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This study is aimed at expanding the number of measured parameters to analyze the features of the
formation of surface waves under the influence of wind. The paper develops an original approach to
obtaining information on the variability of the short-wave part of the wave spectrum (examples are
given for wavelengths from about 50 cm to 2 cm in 6 intervals) and the long-wave component of the
wave spectrum (> 1 m) in marine conditions. To illustrate the approach, a six-frequency underwater
acoustic wave gauge was simulated, which measures the slope variance of the large-scale waves,
compared to the radiation wavelength, for each radiation frequency. The work is caried out a theoretical
analysis of slope variance retrieved from reflected acoustic pulses for different radiation frequencies
depending on the near-surface wind speed and swell wave height. For comparison, a study of a new
parameter, the differential slope variance, is carried out, which contains information about short waves
in the intervals of cut-off wavenumbers corresponding to the radiation frequencies. It is shown that the
use of differential slope variances of the large-scale waves makes it possible to get clear of the influence
of swell in the case of mixed waves and obtain a better correlation with the wind speed. The paper
proposes a method for retrieving the exponent of the spectral slope in the intervals of cut-off wavelength
corresponded to the radiation frequencies. Within this method, it is possible to retrieve the cut-off
wavenumbers for each radiation frequency.
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Introduction

The measurement of surface waves is an im-
portant task for studying the processes of interac-
tion between the atmosphere and the ocean, which
have a huge impact on the Earth’s climate. Infor-
mation about the small-scale part of surface waves
is extremely important because it determines the
exchange of momentum, heat, mass and energy be-
tween the ocean and the atmosphere. It was shown
in [Hwang and Wang, 2004; Hwang, 2005; Troit-
skaya and Rybushkina, 2008] that 80% of the sur-
face “roughness” is determined by waves less than
3 m long, therefore the small-scale part of surface
waves is extremely important for solving a wide
range of problems related to oceanology.

There are many wave spectrum models de-
veloped for solving different problems and cov-
ering all scales of waves on the water surface.
There are both frequency spectra, for example
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[Ryabkova et al., 2019; Hasselmann et al., 1973;
Karaev et al., 2008] and wavenumber spectra, for
example [Elfouhaily et al., 1997; Apel, 1994; Plant,
2002].

To “include” short waves in the wave spectrum
model, it is necessary to be able to measure them.
In marine conditions, this is an extremely difficult
task, since at present there are no instruments ca-
pable of simultaneously measuring the large-scale
and small-scale waves of the wave spectrum due to
the large dynamic range of wave elevation.

Marine buoys are actively used to validate satel-
lite scatterometers and altimeters, for example,
NDBC buoys [NDBC, 2009] measure waves longer
than 6 m–10 m. The inability to measure shorter
waves is due to the large dimensions of the buoys.

Acoustic Doppler current profilers (ADCP) are
one of the most convenient instruments for field
measurements [Birch et al., 2004] since they can be
installed on the bottom in any region of interest.
However, the maximum installation depth (30 m–
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60 m) and the relatively low spatial resolution of
the measured waves (waves longer than 3 m–6 m
are measured) limit the applicability of these in-
struments.

To measure the slope variance, laser wave gauges
are used, which have proven themselves well in
the laboratory [Hwang, 1999]. However, in marine
conditions, large waves significantly complicate
the task from the point of view of technical imple-
mentation, and the problem has not been solved.
A promising approach to measure the shape of the
sea surface along a selected trajectory of laser scan-
ning with a video recording frequency develops in
Sterlyadkin et al. [2021].

A string wave gauge is the most wide-range de-
vice among the generally recognized and in field
conditions (for example, on an oceanographic plat-
form near the Katsiveli settlement [Dulov et al.,
2021; Bondur et al., 2016]), the wave spectrum with
wavelengths of more than 1 m–1.5 m is measured.

The slope variance of a large-scale waves, com-
pared to the radiation wavelength according to the
two-scale model [Valenzuela, 1978; Bass and Fuks,
1979], can be retrieved from the data of precipita-
tion radars installed on the satellites of the TRMM
or GPM mission [TRMM, 2001; G.P.M., 2014], as
well as from the data of the SWIM radar on the
CFOSAT satellite [Hauser et al., 2017]. The GPM
satellite is equipped with a dual-frequency pre-
cipitation radar (DPR), which performs measure-
ments at two frequencies (Ku- and Ka-bands) at
different angles of incidence in a swath of about
240 km and a spatial resolution of about 5 km.
Subsequent processing makes it possible to deter-
mine the slope variance of large-scale waves for
the ranges used [Freilich and Vanhoff , 2003; Tran
et al., 2007; Panfilova et al., 2018]. The SWIM
radar opens the possibility of measuring a two-
dimensional large-scale (for Ku-band) wave slope
variance field [Karaev et al., 2021] However, it re-
mains unknown which wavelengths contribute to
the measured parameters, i.e., what is the cut-off
wavenumber that divides the wave spectrum into
large-scale and small-scale components. To an-
swer this question, the experiments are needed.

In this regard, the development of new instru-
ments for the simultaneous measurement of large-
scale and small-scale components of the wave
spectrum is important and relevant. The informa-
tion will be in demand by specialists studying the
interaction of the atmosphere and the ocean, de-
veloping numerical models of wind waves.

The study of the dependence of the slope vari-
ance of large-scale waves on the wavelength of
microwave radiation was carried out in Zapevalov
et al. [2020]; Danilytchev et al. [2009]. In Kuznetsova
et al. [2019]; Panfilova et al. [2021], approaches to
the validation of the WAVEWATCH III model are

discussed by comparing with the slope variance of
large-scale waves measured by satellite radar. In-
tegration of the measured L-band slope variance
according to the satellite data of the CYGNSS (The
Cyclone Global Navigation Satellite System) mis-
sion in the WAVEWATCH III model is carried out
in Wang et al. [2019]

This work develops the approach proposed ear-
lier [Titchenko et al., 2021b] to the description of
small-scale waves on the water surface using dif-
ferential slope variances. This approach uses the
ability of an underwater acoustic wave gauge to
measure the slope variance [Karaev et al., 2014;
Titchenko et al., 2019] accounting waves from the
longest to a cut-off wavelength, which depends on
the radiation frequency and surface waves inten-
sity. When using a multi-frequency underwater
acoustic wave gauge, the difference in slope vari-
ances measured at different frequencies will con-
tain information about waves within the cut-off
wavelengths. In this work the advantage of the dif-
ferential slope variance for the case of mixed waves
is demonstrate on the model data.

In previous works, the possibility of determin-
ing the exponent of the spectral slope of the
high-frequency part of the frequency spectrum
was shown based on measuring the differential
slope variances using a six-frequency acoustic
wave gauge with known cut-off wavenumbers and
short waves dispersion relation. In this paper,
we solve the problem of determining the expo-
nent of the spectral slope of the short-wave part
of the wavenumber spectrum without setting cut-
off wavenumbers. The paper considers a method
for estimating unknown cut-off wavenumbers cor-
responding to radiation frequencies. A distinctive
feature of the new method is that the dispersion
relation is not used.

Problem statement

Let us assume that a six-frequency pulsed un-
derwater acoustic wave gauge (wavelengths 8 mm,
2.1 cm, 3 cm, 5.5 cm, 10 cm, 23 cm) with wide
antenna patterns (30◦ half power width) for each
frequency is used to analyze the short-wave part of
the wave spectrum in 6 intervals. An underwater
acoustic wave gauge is proposed to be installed on
the bottom or on a floating underwater platform
so that its antennas are directed vertically upwards
on the water surface, as shown in Figure 1.

To determine the slope variance of large-
scale wave for each radiation frequency, two ap-
proaches, borrowed from radar and new to hy-
droacoustic, can be used: the first is based on the
analysis of the shape of the reflected pulse [Brown,
1977], and the second will use the dependence
of the reflected power on the angle of incidence
[Freilich and Vanhoff , 2003; Panfilova et al., 2020].
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Figure 1: Measurement scheme of an underwater
acoustic wave gauge.

The first approach uses a theoretical model of a
reflected pulse received by an underwater acous-
tic wave gauge [Karaev et al., 2014]. When select-
ing the shape of the reflected pulse [Titchenko et al.,
2019], in addition to the slope variance, the water
level and the significant wave height (which is four
times the square roots of the wave height variance)
are determined [Titchenko et al., 2019].

In the framework of the second approach, the
dependence of the reflected power on the angle of
incidence can be measured by changing the angle
of incidence. For an acoustic wave gauge with a
wide antenna pattern, the method of calculating
the dependence of the power of the reflected radi-
ation on the angle of incidence without changing
the orientation of the sonar antenna can be applied
[Titchenko et al., 2021a] i.e., the antenna remains
stationary. This method is based on the geome-
try of the interaction of the emitted acoustic pulse
with the water surface.

Figure 2 shows modeled reflected pulses for a
fully developed wind wave and a wind speed of
8 m/s for four sonar wavelengths: 0.008 m, 0.1 m,
0.03 m, and 0.23 m. In the figure, the 0 s time
corresponds to the duration of sound propagation
from sonar to the flat surface without waves. The
duration of the emitted rectangular pulse is 50 µ s.
Depth 50 m. Beam width for all frequencies at half
power level is 30◦. The pulse amplitudes are nor-
malized to each other to compare the slopes of the
leading and trailing edges for different radiation
wavelengths.

The figure shows that the difference in the du-
ration of the leading edge of the reflected pulses
received by sonar with different wavelengths is
small. This is because the duration of the lead-
ing edge of the reflected pulse is determined by the
wave height variances, which will be close for these
wavelengths. The trailing edge is highly depen-
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Figure 2: Reflected pulses modeled for fully
developed wind waves and wind speeds of 8 m/s

observed by sonars with four different
wavelengths 0.008 m, 0.1 m, 0.03 m, and 0.23 m.

dent on the sonar wavelength, as it is determined
by the slope variance of large-scale waves, which
depends on the radiation wavelength.

Thus, an underwater acoustic wave gauge for
each radiation wavelength can measure the slope
variance and the height variance of the water sur-
face [Titchenko et al., 2019].

The slope variance of large-scale waves, mea-
sured by a sonar or radar, is determined by the in-
tegral of the slope spectrum calculated in the range
from 0 to the cut-off wavenumber:

σ2
s (λ) =

∫ κc(λ)

0
κ2S(κ)dκ, (1)

where S(κ) is the wavenumber spectrum; κ–
wavenumber of a wave on the sea surface. The
value of the cut-off wavenumber κc (λ) depends
on the wind speed and radiation wavelength [Bass
and Fuks, 1979]. In the case of optical observa-
tions, such as in the experiment of Cox and Munk
[Cox and Munk, 1954] the cut-off wavenumber can
be considered infinite, since in this case all waves
present on the surface are considered. Also, all
the waves available on the sea surface can be ob-
served by a sonar with a radiation wavelength of
2 mm. Such a slope variance with infinite cut-off
wavenumber will henceforth be called optical.

Height variance is calculated by the following
formula:

σ2
H (λ) =

∫ κc(λ)

0
S (κ)dκ. (2)

Figure 3 shows the location of the cut-off
wavenumbers corresponding to the used radiation
wavelength of the underwater acoustic wave gauge
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Figure 3: The location of the cut-off wavenumbers
corresponding to the radiation wavelengths of the

underwater acoustic wave gauge on the
wavenumber spectrum model for a fully

developed wind wave and a wind speed of 8 m/s.

on the wavenumber spectrum model [Karaev et al.,
2008], for the case of a fully developed wind wave
and a wind speed of 8 m/s.

Differences in the slope variances of large-
scale waves, measured by multi-frequency acous-
tic wave gauge, will be determined by the in-
tegral over the slope spectrum within the cut-
off wavenumbers of the analyzed radiation wave-
lengths:

∆σ2
s (2− 1) =

σ2
s (λ2)− σ2

s (λ1) =∫ κc(λ2)

κc(λ1)
κ2S(κ)dκ

(3)

Thus, this differential slope variance will con-
tain information about the waves in the selected
wavelength range. This parameter will be the ob-
ject of further research.

Slope variance and differential slope
variance

Let us consider the slope variance of large-scale
waves retrieved from the simulated shape of the
reflected pulse for different radiation wavelengths
depending on the near-surface wind speed (Fig-
ure 4).

The dependences were obtained for a mixed
wave formed by a fully developed wind waves and
swell 200 m long with a significant swell height of
3.2 m.
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Figure 4: Slope variances of large-scale waves as a
function of wind speed for different radiation

wavelengths. In all cases, there is a 200 m long
swell.

It can be seen from the figure that the slope
variance, which includes a larger range of surface
wavelengths (radiation wavelength is shorter), is
more sensitive to the wind speed.

Further, according to these slope variances, in
Figure 5, the differential slope variances is con-
structed in 6 intervals of cut-off wavenumbers
corresponding to the radiation wavelengths of a
multi-frequency acoustic wave gauge. The differ-
ential slope variance is obtained by subtracting
the slope variances for the corresponding radiation
wavelengths from the optical slope variance.

It can be seen from the figure that the sensitiv-
ity to wind speed of the differential slope variance
decreases with decreasing radiation wavelength.
This confirms that the differential slope variance,
which consider a larger range of surface wave-
lengths, are more sensitive to wind speed.

A feature of the differential slope variance is
the subtraction of large-scale waves, which may
include swells and other waves propagating over
long distances. The wavenumber spectrum with
a 200 m long swell set according to the spectrum
model [Karaev et al., 2008] as shown in Figure 6.

Figure 6 shows that the long-wave part of the
spectrum changes significantly with the addition
of swell. In this case, the short-wave part does
not change when swell is added. Next, we con-
sider the effect of swell of different heights on slope
variance and differential slope variances according
to Figure 7. The figure shows the relative devia-
tion of the measured slope variance and differen-
tial slope variance from the value for purely wind
waves in dependance on significant swell height as
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Figure 5: Differential slope variance in 6 intervals
of cut-off wavenumbers corresponding to the

radiation wavelengths depending on wind speed.

a percentage of purely wind slope variance. Wind
waves in all cases, fully developed at a wind speed
of 8 m/s.

It can be seen from the figure that the swell has
practically no effect on the differential slope vari-
ance. Thus, the differential slope variance will
be determined only by the waves caused by the
instantaneous wind, which makes it more stable
compared to the slope variance in real measure-
ments. Also, when analyzing the differential slope
variance, the need to consider multimode waves is
eliminated.

Determination of the exponent of the spectral
slope

The short-wave part of the wavenumber spec-
trum is given at different intervals of the
wavenumber in the form of various power-law
functions of the wavenumber [Plant, 2002; Phillips,
1985; Elfouhaily et al., 1997; Apel, 1994]:

S (κ) =
A

κN
, (4)

where A is a constant for a given interval of
wavenumbers, N is the exponent of the spectral
slope.

The differential slope variance can be written as
follows, considering (4):
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Figure 6: Spectrum of swell, wind waves and
mixed waves.

∆σ2
s (2− 1) =∫ κc(λ2)

κc(λ1)
κ2 A

κN
dκ =

A
3−N

(
κc

3−N (λ2)−κc3−N (λ1)
)
.

(5)

Consider that we do not know the cut-off
wavenumbers, the constant A, and the exponent of
the spectral slope N.

It should also be noted here that N>2, since the
short-wave part of the slope spectrum, A

κN−2 , can-
not grow with an increase in the wavenumbers
κ, unlike, for example, the curvature spectrum
[Elfouhaily et al., 1997; Karaev et al., 2008].

Additionally, the following equation can be writ-
ten for the difference in slope variances obtained
by optics and measured by an underwater acoustic
wave gauge with a radiated wavelength λ1:

∆σ2
s (optical − 1) =

σ2
s (optical)− σ2

s (λ1)

− Aκc
3−N (λ1)

3−N
,

(6)

where σ2
s (optical) is the slope variance accord-

ing to optical measurements, it include waves of
all scales that exist on the water surface. There
are works in which the optical slope variance is
measured from underwater [Molkov et al., 2019;
Molkov, 2020]. Using a sonar with a wavelength
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Figure 7: Relative deviation of the measured slope
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significant swell height.

of 2 mm, the same slope variance will also be mea-
sured. Thus, synchronous measurement of optical
slope variance can be organized from a floating or
bottom platform of an underwater acoustic wave
gauge.

The parameter ∆σ2
s (optical − 1) is deter-

mined by all small-scale waves from the cut-off
wavenumbers κc (λ1) to infinity.

Also, to retrieve all the parameters, we need
such a parameter as the differential height vari-
ance:

∆σ2
H (2− 1) =∫ κc(λ2)

κc(λ1)

A

κN
dκ =

A
1−N

(
κ1−N
c (λ2)−κ1−N

c (λ1)
)
.

(7)

This parameter can be obtained by measuring
the height variance for each radiation wavelength
from the shape of the reflected pulse [Karaev et al.,
2014; Titchenko et al., 2019; Ryabkova et al., 2021]
using a multi-frequency acoustic wave gauge. It
should be noted here that this parameter cannot
be measured for any combination of sonar wave-
lengths. The point is that the height variance is de-
termined mainly by long waves, and as the wave-
length decreases, their contribution to the height
variance rapidly weakens. This can be seen even
from formulas where the exponent in (7) is less
than in (6) by 2.

As a result, having a three-frequency under-
water acoustic wave gauge and measuring three

slope variances, three height variances and know-
ing (measuring) the optical slopes, we obtain the
following system of equations:

∆σ2
s (2− 1) =

A
3−N

(
κc

3−N (λ2)−κc3−N (λ1)
)
,

∆σ2
s (3− 1) =

A
3−N

(
κc

3−N (λ3)−κc3−N (λ1)
)
,

∆σ2
s (optical − 1) = −Aκc

3−N (λ1)
3−N

,

∆σ2
H (2− 1) =

A
1−N

(
κ1−N
c (λ2)−κ1−N

c (λ1)
)
,

∆σ2
H (3− 1) =

A
1−N

(
κ1−N
c (λ3)−κ1−N

c (λ1)
)
.

(8)

The system contains 5 unknowns and 5 equa-
tions.

After simple transformations, we obtain the fol-
lowing expression containing only one unknown:

∆σ2
H (2− 1)

∆σ2
H (3− 1)


(
1− ∆σ2

s (3− 1)

∆σ2
s (optical − 1)

) 1−N
3−N
− 1

 =

(
1− ∆σ2

s (2− 1)

∆σ2
s (optical − 1)

) 1−N
3−N
− 1.

(9)

Minimizing the difference between the left and
right parts, we numerically find the exponent of
the spectral slope N. Then, knowing N, we conse-
quently express the remaining unknowns:

k1 =

√√√√√√√
3−N
1−N

∆σ2
s (C&M − 1)

1−
(
1− ∆σ2

s (3−1)
∆σ2

s (C&M−1)

) 1−N
3−N

∆σ2
H (3− 1)

k3 = k1

(
1− ∆σ2

s (3− 1)

∆σ2
s (C&M − 1)

) 1
3−N

,

k2 = k1

(
1− ∆σ2

s (2− 1)

∆σ2
s (C&M − 1)

) 1
3−N

,

A =
∆σ2

s (2− 1)(3−N )
k2

3−N − k1
3−N .

(10)

Let us check the above algorithm using the spec-
trum model [Karaev et al., 2008]. To do this, us-
ing the spectrum model, we calculate the slope and
height variances of large-scale waves for five wave-
lengths, 0.23 m, 0.1 m, 0.055 m, 0.03 m, 0.021 m
for wind speeds from 3 m/s to 11 m/s with fully
developed wind waves. We calculate optical slope
variance integrating full spectrum model. Next,
for two combinations of wavelengths, we will re-
trieve all unknown parameters in dependance on
wind speed, which are shown on the left and right
plots in Figure 8.
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Figure 8: Retrieved from model measurements, the exponent of the spectral slope N (left) and the
relative error of retrieving the cut-off wavenumbers depending on wind speed for two combinations of

wavelengths of a three-frequency acoustic wave gauges

The left plot in Figure 8 shows that the shorter-
wave part of the spectrum falls off more strongly
than the longer-wave one, which corresponds to
the assumption of a faster decrease in the ampli-
tude of shorter waves.

The right plot in Figure 8 shows that for the
longer-wave “triple” of radiation wavelengths, the
error in determining the exponent of the spectral
slope is usually smaller and the result is more sta-
ble. Since the height variances are determined
mainly by long waves (large-scale waves), and
the short-wave part of the spectrum (small-scale
waves) makes a small contribution, it is there-
fore desirable to use the maximum radiation wave-
lengths separation to obtain a greater difference in
height variance, which will increase the accuracy
of the proposed algorithm (10).

Let us illustrate the operation of algorithm (10)
in comparison with the spectrum model [Karaev
et al., 2008] used to calculate the wave parameters
in Figure 9. The calculations will be carried out for
a fully developed wind waves and a wind speed of
3 m/s.

The retrieved wavenumber spectra are shown
within the limits of the wavenumbers obtained as
a result of calculation by formulas (10). The fig-
ure shows a satisfactory agreement between the re-
trieved spectra and the spectrum model used to
calculate the wave parameters required for algo-
rithm (10). Some difference between the curves on
the plot is due to the error in calculating the differ-
ential height variance (7).

In previous work [Titchenko et al., 2021b], the se-
lected exponent of the spectral slope in the high-
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Figure 9: Wavenumber spectra retrieved from
model measurements for two combinations of

radiation wavelengths of a three-frequency
acoustic wave gauge in comparison with the

wavenumber spectrum model

frequency part of the frequency spectrum was ob-
tained approximately equal to 5 for a fully de-
veloped wave and a wind speed of 3 m/s, which
corresponds to the spectrum model used [Karaev
et al., 2008]. For the wavenumber spectrum, this
corresponds (using dispersion relation for gravity-
capillary waves) approximately to the exponent
of the spectral slope of 3.4 for longer waves and
3.2 for shorter ones. This matches the obtained re-
sult in Figure 9.
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It is important to note that the proposed al-
gorithm will be ineffective in marine conditions
when radiation wavelengths shorter than 3 cm
are chosen due to the differential height variance
used, since the spectrum in this range has ex-
tremely small values. The efficiency of the pro-
posed method will increase with the growth of the
“scatter” of radiation wavelengths, i.e., when the
differential height variance increases.

Conclusions

In this work, a theoretical study of new possibil-
ities of multi-frequency remote sensing has been
carried out. For measurements, it is proposed to
use a multi-frequency underwater acoustic wave
gauge. The multi-frequency system measures the
slope variance in different wavelength intervals,
which makes it possible to separate the contribu-
tion of the large-scale and small-scale components
of the wave spectrum to the slope variance. The
paper proposes to use the differential slope vari-
ance to describe the short-wave part of the wave
spectrum. It is shown that the use of differential
slope variances of the large-scale waves makes it
possible to get clear of the influence of swell in the
case of mixed waves and obtain a better correlation
with the wind speed.

An original algorithm for retrieving the short-
wave part of the wavenumber spectrum, as well
as cut-off wavenumbers of radiation wavelengths,
has been developed. Moreover, to determine the
wave spectrum and cut-off wavenumbers, it is not
required to set the dispersion relation for short
waves. It is noted that for the best operation of the
algorithm in real conditions, it is necessary to use
an underwater acoustic wave gauge with a larger
difference in the radiation wavelengths.

This new information about waves will allow
studying the interaction of wind simultaneously
with the short-wave and long-wave components
of the wavenumber spectrum and will be in de-
mand by scientists involved in numerical simula-
tion modeling of the wave climate and interested
in refining the model of near-surface wind-wave
interaction. In addition, new information about
the short-wave part of the elevation spectrum in
different wavelength ranges will improve the ac-
curacy of near-surface wind speed retrieval from
remote sensing data.
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