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The problem of inverting measured gravity data for large regions is of a great importance for planetary
structure studies. Unfortunately, the usual methods of local gravity field inversion do not scale up well.
There are three primary factors that start to play significant role: topography or terrain surface with
large height differences, spherical geometry of the planet, and high computational complexity. In our
previous work we were separately considering each of those problems in detail. In this paper however,
we will address those issues simultaneously, offering a complete and computationally effective method
of recovering spherical density model of Earth’s crust with the upper topography layer. The method
utilizes a closed form expression for the discretized model’s gravity field which allows for great accuracy
and speed without enforcing restrictions on model geometry or gravity field data grid. Inversion process
is based on the conjugate gradient method. An example of inversion for a synthetic regional model is
presented.
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Introduction

Numerical solution of inverse gravimetry prob-
lems is one of the tools of interpreting gravimet-
ric data. During preprocessing of the measured
field, various methods are used to recalculate the
field from the measurement surface (usually, the
topography) to a certain reference surface (plane,
surface of the Earth ellipsoid). In order to per-
form this step without loss of accuracy, it would
require to have complete data on the density dis-
tribution in the region between the measurement
surface and the reference surface. In practical ap-
plications however, it is common to use speculative
or heuristic data on the medium density, since this
parameter is unknown and, in fact, it is the final
goal of solving the initial problem. To overcome
this contradiction and obtain a more accurate re-
sult (which is especially important when studying
large areas in high resolution), it is necessary to
use gravimetric measurements on the topography,
without recalculation to an auxiliary reference sur-
face.

∗Corresponding author: pmart3@mail.ru

Direct calculation of the gravitational field from
an object of complex shape, such as a section of
the Earth’s crust, which bounded by the surface of
the topography above and by the surface of an el-
lipsoid below, is a computationally difficult task.
In [Martyshko et al., 2020], we proposed a compu-
tationally efficient method for solving the direct
problem, the computational complexity of which
does not depend on the geometric shape of the
gravitating object (only on its discretization size).
The method is a variant finite element method
(FEM), based on the approximation of the elements
of the partition with polyhedrons. This step is cru-
cial, as it and the subsequent calculation of the
field with a closed-form expression, without using
the formulas of numerical integration. This leads
to high accuracy and computational speed of the
method.

In this paper, we will use this method as a ba-
sis for constructing a solution to the linear inverse
problem of gravimetry. Reconstruction of the den-
sity distribution function is carried out for a lay-
ered model of the Earth’s crust including the upper
topography layer and taking into account Earth’s
sphericity. As a model of the initial approximation,
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we will use previously obtained solution (for a con-
crete study case), but in a simpler framework in
which the whole model volume was represented by
a cuboid with flat boundaries (we will refer to that
framework as “flat”). It is assumed that this solu-
tion already includes all the available priori data,
which will enable us to resolve the non-uniqueness
of the solution.

Considering similar approaches to solving the
inverse problem, it is necessary to note paper [Ped-
ersen et al., 2020], the authors of which describe
in detail two examples (synthetic and real) of den-
sity model reconstruction from the observed grav-
itational field, also taking into account the topog-
raphy. The results of calculations using various
weight functions that determine the nature of the
separation of features by depth are presented. A
non-uniform mesh is used, which increases its step
with the depth. That allows obtaining good reso-
lution in the topography layers. It is highlighted,
that the gravitational effect of the topography sur-
face significantly affects the measured (or calcu-
lated) field. Unfortunately, the paper does not
elaborate the method used for solving the direct
and inverse problems, optimization techniques,
nor provide software/hardware details. The de-
scribed examples have resolution of less than 106

partition elements, which is not enough for con-
struction of models of regional scale in adequate
resolution. Due to the small area of the region un-
der consideration, the authors did not need to take
into account the spherical shape of the planet. The
grid nodes of the measured field are located on a
uniform grid in a plane (the data obtained by the
airborne gravimetry), and not on the surface of the
topography. In our article we will try to address
these issues in more detail.

In [Potts and von Frese, 2003], the authors carry
out gravity modeling for the structural shells of
the moon, including the topography. Calculations
are performed in spherical coordinates using the
Gauss-Legendre quadrature method to approxi-
mate the gravitational integral. High computa-
tional complexity of the considered method did
not allow for model reconstruction of high detail;
however, the work presents estimations of the av-
erage structural density in crust, mantle, and core.
The computational optimizations in our method
allows us to overcome this limitation.

Direct Gravity Calculation for
a Spherical Density Model With To-
pography Layer

Let us define spherical density model in 3D
space up to depth H with upper topography
layer. Models “upper” boundary T (Earth-air in-
terface) is represented by the topography surface

(heightmap) relative to the surface S of an ellipsoid
of revolution (for example, the WGS84 reference
ellipsoid) along its external normal. All points lo-
cated at a distance of no more than H , along the
inner normal to S, and, no more than HT (·), along
the outer normal are included in the model, where
HT (L,B) is the elevation of T over S, B ∈

[
−π

2 ; π2
]

is
latitude, L ∈ (−π;π] is longitude associated with
the ellipsoid. In the described region D ⊂ R

3,
the density distribution is defined as ρ (p), where
p ∈D.

The vertical component ∆g of the gravitational
field gradient induced by the region D at the outer
point q <D\∂D is defined by the integral:

∆g (q) = −γ ∂

∂−→n q

∫
D

ρ (p)dVp∣∣∣−→r − −→r 0

∣∣∣ (1)

where γ is the gravitational constant, dVp is the el-
ement of the volume of integration, −→n q is the out-
ward normal to S in the orthogonal projection of
the point q onto S, −→r and −→r 0 are the radius vec-
tors of the points p and q, respectively.

Let us choose some discretization of D =⋃N
i=1Di . Now we can approximate the volume of

an element of the partition Di by a polyhedron
D̂i , obtaining an approximated model, to which
we can apply the previously proposed [Martyshko
et al., 2018b] algorithm for solving the direct grav-
ity problem. Here we will reproduce the basic
steps of the algorithm. [Martyshko et al., 2018a]

Let the density of each Di be uniform and equal
to ρi . The field ∆g for the model D at the point q
is calculated through the sum of the field of each
discretization element:

∆g (q) = γ
N∑
i=1

ρiGi (q),

where Gi (q) is the field of the element Di with unit
density at the point q up to the coefficient γ .

It is apparent that the integral (1) for the field
Gi (q) cannot be expressed in a closed form. It is
also problematic to calculate the integral numeri-
cally with cubature formulas, since the boundaries
of Di can have complex description. That would
require first or second order formulas with a large
number of nodes in order to achieve acceptable ac-
curacy. Therefore, we will calculate the integral (1)
not for Di , but for the approximating polyhedron
D̂i . We denote the set of faces D̂i as S

(
D̂i

)
, then,

Gi (q) ≈ Ĝi (q) = − ∂

∂−→n q

∫
D̂i

dVp∣∣∣−→r − −→r 0

∣∣∣ . (2)
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Next, we convert the volume integral to the sur-
face integral, applying the divergence theorem to
(2):

Ĝi (q) =

−→n q,

∫
D̂i

∇p

 1∣∣∣−→r − −→r 0

∣∣∣
dVp


=

−→n q,

∮
∂D̂i

−→n p∣∣∣−→r − −→r 0

∣∣∣dS
 .

The surface integral can be split to a sum of inte-
grals for each of the faces of D̂i . Note, that external
normal −→n p is constant in every point of integration
for a face:

Ĝi (q) =
∑

Si1∈S(D̂i)

(−→n q,
−→n i1

)∫
Si1

dS∣∣∣−→r − −→r 0

∣∣∣ ,
where −→n i1 is external normal to the face Si1.

As a final step we need to find a closed form ex-
pression for the integral

∫
Si1

dS
|−→r −−→r 0| over a triangle.

In fact, this integral is the gravity potential of the
triangle plate with unit density up to γ . Let’s de-
note −→r i (i = 1,2,3) are radius vectors of the trian-
gle vertices

〈
p1,p2,p3

〉
;q is the point of field calcu-

lation; −→a i = −→r i − −→r 0; −→a j,i = −→a i − −→a j = −→r i − −→r j ;
−→
N = −→a i−1,i × −→a i,i+1 is the normal to the trian-
gle with the length equal to its double surface

area; −→n =
−→
N

|−→N |
is the unit normal to the triangle;

−→
A j,i =

−→a j,i

|−→a j,i |
; −→a i · −→n is the (signed) distance from

the point q to the triangle surface. Then,

∫
⟨−→p 1,

−→p 2,
−→p 3⟩

dS∣∣∣−→r − −→q ∣∣∣ = −π
2

∣∣∣∣(−→a 1; −→n
)∣∣∣∣

+
3∑

i=1

(−→a i ;
[−→
A i−1,i ;

−→n
])

ln

(−→
A i−1,i ;

−→a i

)
+
∣∣∣−→a i

∣∣∣(−→
A i−1,i ;

−→a i−1

)
+
∣∣∣−→a i−1

∣∣∣
−
(−→a i ;

−→n
)
arctg

([−→a i−1,i ;
−→a i

]
;
[−→a i,i+1; −→a i

])(
−→a i ;
−→
N

) ∣∣∣−→a i

∣∣∣ .

Thus, we’ve devised an algorithm for calculating
∆g of the described model without using the for-
mulas of approximate integration. The accuracy
of the method depends only on the quality of the
approximation of the elements Di by the polyhe-
drons D̂i .

In [Martyshko et al., 2020] we’ve presented an ex-
ample of calculating the gravitational field on the
topography surface for a practical model, taking
into account the Earth’s sphericity. The introduc-
tion of the complex-shaped surfaces (such as the

topography) to the model does not affect the per-
formance of calculations. This is one of the defin-
ing qualities of the method.

Inverse Linear Problem for the Gravity
Field

Having in our disposal a computationally effi-
cient method for solving the direct gravity prob-
lem for the described model, we can now proceed
to consider the inverse problem. Finding solu-
tion to the inverse problem in an iterative process
during which multiple computation of the direct
problem will be required. This fact necessitates a
high-performance computation method for (1).

Here we will consider a three-dimensional linear
inverse problem, which consists in restoring the
density distribution function ρ (p) in the form of
ρi ∈ R, i = 1..N for the volume of the model under
consideration from the input field ∆g measured (or
calculated) on the topography. Due to the fact that
the problem does not have a unique solution and
is unstable, it becomes necessary to impose addi-
tional constrains on the solution, as well as apply
regularization techniques. When considering in-
version for practical models, it is important to en-
sure that the set of feasible solutions remains ge-
ologically meaningful. For this purpose, various
methods have been proposed that allow to incor-
porate additional a priori data in the solution, e.g.
[Ladovskii et al., 2017].

It is our opinion, during applying these steps,
it is reasonable to introduce a “flat” analogue for
the target density model, when the partitioning el-
ements of the model are represented as right rect-
angular prisms. The gravity field of the simplified
model should defer from the original no more than
of order of 5–10%. In this setting, the direct and,
as a consequence, the inverse problem has a much
more computationally efficient way of acquiring
numerical solution [Martyshko et al., 2018a]. This
circumstance is extremely important, since, in or-
der to obtain the desired, geologically justified
morphology, finding multiple alternative solutions
of the inverse problem may prove to be necessary.
When a satisfactory solution in the “flat” frame-
work is found, it can be used as an initial ap-
proximation for the original inverse problem (tak-
ing into account the topography and sphericity).
This step can be performed with transformation of
the “flat” geometry into spherical [Martyshko et al.,
2018b]. Thus, we will consider the problem of re-
finement of the already existing model, which in-
cludes all the necessary a priori data, to fit the tar-
get field.

Let us denote the set of all ρi from the do-
main D as the vector x = (ρi : i = 1..N ), and
introduce discretization for ∆g and denote the
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set of its values at the grid nodes by the vector
f = (gl : l = 1..L). Then, the direct gravity problem
can be written as Ax = f, where A is the discretized
operator of the direct problem.

We will seek a solution to the inverse problem by
minimizing the functional that takes into account
the field residual and the deviation from the ini-
tial approximation model (the least-squares prob-
lem with regularization):

Ax = f , u (x) = α∥Ax − f ∥2 + β∥x∥2 →min .

That minimization problem can be reduced to a
system of linear equations:(

ATA+λE
)
x = AT f , λ = β/α,

The system can be efficiently (in terms of
computational resources) solved using the con-
jugate gradient method. The iterative process
is described as follows [van der Vorst, 2003]:

xk = xk−1 +αkz
k−1 αk =

(
rk−1,rk−1

)(
Gzk−1,zk−1

) r0 = z0 = b−Gx0

rk = rk−1 −αkAz
k−1 βk =

(
rk , rk

)(
rk−1, rk−1

)
zk = rk + βkz

k−1

Here, k is iteration count, G =
(
ATA+λE

)
,

b = AT f . The initial value of x0 is set to zero, since
the initial problem targets for minimum deviation
from the initial approximation (which field is sub-
tracted from the measured field, resulting in f ).

Stop condition is ∥r
k−1∥−∥rk∥
∥b∥ < 0,01 for two consec-

utive iterations.

Gravity Inversion: a Synthetic Example

Initial Data Generation

To construct an example of solving the inverse
problem, we will calculate the “measured” field
by solving the direct problem for a synthetic den-
sity model. For the area with geographical coor-
dinates 60◦–68◦N, 48◦–72◦E the model has a lay-
ered structure along the inner normal to the sur-
face of the Earth’s ellipsoid WGS84, the layer thick-
ness of 1 km (along the normal) and the lateral dis-
cretization is 276×276 (∼0.1◦×0.1◦), the number
of layers is 81. The inner space of the model has
density values (from top to bottom) 2.5, 2.9 and
3.3 g/cm3 with two horizontal curvilinear bound-
aries (sedimentary cover and Moho discontinuity)
with asymptotes of −4.2km and −39.4 km.

A synthetic example is constructed: for a field on
topography from a model of a three-layer medium
(two boundaries with a density jump), a linear in-
verse problem is solved (determining the density
values in a selected volume). The purpose of con-
structing this example is to demonstrate the con-
vergence of the method and performance for large
amounts of input data.

The topography model is built on the top sur-
face of the Earth ellipsoid using the heightmap of
the designated area. Each point of the heightmap
is represented with a vertical mass column of the
corresponding height. The column density is set in
proportion to its height in the range 1.8–3.2 g/cm3,
where the first value corresponds to zero height,
the second – to the maximum height (1.4 km for
the given area). This distribution was chosen
rather arbitrarily, but, as noted in [Pedersen et al.,
2020], density variations in the topography layer
do not significantly affect the resulting gravita-
tional field; the main contribution is made by the
shape of the air-mass interface itself. When cal-
culating the field of the model, the average den-
sity of each horizontal and the topography layer
is subtracted from that layer density distribution.
The calculation of the field is carried out at the
points on the heightmap (the topography). Fig-
ure 1 shows the calculated field, the topography
and layered medium of the model (excess density
is shown in each 1 km layer). All images are pic-
tured in the transverse Mercator (Gauss-Kruger)
projection.

For the described numerical experiments, the
heightmap of the topography and geoid from the
ICGEM online resource [Ince et al., 2019] were
used.

Recovering Density Distribution

In order to construct a solution using the de-
scribed method, it is necessary to determine a set
of coefficients λ(z) providing additional informa-
tion on the distribution of the depth features. For
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Figure 1: a) “measured” anomaly field of the model defined on the topography; b) the topography
model (heightmap); c) density excess in the model (the average density of each horizontal and

topography layer is subtracted from that layer density distribution).

this example, the coefficients were selected subjec-
tively through a series of experiments, with a goal
of minimizing the maximum deviation from the
model of the initial approximation (zero), while
maintaining the presence of anomalous masses in
all layers of the model. The final expression is
a linear mapping λ (z) : [1, 81] → [20, 600] (z is
in km). The result of the solution is shown in
Figure 2. Density values of the topography layer

are in the range [−0.32;0.42] (5-percentile = −0.04,
95-percentile = 0.01); in the first top layer un-
der the topography the range is [−0.21; 0.24] (5-
percentile = −0.06, 95-percentile = 0.08). For the
subsequent layers these parameters rapidly de-
crease with depth and do not exceed in absolute
value those that given for the upper layers. The fi-
nal relative error in the field was 2.6%, the value
of the stop condition has reached 0.006.
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Figure 2: Density excess found as a result of the gravity field inversion.

It is necessary to note that in the example de-
scribed, restoring the surface of the boundaries
shown in Figure 2 was not one of the goals. Indeed,
when solving the inverse problem in the described
form, it is impossible to unambiguously recover
vertical density discontinuities; for this purpose,
one should consider a structural inverse problem
[Martyshko et al., 2010]. In our case, the verti-
cal discontinuities will be roughly reflected in the
initial approximation model (in which the density
of each layer is constant and equal to the average
value of the layer density of the original model).
Figure 2 shows the result of solving the “refine-
ment” problem of the initial approximation model.

Conclusion

The proposed method for solving the linear in-
verse gravity problem makes it possible to con-
sider models of complex geometry, bounded by
the topography surface, while taking into account
sphericity of the planet. The algorithm developed
by the authors makes it possible to calculate the
magnitude of the gravitational field on the topog-
raphy surface without the impact on the computa-
tional efficiency: the method does not rely on the
grid regularity of the density model and the calcu-
lated field. These circumstances allow the use of
gravity measurements taken on the surface of the
topography, directly, avoiding significant errors as-
sociated with the recalculation of the field to the

reference surface. The recalculation step can be
completely excluded from the interpretation pro-
cess.

When calculating the direct gravity problem
(which is needed in any iterative process of solving
the inverse problem), we’ve developed software
based on the program GRAFEN [Chernoskutov and
Byzov, 2019] (also developed by the authors). The
computation time for the example model was
∼2 min. per iteration of the inverse problem al-
gorithm using five AMD Radeon VII GPUs.
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