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Abstract. The mantle is modeled by a viscous fluid filling a horizontally elongated
2D region with an aspect ratio of 10:1. A model with Ra = 10° is constructed on
a 200x80 mesh. Developed nonsteady-state thermal convection including narrow
downwellings and upwellings sets in, with mantle flow velocities ranging from 1
to 10 em/yr. Then, at a certain moment, a continent floating on the mantle is
introduced into the model. The continent is modeled by a thin long plate of a
thickness of 0.03 and a length of 2.0 relative units with respect to the mantle
thickness, which corresponds to dimensional values of 90 and 6000 km, respectively.
To demonstrate mantle heating beneath continent, the latter is positioned at
the coldest place of the mantle where downgoing flows dominate at the moment
chosen. The evolution of the mantle-continent system is found from numerical
solution of equations governing the momentum, mass, and heat transfer in viscous
fluid and rigid continent. The problem is rigorously formulated, a self-consistent
method is given for the solution of coupled integrodifferential equations, and a
technique of their numerical implementation is described. The continent remains
virtually immobile during a long time (about 500 Ma), but the mantle flow pattern
dramatically changes, which results in suppression of cold mantle downwellings
under the continent and their gradual replacement by hot upwellings. Afterwards
the viscous drag of mantle flows begins to move the continent at a variable velocity
averaging about 1 cm/yr. The mantle flow pattern and continent velocity constantly
changes under the action of mechanical coupling and thermal interaction between
the mantle and moving continent. After a time of about 1.5 x 10%, when the
continent has traveled over a distance of about 15000 km, it arrives at a place
where several cold mantle downwellings concentrate. Then the continent velocity
sharply decreases, and the continent continues its motion in either primary or
opposite direction, depending on the general mantle flow pattern. The results of
the numerical experiment can be used for the analysis of mechanism responsible
for the motion of Eurasia-type continents, origination and ascent of plumes, and
geodynamic processes in the subcontinental mantle.

1. Introduction

Presently, various numerical experiments have been
used for the study of thermal convection in the Earths
mantle. The role of variable, temperature-dependent
viscosity, pressure and temperature, as well as the ef-
fect of phase transformations on the mantle flow pat-
tern, have been examined in terms of 2D and 3D models
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in Cartesian and spherical coordinates (see e.g. [Chris-
tensen, 1983, 1984; Christensen and Yuen, 1984; Glatz-
mazer, 1988; Machetel and Weber, 1991; Lenardic and
Kaula, 1994; Solheim and Peltier, 1994; Tackley et al.,
1994; Parmentier et al., 1994]). Numerical modeling
has provided an insight into many basic regularities of
global geodynamics. In the nearest decade, a numerical
modeling problem of vital importance is the construc-
tion of self-consistent models in which oceanic high-
viscosity lithosphere breaks into separate plates.
Another important problem is the exploration of the
effect of continents on the mantle convection structure.
Continents cover more than a quarter of the Earth’s
surface. The mantle heat flow in continental areas is
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about 30 mW/m?, which is one-third as much as the
heat flow in oceanic areas, averaging 90 mW/m?. This
is explained by the fact that continents are thermal
insulators of the mantle, because only the conductive
mechanism of heat transfer is operative within conti-
nents. Various estimates of the Nusselt number, char-
acterizing the whole-mantle convective heat loss, give a
value of about 20. The oceanic lithosphere, involved in
the convective circulation of matter, virtually remains
within the convective thermal boundary layer and, de-
spite its high viscosity, cannot serve as an effective ther-
mal screen for the mantle. Thus, even immobile conti-
nents should considerably affect the structure of mantle
convection.

Based on a simplified model, Christensen, [1983] com-
pared the mantle flow patterns beneath continents and
oceans. Trubitsyn and Fradkov, [1985] showed that ther-
mal convection in the upper mantle is suppressed, re-
sulting in a threefold decrease in the continental heat
flow. As was shown in later works [Trubilsyn et al.,
1993a, 1993b, 1994; Trubitsyn and Bobrov, 1993; 1996,
1997; Lowman and Jarvis, 1993, 1995, 1996; Bobrov
and Trubitsyn, 1996; Nakakuki et al., 1997], an immo-
bile continent initially suppresses the underlying mantle
convection and broadens the convective cell; afterwards,
when the subcontinental mantle had been heated dur-
ing the following few hundreds of millions of years, a hot
upwelling mantle flow develops beneath the continent.

Since continents are not fixed but float on the man-
tle, their effect on the mantle convection structure is
even greater. In early studies, the effect of continental
drift was included in a simplified form, as an effective
boundary condition. In continental areas, the free up-
per boundary condition was replaced by fixed values of
horizontal velocity [Luz et al., 1979]. In a similar man-
ner, Doin M.-P., [1997] simulated the effect of moving
continents by a time-dependent velocity specified at the
upper boundary.

Gurnis, [1988] presented the results of a consistent nu-
merical 2D model of mantle convection with free floating
continents. For the first time, a numerical 3D model
of mantle convection with two floating continents was
constructed by Trubitsyn and Rykov, [1995] and Rykov
and Trubitsyn, 1996a, 1996b]. This model reconstructs
general regularities of the formation and breakup of
Pangea [ Trubitsyn and Rykov, 1995]. Structures similar
to the Atlantic and Pacific oceans form upon the Pangea
breakup. In terms of this model, a very steep subduc-
tion zone (of the Kuril-Kamchatka type) develops at
one of the Pacific margin, and a very gently dipping
subduction zone (of the South American type) develops
at the other. Assuming an alternative initial position
of continents, Rykov and Trubitsyn, [1996b] obtained a

structure consisting of two coupled continents (similar
to North and South Americas), which developed upon
the breakup of a supercontinent.

Trubitsyn and Rykov, [1997] developed a self-consistent
numerical model of low-Ra convection in the upper man-
tle having a variable viscosity and interacting with a
moving continent modeled by a thick rigid plate. The
cases with a free plate floating over the mantle and mov-
ing at a prescribed fixed velocity were considered. The
continent approaching a downgoing cold mantle flow
was found to deflect this flow and form structures sim-
ilar to inclined subduction zones. The dip angle of the
downgoing mantle flow decreases with the velocity of
the approaching continent.

This work describes in detail the mathematical for-
mulation of the problem and the method of its solution.
A Ra = 10° convection model close to the real Earth is
constructed on a 200x80 mesh, including a thin conti-
nent of thickness d = 90 km and horizontal size [ = 6000
km. The long-term evolution of the mantle-continent
system 1is calculated. Comparison of the evolution of
unsteady-state convection in the mantle with and with-
out a continent shows that the moving continent dra-
matically changes the mantle convection structure.

2. Model

The mantle is modeled by an incompressible constant-
viscosity fluid occupying the volume of an elongated
rectangular 2D layer of a thickness D and length L,
with the aspect ratio L : D = 10 : 1. The upper
boundary is assumed to be free and other boundaries
are impermeable, with a slip condition. The lower and
upper boundaries have fixed temperatures T' = Ty and
T = 0, respectively; i.e. the layer is heated from below.
The side walls are thermally insulated. The coordinate
origin coincides with the left-hand lower corner, the z
axis 1s directed upward, and the x axis is directed to the
right.

Continents are represented as light rigid rectangular
thick plates that are heat conductive, float in the man-
tle, and have the length [ and thickness d + dy, where
d is the depth to which the continent i1s immersed in
the mantle and dp is the continent elevation above the
mantle. The viscous coupling with mantle flows drives
the continent toward downgoing mantle flows. Because
the heat transfer mechanism within continents is purely
conductive, the continents produce a heat insulating
effect which prevents heat to escape from the mantle.
Also, the continents affect mechanically the mantle, be-
cause the no-slip condition tends to attenuate velocity
contrasts in mantle flows adjacent to the lateral and
lower boundaries of the continents.
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3. The System of Equations of Mantle
Convection with Floating Continents

3.1. Equations of thermal convection

Thermal convection in a viscous mantle is described
by the distributions of convective vector velocities
Vi(z,y,2), temperature T(z,y,z), and pressure
p(x,y,2). These unknown functions are found from
the solution of three equations of momentum, heat, and
mass transfer

p?“dVZ' _ 3]) 352']' )
dt — Ox;  Oxj + p9is, (M
dT koT
i 3(3—1,2,)3% (2)
op  0WVip) _ . _
o 0%, =0, i=1,23 (3)

where p is density, g is gravity, 7" is temperature mea-
sured from the adiabatic distribution, & is diffusivity, &;;
is the Kronecker delta, and S;; is the deviator tensor of
viscous stresses
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Here p is viscosity. The relative values of inertial terms
in the left-hand side of mantle momentum transfer equa-
tion (1) are of the order of kp/p ~ 10723 with respect
to the right-hand terms. Therefore, these inertial terms
may be neglected.

We put p = po(1 — @) in the buoyancy term of equa-
tion (1) and p = py in other terms of equations (1)—(2).
Hereinafter the pressure is measured from its hydro-
static distribution py(z) determined from the condition
Vp = —pog. Also, we introduce dimensionless variables
taking, as measurements units, the mantle thickness D
for length, k/D for velocity, D?/k for time, Ty for tem-
perature, p for viscosity, and pk/D? for pressure and
stresses.

Using these variables, 2D model equations of convec-
tion (2)—(4) take the form
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where Ra is Rayleigh number,
apogT0D3

Ra = T

3.2. Equations of motion of a continent

In a 2D model, velocities u = (us,uy) at all points
of a rigid continent floating in the mantle (along its
horizontal surface) have the same values and are equal
to the velocity of its center of gravity:

ug(2,y) = uo, uy(z,y) =0 (10)
The continents move under the action of viscous forces
The Euler equations of horizontal
movement of a rigid continent have the form

of mantle flows.

Mo
8tU0 = //(—P%' + Sej)ngdf,

where df is the elementary area of the surface, n; is the
unit vector of outward normal to the area, and M is the
dimensionless mass of the continent, referred to the unit
length of the y axis in the 2D model considered. The
integral is taken over the whole surface of the continent
portion immersed in the mantle, which includes its base
(z =1—4d) and side walls (z = #; and # = z1 + {):

(11)

Ma@uo = [p(x = z1) = Seo(r = 21)]dz—
t 1-d

— /Z [p(x = xz) — Sxx(l‘ = l‘z)]dz—
1-d

(12)
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where d and [ are thickness and length of the immersed
portion of continent; x1(¢) and z2(t) = #1(t) + 1 are
instantaneous coordinates of the left- and right-hand
walls of the continent, which obey the conditions

dl‘l

T (13)

= Uop,

The equation governing the temperature distribution
T, within the rigid continent in the initial fixed system
of coordinates is reduced to the equation of heat con-
ductivity with advective heat transfer controlled by the
continent velocity ug along z axis,

o7, N 3_T
ot Ho Oz

= 0(kOT./0wx;)0x; (14)

Similar to the mantle, the relative value of inertial
terms in the left-hand side of the equation of continent
motion (12) is of the order of kp/u a2 10~23 compared to
the terms in its right-hand side. Substituting deviator
tensor of viscous stresses (4) into (12) and omitting iner-
tial terms, we obtain the equations of continent motion
in dimensionless variables
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where the coordinate 1 in the integration limits is de-
termined from (13).

3.3. Boundary conditions

Equations of mantle convection (6)—(10), continent
motion (15) and (13), and heat transfer within the con-
tinent (14) are interconnected through boundary condi-
tions.

Temperature boundary conditions at the lower and
lateral boundaries of the whole area studied have the
form

aT
z=0; 9 = 0, (16)
at x = 0 and = = 10.

The mantle temperature at the free upper, z = 1, sur-
face vanishes ((T' = 0) only in the oceanic area, outside
the continent, namely (z < #1(¢) and « > x1(¢) + ).

At the continental surface immersed in the mantle,
the temperature and heat flow are set to be continuous

between the mantle and continent; 1.e.,
or _ JT.
0z 0Oz
at the base of the continent, z = 1 —d and z1(t) < z <
z1(t) + 1, and

T="1T. and

(17)

or 9T,
oxr  Ox
at its lateral surface sections, 1 —d < z < 1 and z =
or ¥ = xs.

Zero temperature is set on the upper surface of the
continent, i.e., T, = 0 at #1(t) < # < x1(¢t) +{ and
z = 1 + dy, where dy is the elevation of the continent
above mantle surface (commonly, dy < d).

As noted above, impermeability and slip conditions
are imposed on mantle flows on the lower and lateral
boundaries of the entire calculated region. Therefore,
the lower boundary condition is V, = 0, S,z = 0 at
z = 0. Because it is valid at all #, we have V, /z = 0 at
z = 0. In view of (4), we obtain

T="1T. and

(18)

av.
Oz

and =0 when 2z=0, (19)

Similar conditions are imposed on the lateral bound-
aries,

Ve

P and 2z = 10.

(20)
Condition (19) is also imposed on the free upper sur-
face z=1 outside the continent:

oVz
Oz

=0 when z=0

Ve =0,

=0

V., =0, (21)
at @ < x1(t) and & > 21 (t) + 1.

The non-slip condition on the interface between the
viscous mantle and moving continent implies that the
velocities of mantle flow and continent motion coincide
on this boundary:
and V, =0

at the base of the continent for z1(t) < # < 21(t) +1
and z = 1 — d and at its wall sections for 1 —d < z < 1,
=2 and © = .

Conditions (22) simplify the equation of continent
motion. Since the impermeability condition is satis-
fied all along the base of the continent irrespective of
z, we also have V, = 0 at the base. Consequently, the
last term under the integral sign in (15) vanishes. Like-
wise, since the no-slip condition V, = 0 1s satisfied all
over the walls of the continent irrespective of z, we have
9V, /8z = 0. Then, incompressibility condition (8) im-
plies that 9V, /02 = 0 on the walls. As a result, the
equations of continent motion assume a simple form

[ple = 71) — ple = 2)]dz—

P oV (z=1—-4d) (23)
1 (z=1—
—/ ﬂ[a—z]dl‘ =0,
% =up, where 2;(t=0)=xp0 (24)

Finally, the resulting mathematical problem may be
stated as follows. In all, there are seven unknown func-
tions. These are four position- and time-dependent
functions for the mantle convection: two velocity com-
ponents of mantle flows V;(z, z,t) and V,(z, z,t), tem-
perature distribution T'(z, z,%), and pressure distribu-
tion p(x,z,t), and three functions for the continent:
temperature distribution within the continent 7, (z, z, ),
instantaneous translational velocity of the continent as
a whole ug(t), and the coordinate of its left-hand edge
21(t). These functions can be found from a closed sys-
tem of seven coupled equations: four differential equa-
tions of convection (5)—(8), thermal conductivity equa-
tion for the continent (14), and the equation of motion
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of the rigid continent, which 1s reduced to the condition
imposed on mantle flow velocity derivatives (23) and to
relation (24) between the velocity of the continent and
its position. The constants of integration of the dif-
ferential equations are found from boundary conditions
(18)—(22).

The difference between our problem with a free float-
ing continent and the well-known problem with a fixed
continent consists in the fact that the impermeability
and no-slip conditions on the upper surface must be
satisfied at the place currently occupied by the floating
continent whose velocity and position are not a priori
known but should be defined by solving the system of
coupled differential equations at each time step.

4. Numerical Method

Two basically different methods are applicable to the
solution of the system of thermal convection equations
including floating continents. In the two-region method
[Trubitsyn and Bobrov, 1996, 1997], equations of heat
and mass transfer are solved at each time step sepa-
rately outside and within the continent, and continuity
conditions are then set at the interface between conti-
nent and mantle. In the one-region region [Trubitsyn
and Rykov, 1995; Rykov and Trubitsyn, 1996a, 1996b],
computations are conducted in a single coherent domain
and explicitly incorporate the jump in material proper-
ties between mantle and continents on the surface of the
continent.

The numerical algorithm solving the system of ther-
mal convection equations including floating continents
can be summarized as follows. Let convective flow ve-
locities and mantle distributions of temperature T'(¢;)
and pressure p(t1), as well as position 21 (¢1) and veloc-
ity uo(t1) of the continent, be known at a time moment
t1. We have to find the solution of system (5)—(8), (14),
(23) and (24) at the next time moment ¢z = ¢;+At. The
new position of the continent #,(¢2) at the moment ¢5 is
readily found from (24): #1(¢2) = z1(¢1) +wo(t)1)At. If
the continent velocity at this moment ug(t2) were also
known, one could solve thermal convection equations
(5)—(8) with boundary conditions for temperature (18)
and velocities (19)—(22), consistent with the new po-
sition of the continent, and find mantle flow velocities
Ve(t2) m V. (t2), temperature T'(¢2) and pressure p(tz)
at the time moment ¢5. However, the complexity of the
problem lies just in the fact that the velocity of the con-
tinent wg(t2) is unknown. Its value must comply with
mantle flow velocities V; (¢2) and V;(¢2) that obey equa-
tion of continent motion (24). Therefore, an iterative
technique should be developed for determining this ve-
locity of the continent. In principle, based on continent
velocity values chosen in accordance with a specified

enumeration procedure, convective velocity fields and
integrals in (23) can be calculated until a value of ug(t2)
is found for which the right-hand side of (23) deviates
from zero by a quantity € complying with desired ac-
curacy. Since the right-hand side physically represents
the force that acts on the continent, we have ¢ > 0 if
the chosen velocity of the continent wug(t2) is underesti-
mated and ¢ < 0 if 1t is overestimated.

A finite difference method was used for solving the
system of equations of thermal convection including
floating continents [Rykov and Trubitsyn, 1996b]. Nu-
merical solution of temperature transfer equation (7) or
(14) employed the flux-corrected transport method of
Zalesak, [1979]. Equations for velocities and pressure
(5), (6) and (8) were reduced to elliptic equations with
variable coefficients (generalized Poisson equations).
They were solved with the help of the three-layer tri-
angular method with a conjugate-gradient choice of it-
eration parameters [Samarskii and Nikolaev, 1978].

5. Numerical Results

5.1. Free nonsteady-state mantle convection

The mantle was modeled by a viscous fluid that occu-
pies an elongated 2D region. Given the mantle thickness
D = 3000 km, 1ts outer circumference 27 R &~ 40000 km,
and its inner circumference 2w (R — D) ~ 21000 km, the
region approximating the mantle had an aspect ratio
of L : D = 10 : 1. The simplest, Ra=10% model with
heating from below was computed on a 200 x 80.

Figures la, 2a, 3a, and 4a present model patterns
of the mantle thermal convection developed after the
dimensionless time moment ¢t=1.0995. As is known,
the whole region, even with no convection, is heated
throughout at ¢ > 1. Therefore, we may consider the
convection as well-developed by that moment. How-
ever, at Ra > 2 x 10° thermal convection is nonstation-
ary and quasi-turbulent, because the nonlinear terms
Vp0T/0x and V,0T/9z in (7) generate new, smaller-
degree harmonics at each time step. With increasing
Rayleigh number, these nonlinear terms become larger,
and smaller-scale time-variable inhomogeneities arise as
a result of self-organization.

The dimensionless temperature equal to 7" = 0 at the
upper surface and to Ty = 1 at the lower one is shown
in the figure by variable shades. The magnitude and
direction of the mantle flow velocity at each point are
indicated by an arrow. Velocity scales are shown in
the lower right-hand corners of the figures. Maximum
dimensionless values of the velocities are Vi, /2 1500.

The thin (red in the on-line color figure version) line
in the upper part of the figures shows the inferred distri-
bution of the Nusselt number (dimensionless heat flow
q = —9T/Jz) over the external surface of the region.
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Figure 1. The state of developed free thermal convection, adopted as an initial moment at which
a continent is introduced into the mantle: (a) free mantle convection; (b) mantle convection with
the continent. Velocity vectors are shown by arrows; dimensionless temperature is quantified by

shades ranging from black (7" = 0) to light (7" =

1). The upper (a) plots are the inferred relative

heat flow distribution (thin curve, left-hand axis) and ocean bottom topography (thick curve,
right-hand axis). The upper (b) plot is the relative heat flow distribution.

The mean Nusselt number is Nu & 17. The amplitude
of relative variations in the heat flow is about 100%.

The thick (green in the on-line color figure version)
line shows the inferred topography, i.e., deformations
of the upper free surface arising under the action of
viscous convection stresses. The scale of dimensionless
relief elevations multiplied by a factor of 1072 is shown
on the right-hand axis. The elevations were estimated
from the formula h = S.,/pg. Taking into account the
stress unit defined in Section 3, the relief elevation unit
is pk/(pgD?). As seen from Figures la, 2a, 3a, and 4a,
mean amplitudes of the dimensionless elevations are of
an order of 25 x 103.

Setting, for the Earth, D &~ 3 -10° m, o &~ 3 -107°
K'Y AT ~ 2 103K, ka~ 1075 m?s~!, u ~ 10?2 Pa s,
p~ 5-103kg/m? and g ~ 10 m s~2, the time and veloc-
ity units can be found. The velocity unit is k/D ~ 107°
m/yr, and the time unit is 7 = D?/k & 3 x 10! years.
According to (9), the Rayleigh number, which charac-
terizes the intensity of mantle thermal convection, is Ra
A 8- 106,

Since the above parameters of the Earth are not ac-
curate enough, we used an approximate Rayleigh num-

ber Ra = 10°. Since mantle flow velocities obey the
proportionality relation V ~ Ra?/? [Turcotte and Schu-
bert, 1982], the velocities and times can easily obtained
for somewhat different Rayleigh numbers. With the
Earth parameters specified above, the inferred results
and observed data may be compared if the velocity
values are multiplied by 8%/® = 4 and the time is di-
vided by 4. As a result, maximum mantle flows have
Vinax A 1500 x 4 x 107° m/yr &~ 6 cm/yr.

Figures la, 2a, 3a, and 4a illustrate the inferred evo-
lution of mantle convection over a large time interval.
The dimensionless times are indicated in the left-hand
parts of the figures. As noted above, the unit time is
T & 3 x 10! years. In order to calculate the time in-
terval between the convection states shown in Figures,
the dimensionless times indicated in the figures should
be multiplied by 3 x 10! years and divide by 4 (due
to Rayleigh number rescaling); i.e., the dimensionless
times should be multiplied by 75 x 10° years. Then,
the overall evolution time of mantle convection shown
in Figures is (1.1495—1.0995) x 75 x 10° years s 3.6 x 10°
years.

The relief elevation unit is pk/(pgD?) ~ 0.02 m so
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Figure 2. Same as in Figure 1, the time moment ¢ = 10° years. At the unsteady-state convection,
the mantle flow pattern and temperature distribution are not constant in time. Due to the heat
insulating effect, the subcontinental mantle is heated, and a system of hot plumes arises under

the continent.

that dimensionless amplitudes of inferred relief eleva-
tions of 2.5 x 10* correspond to 0.5 km.

5.2. Evolution of the mantle convection with a float-
ing continent

Figures 1b, 2b, 3b, and 4b present the inferred mantle
convection patterns including thermal and mechanical
interaction effects with a moving continent. For com-
parison, Figures la, 2a, 3a, 4a and Figures 1b, 2b, 3b, 4b
show the patterns calculated at the same time moments.
A continent represented by a rigid plate of the thickness
d=0.03 D = 90 km and length [ = 2 D = 6000 km
is introduced at the time moment { = 1.0995. In Fig-
ures 1b, 2b, 3b, and 4b, the continent i1s shown by gray.
It is intentionally chosen to initially occupy the cold-
est place in the mantle where outgoing mantle flows are
most abundant. The figures show that, due to the heat-
insulating effect, the mantle under the continent 1s grad-
ually heated. By the timet = 1.1151 ~ 1.2x 10 years, a
well-defined system of hot mantle upwellings has formed
under the continent, and the continent starts drifting to
the right under the action of mantle flow viscous drag
force. Since the continent at each moment interacts with
mantle flows, the mantle convection structure changes
as the continent moves. The dimensionless continental
drift velocity first increases from 100 to 400 and then

decreases. According to the definitions made above, di-
mensional velocities range from 0.4 to 1.6 cm/yr. As
seen from Figures 1b, 2b, 3b, and 4b, after two billion
years, when the continent had traveled a distance of
about 5 D & 15000 km, it nearly stops.

In the on-line version of this paper, Figures 1a, 2a, 3a,
4a and 1b, 2b, 3b, 4b are complimented by movies (Fig-
ures 5 and 6, respectively), each including 30 frames.

6. Conclusion

The evolution of free unstable-state mantle convec-
tion and evolution of mantle convection coupled with
a free floating continent were calculated. The com-
parison of concurrent distributions of temperature and
mantle flow velocities derived from these two models
has demonstrated that floating continents dramatically
change the structure and evolution of mantle convec-
tion. Detailed evolution results presented in this pa-
per are useful for investigations into the driving mecha-
nism of Eurasia-type continent motion, plume origina-
tion and upwelling, and thermal regime of subcontinen-
tal mantle.
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nonlinear processes, the free floating continent starts drifting. It traveled a dimensionless distance
of 1.9 over 0.5 x 10° years, which yields a velocity of 1 cm/yr.
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