuations.
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Figure 1. Spatial distribution of 𝐵𝑟, 𝐵𝜃, 𝐵, and 𝛼 for
𝐶𝛼 = 50, 𝐶𝜔 = 5104.

The range of oscillations is (0.4− 0.47), and the dipole does
not reverse. This regime is the typical example of the 𝛼𝜔-

dynamo with the poloidal magnetic energy
1

2

(︀
𝐵2

𝑟 +𝐵2
𝜃

)︀
of

factor 30 smaller than the toroidal one, 𝐵2/2. The ratio of
the dipole to quadrupole components 𝑆1/𝑆2 ∼ 10 is quite
large. and remains large for 𝐶𝛼 = (5 − 500) for the fixed
value of 𝐶𝜔.

To follow the details of the magnetic field generation we
consider the butterfly diagrams of the magnetic field, Fig-
ure 2. The poloidal field (𝐵𝑟, 𝐵𝜃) is taken at the outer
boundary, and the toroidal one at the maximum of gener-
ation, near the inner boundary. The poloidal field demon-
strates two kinds of the waves, propagating to the equator
at |𝜃| < 80∘, and to the poles at |𝜃| > 70∘. Note that there
is intersection of the waves in the band 𝜃 = 70 − 80∘. Si-
multaneous existence of the polarwards and equatorwards
waves is the subject of debates in the solar dynamo [Moss et
al., 2011]. These waves can be related to the quasi-periodic
archeomagnetic waves, which also demonstrate different di-
rections of propagation.

The toroidal magnetic field 𝐵 near the inner boundary os-
cillates at the non-zero mean level, and at least potentially

Figure 2. The butterfly diagrams for 𝐵𝑟, 𝐵𝜃 at 𝑟 = 𝑟∘,
and 𝐵 at 𝑟 = 0.7.

can contribute to the torsional oscillations, concerned with
the inner-outer cores interaction. The absolute maximal val-
ues of the azimuthal field 𝐵 in the northern hemisphere is
shifted relative to the field in the southern hemisphere at the
half of the period of oscillation. It means that solution can
not be described with the combination of a few symmetric
and antisymmetric functions relative to the equator plane,
and that it has more complex structure.
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4. Random 𝛼

The proposed axi-symmetric 𝛼𝜔-model is a crude simpli-
fication of the original 3D MHD equations at least in that
sense that 𝛼∘, which describes production of the magnetic
field with the turbulence, is a constant parameter. In the
more consequent approach [Hoyng, 1993] 𝛼∘ has a random
fluctuating part, caused with the finite number of the fluid
cells. This assumption leads to the reasonable estimates of
the 𝛼 fluctuations in the solar convective zone [Moss et al.,
2013]. This approach was used to get a spontaneous reversals
of the magnetic field in the finite-dimensional geodynamo
model [Sobko et al., 2012].

However, we have to use results of the finite-dimensional
geodynamo models very carefully because the considered
Galerkin decomposition in [Sobko et al., 2012] included only
two first modes. On the other hand, input of the energy by
the fluctuating 𝛼 at the small scale can change the magnetic
field spectrum essentially. So far there is no inverse cascade
in the 𝛼𝜔-equations, as it happens, e.g., in 2D hydrodynamic
turbulence [Kraichnan and Montgomery, 1980], energy of
fluctuations will not transfer over the spectrum to the large
scales, and concentrate at the scale of fluctuations. It can
happen that such energy injection will lead to the change of
the spectrum. In its turn, increase of the energy at the small
scales will result in disagreement with observations, which
demonstrate predominance of the magnetic dipole compo-
nent on the higher harmonics. We recall that as it follows
from the practice of the 3D dynamo simulations, solution is
decently resolved if the kinetic and magnetic energies drop
by more than a factor of 100 from the spectral maximum to
the cut-off wavelength [Christensen et al., 1999].

Influence of the 𝛼 fluctuations on the solution of Eqs (3)–
(4) was tested, using our finite difference model, which can
reproduce continuous spectrum up to the scale of the energy
injection. The scale of injection is assumed to be the grid
scale, i.e. the distance between the mesh grid points.

The random fluctuations modify 𝛼∘ in the following way:
𝛼∘ → 𝛼∘(1+𝐶𝜖𝜖(𝑟, 𝜃)), where 𝜖 is the uniformly distributed
random variable from −1 to 1, and 𝐶𝜖 is the constant. In
every mesh grid point 𝜖 changed after the time 𝛿𝑡 = 0.01
simultaneously, see evolution of the root mean square value
of 𝛼 in Figure 3.

We indeed observed appearance of some reversals of the
magnetic field, see evolution of 𝑔01 in Figure 3, for 𝐶𝜖 = 7,
50, which can be related to the geomagnetic field reversals.
However, this statement appears to be wrong, because the
structure of the magnetic field spectrum 𝑆𝑙 due to fluctua-
tions changed essentially, see Figure 3. Before it dissipates
at the diffusion scale, the magnetic energy of fluctuations
accumulates at the wave numbers 𝑙 > 4, that is resulted in
the appearance of the spectrum’s plateau at 5 ≤ 𝑙 ≤ 9. In
other words, to change evolution of the magnetic dipole 𝑔01
one needs to increase the magnetic energy at the small scales
in some orders, see the normalized factors for 𝑔01 in the fig-
ure caption. Such a catastrophic event is hardly believed
to happen in the liquid core if the geomagnetic reversals is
treated like the trivial redistribution of the energy between
the harmonics in the white spectrum [Reshetnyak, 2013].

Figure 3. Evolution of the root mean square value of 𝛼 (up-
per plane), normalized magnetic dipole 𝑔01 (middle plane),
and the averaged magnetic spectra 𝑆𝑙 (lower plane) for the
three regimes: 𝐶𝜖 = 1 (red), 7 (green), and 50 (blue). The
corresponding amplitudes for 𝑔01 : 0.31; 0.32; 1.27; and for
𝑆𝑙: 1500; 9900; 124, 000.

5. Geostrophic Regimes

The specific feature of the planetary dynamo is the geo-
strophic balance of the forces in the liquid core [Pedlosky,
1987]. Assuming that in the leading order viscous and
Archimedean forces are small, one has balance of the Corio-
lis force and the gradient of the pressure. Application of the
Taylor-Praudman theorem leads immediately to conclusion
that velocity field V is elongated along the axis of rotation.
In the other words V in the bulk of the core depends weakly
on the 𝑧-coordinate.

In the general case, in presence of the viscous force and
the thermal buoyancy, locations of the large gradients in
the 𝑧-direction correspond to the boundary layers and the
equator plane, where physical fields can change the sign.
This statement relates not only to the large-scale velocity
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Figure 4. Spatial distribution of 𝛼∘ and 𝑉𝜙 in the
geostrophic regime.

field but to the averaged products of the turbulence, like the
kinetic helicity 𝜒, 𝛼, as well.

Here we use results of 3D simulations of the thermal con-
vection heated from below in the rapidly rotating spherical
shell. Roughly, for the moderate Rayleigh numbers (regime
R2 in [Reshetnyak, 2010]) 𝛼-effect and azimuthal velocity 𝑉𝜙

can be approximated as follows:

𝛼∘ = 𝐶𝛼 𝑟(−𝑒𝑟𝑓(1.25|𝑧|) + 1)𝑒−66.7(𝑠− 0.39)2 sin(2𝜃)

𝑉𝜙 = 𝐶𝜔𝑠

(︂
𝑒−11.76(𝑠− 0.35)2 + 0.73𝑒−3.84(𝑠− 1)2

)︂
,

(9)
with the polar coordinates 𝑠 = 𝑟 sin 𝜃, 𝑧 = 𝑟 cos 𝜃. This
approximation corresponds to the convection mainly outside
of the Taylor cylinder, see Figure 4.

The maximum of |𝛼∘| locates near 𝑠 = 0.45 and maximum

of the radial gradient of the differential rotation,
𝜕

𝜕𝑟

𝑉𝜙

𝑠
, is

near 𝑠 ∼ 0.6, close to |𝛼|’s maximum. It means that the
both sources of generation, 𝛼-effect, and 𝜔-effect have the
same locations, and meridional circulation will not change
solution too much.

As we can expect from Figure 4, the scale of the magnetic
field in 𝑠-coordinate is expected to be quite small, because
the scales of 𝛼-effect, and 𝜔 are small as well. This prediction
is proved with the simulations for 𝐶𝛼 = 2980 and 𝐶𝜔 = 35.4,
which are near the threshold of generation. The ratio of
the poloidal to the toroidal energies is equal to 8, and the
maximum of the magnetic energy is at 𝑙 = 3. Increase of
𝐶𝛼, 𝐶𝜔 leads to the shift of the maximum of the spectra to
the small-scaled part of the spectra. The switch on of the
meridional circulation does not help to increase the dipole
component of the field.

Magnetic energy oscillates with amplitude about 1% of
its mean value, and amplitude of the magnetic dipole oscil-
lations is even smaller. In spite of the fact that we used 𝛼
and 𝑉𝜙 from 3D simulations, production of the dipole mag-
netic field is less efficient than in the model, discussed in the
Section 3.

6. Dynamic 𝛼-quenching

The more sophisticated model of 𝛼-quenching is the so-
called dynamic quenching, where the damping of 𝛼, given by
the sum 𝛼 = 𝛼∘ +𝛼𝑚, is provided with a magnetic part 𝛼𝑚,
described by the evolution equation [Kleeorin et al., 1995]:

𝜕𝛼𝑚

𝜕𝑡
= B · ∇ ×B− 𝛼

B2

𝜂
− 𝛼𝑚

𝒯 , (10)

where 𝒯 = 1 is the typical time scale. The generated 𝛼𝑚

has the opposite sign to 𝛼∘ that reduces the total 𝛼-effect
in (3).

We tested regimes with 𝛼∘ and 𝑉𝜙, given by (7)–(8), and
set of parameters close to 𝐶𝛼 = −0.004, 𝐶𝜔 = 30. The am-
plitude of the poloidal magnetic energy (1200) is order of
magnitude smaller than the toroidal part (20,000). In spite
of the quite large values of the magnetic energies, decrease
of 𝐶𝛼, and 𝐶𝜔 at 20–30% leads to decay of the solution. It
can be explained as with the rapid increase of the growth
rate in the linearised equations, as well as with coexistence
of two finite-amplitude solution branches with the weak and
strong magnetic field intensity. Some simulations demon-
strate spontaneous transitions from the weak field dynamo
to the strong field, accompanied with the reconstruction of
the magnetic energy spectrum that tells in favour of the lat-
ter assumption. Such a rapid increase of the magnetic field
production makes it difficult to find a solution with a pre-
dominant dipole contribution.

The magnetic dipole 𝑔01 oscillates, changing its sign with
the period 𝑡osc = 0.036. The magnetic field spectrum has
maximum at 𝑙 = 9, that corresponds to the small-scaled po-
larwards dynamo-wave. The further increase of 𝐶𝛼, and 𝐶𝜔

preserves the zero mean level of 𝑔01 . This kind of 𝛼-quenching
requires a thorough analysis of the range of parameters,
which can be used for the geodynamo applications.

7. Conclusions

It is quiet expected that the considered above mean-field
dynamo do can reproduce some features of the geomagnetic
field. At least in principal, 𝛼𝜔-models can generate the pre-
dominant dipole magnetic field, similar to that one at the
Earth’s liquid core, and even the reversals of the field. To
the moment it is not clear if the reversal is the intrinsic fea-
ture of the dynamo mechanism either it is triggered with
the external perturbation. The both scenarios have its own
arguments. Here we showed that even the simple idea of
the fluctuating mean-field coefficient, say 𝛼-effect, should
be considered very carefully. Influence of fluctuations on
the magnetic dipole evolution should not treated separately
from the properties of the magnetic energy spectrum, which
can be modified by the fluctuations essentially.

The other point is the application of the 3D dynamo simu-
lations for estimates of the 𝛼-effect and differential rotation.
Our study reveals that it can not be done straightforward.
There are many reasons to that conclusion. One of the rea-
son is that calculation of the averaged quantities like kinetic
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helicity and 𝛼 requires the intermediate physical scale, 𝑙𝑖,
such that 𝑙𝑑 ≪ 𝑙𝑖 ≪ 𝐿, where 𝑙𝑑 is the dissipative scale,
and 𝐿 is the scale of the liquid core. This is quite difficult
task for the 3D simulations, which have still pure resolution.
Note also that separation of the scales, well adopted in the
astrophysical applications, is questionable point in the geo-
dynamo, where the magnetic spectrum is smooth and con-
tinuous, and the intermediate scale can absent at all. We
also should not exclude possibility that some more success-
ful combination of parameters will improve the situation.
This problems requires exploration of the phase space and
it is a challenge for the cluster computer systems. It will be
the next step of the research in the close future.
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