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The problem of downward continuation of airborne gravimetry data is discussed. Use of spherical radial
basis functions (SRBF) to solve this ill-posed problem is proposed. Gravity disturbances observed at
flight height are continued downward to disturbing potential. The SRBF method is numerically tested
using synthesised data for flight heights 2000 m, 4600 m and 6000 m and grid steps 1 arcmin and
2.5 arcmin in area bounded by colatitudes 40◦, 43◦ and longitudes 153◦, 157◦ (spherical coordinates).
The experiments prove that the SRBF method can provide stable and accurate results. Moreover, as a
result of this procedure one have an approximator in the form of a linear combination of SRBF which
allows to determine the values of different transforms of potential by applying the corresponding
operators to this expression.
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1 Introduction

The main problem of physical geodesy is to de-
termine disturbing gravity potential of Earth. It re-
quires gravimetric data at different scales covering
homogenously the whole planet. Traditional ter-
restrial gravimetry data covers gravity field band
from medium to higher frequencies. But there are
many places that are difficult to access or even
unaccessible for it. Dedicated satellite missions
provide measurements in lower part of needed
bandwidth over Earth except the poles. Airborne
gravimetry proved to be fast and economically ef-
ficient method to collect homogeneous gravimetric
measurements in medium to high bandwidth that
can be used also in remote areas.

One of the key steps in airborne gravimetry data
processing is its downward continuation. Many
publications are dedicated to this problem. Usu-
ally gravimetric data continued down to ground,
geoid or some mean surface using inverse Pois-
son integral [Alberts and Klees, 2004; Kingdon and
Vaníček, 2011; Novák and Heck, 2002; Novák et al.,
2003; Martinec, 1996; Liu et al., 2017; Försberg et al.,
2000; Försberg, 2003], to name a few. Since it is
an ill-posed problem some kind of reducing its ef-
fect on results is needed. There were proposed
different solution methods such as iteration pro-
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cedures, least squares collocation, regularization
and so on. In [Müller et al., 2008] space localizing
spline functions is used to downward continue air-
borne gravimetry and gradiometry data. This task
can be solved also by means of radial basis func-
tions [Li et al., 2022].

Since, as a result, we are interested in derivation
of the disturbing potential at ground, ellipsoid or
some mean topographical surface, we propose here
to use spherical radial basis functions for down-
ward continuation of gravity disturbances δg from
flight level to disturbing potential T at ground
level. Potential is smoother then gravity distur-
bances, so this procedure may provide better re-
sults in terms of stability and accuracy [Novák and
Heck, 2002].

Usually the remove-calculate-restore technique
is used for processing airborne gravimetry data.
Gravity measurements collected at flight height
are band-limited to around L ≈ 4000 [Novák and
Heck, 2002] in terms of harmonic analysis. By
means of one of the modern satellite Earth gravity
models (EGM) we can remove low-frequency part
(l ≤ 360) of the data before processing.

Now, let’s formulate the problem we are going to
face here. We will consider it in spherical approxi-
mation. The band-limited reduced for topographic
and atmospheric effects gravity disturbances δgb

are given at flight height. The problem is to deter-
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mine the band-limited disturbing gravity potential
T b at some set of points. More rigorously [Sansò,
1995; Novák and Heck, 2002]:

∆T (r,θ,λ) = 0 for r > R,

δg(r,θ,λ) = −∂T (r,θ,λ)
∂r

for r = R+H,

T (r,θ,λ) =O
( 1
r l+1

)
for r→∞,

(1)

where R is the radius of the geocentric sphere
(spherical approximation of geoid); H is a known
constant flight height over sphere R; (r,θ,λ) are
spherical coordinates. The last equation in (1) re-
minds us that as δgb are reduced by satellite model
to degree l we cannot recover the lower part of T b.

The harmonic band-limited disturbing gravity
potential T b can be expanded into series of spher-
ical harmonics on the surface of the sphere of ra-
dius R as follows

T b(R,θ,λ) =
GM
R

L∑
n=l

Tn(θ,λ), (2)

where Tn (θ,λ) are the Laplace spherical harmon-
ics of degree n and GM denotes the product of the
gravitational constant and the Earth’s mass.

2 Theoretical Basics

We propose here to use spherical radial basis
functions (SRBF) to solve the downward continu-
ation problem for airborne gravimetric data.

In [Neyman and Sugaipova, 2016; Sugaipova,
2018; Neyman et al., 2021] it is shown, that approx-
imation by means of SRBF of a required function
f (P ):

f (P ) ≈
k∑
j=1

xjΦ(P ,Qj ), (3)

can be used as convenient substitute for integra-
tion of this function over local region.

In (3) Φ
(
P ,Qj

)
is SRBF, Qj are so called SRBF

poles, xj stands for weight coefficients to be deter-
mined.

In the simplest case, the number of poles coin-
cides with the number n of data nodes. But if n is
too large it can lead to situation when we have to
solve large system of linear equations with an ill-
conditioned matrix of coefficients. Therefore, it
is recommended to construct some regular grid of
poles in the area of interest. In this case, the poles
may not coincide with the data nodes, and their
number k may be noticeably less than the points
with measurements. Furthermore, if we select the
most optimal poles, it can even more reduce num-
ber of used ones, and, consequently, number of
equations.

The equations relating the measurements and
the coefficients x are

Ax = u + v; A = (aij ) = (Φ(Pi ,Qj ));

i = 1,2, . . . ,n; j = 1,2, . . . , k; k ⩽ n,

where u is the observation vector, v is the vector
of corrections to observations, Pi are the measure-
ment nodes.

SRBF are functions of the spherical distance ψ
between points P and Q. Spectral properties of
SRBF are defined by the non-negative numerical
sequence φj (n) called a symbol, and the parameter
j called a scale:

Φj (P ,Q) =
∞∑
n=0

(2n+ 1)
(
R2

rP rQ

)n+1

φj (n)Pn(cos ψ); (4)

here rP and rQ are radial distances of points P and
Q respectively.

The symbol and the scale of SRBF allow to take
into account the structure of the field under con-
sideration in the studied local area. More informa-
tion on SRBF, regular grids and methods for op-
timal poles selection can be found, for example,
in [Michel, 2013; Reuter, 1982; Neyman et al., 2021;
Sugaipova, 2018].

In practice, we will limit the summation in (4) to
j = 180/∆, where ∆ is the average value of the step
of the grid with the measurements.

If the function under study is the gravity poten-
tial or any of its transformants, it is advisable to
associate the symbol φj (n) with the spectrum of
this function, in particular, with degree variances
σn of its spherical harmonic expansion

∥Φj∥2L2 =
∞∑
n=0

σ2
n ⇒ (2n+ 1)×

φ2
j (n) = σ2

n ⇒ φj (n) =
σn√

2n+ 1
.

Thus, the SRBF (4) for our problem takes the form

Φj (P ,Q) =
j∑
n=0

√
2n+ 1σn

(
R2

rP rQ

)n+1

· Pn(cos ψ). (5)

Degree variances can be calculated directly using
one of the EGM, or by means of the degree variance
models. One of the most recent degree variance
models can be found in [Sansò and Sideris, 2013;
Rexer and Hirt, 2015]:

σ2
n =

(GM
R

)2 A ·Bn

(n− 1)(n− 2)(n+ 4)(n+ 17)
;

A = 5.0× 10−8; B = 0.999845, n ⩾ 3.

Gravity signal strengths at the surface of the to-
pography is well approximated by degree variance
model [Rexer and Hirt, 2015]:

σ2
n =

(GM
R

)2 1.79× 10−7 · 0.999995n

(n− 1)(n− 2)(n+ 4)(n+ 17)
.

Its use can be recommended when real data are
continued down to the topography.
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3 Numerical tests and results

Simulated data were used in order to test accu-
racy and stability of approximation by means of
SRBF described in the previous section. Test area is
limited by colatitudes θmin = 40◦, θmax = 43◦ and
longitudes λmin = 153.5◦,λmax = 156.5◦ (spherical
coordinates). The inner zone bounded by colati-
tudes θ = 40.5◦, θ = 42.5◦ and longitudes λ = 153◦,
λ = 157◦ was also considered in order to check if
there are any edge effects. Reference system used
is WGS84.

Earth gravity model XGM2019e [Zingerle et al.,
2020] complete to degree 5540 and order 5480
were used to synthesize model data. Two grids of
band-limited gravity disturbances

δgb(R+H,θ,λ) =
GM

R2

L∑
n=l

(n+1)
( R
R+H

)n+2
Tn(θ,λ)

at height H = 4600 m were calculated: 1) with grid
step ∆ = 2.5′ and band limits l = 241, L = 4320;
2) with grid step ∆ = 1′ and band limits l = 241,
L = 5400.

Band-limited disturbing potential T b (2), gener-
ated from XGM2019e at height H = 0 m and the
same grid spacings ∆ and band limits l, L as for
gravity disturbance were used as reference data for
comparing results of downward continuation.

The numerical tests consisted of two steps. At
the first step the initial data – gravity disturbances
δg at flight height H = 4600 m – were approxi-
mated by linear combination of SRBF:

Φ
δg
j (P ,Q) =

j∑
n=0

√
2n+ 1σn · Pn(cosψ).

This expression is obtained from (5) with R =
rP = rQ = R+H .

Degree variances of δg were derived from
XGM2019e with appropriate dimensioning:

σ2
n = (C2

n + S2
n )(n+ 1)2 ·

(GM
R2

)2
× 1010mGal2,

where Cn,Sn are the EGM spherical harmonic
coefficients. It is taken into account that
1 mGal = 10−5 m/c2.

As already noted in previous section, the poles
may not coincide with the observation nodes. It
can be recommended to use some regular grid for
their location. The Reuter’s grid [Reuter, 1982] was
used here. Grid density Lgr , namely, the number
of parallels included in it, was selected depending
on the spacing between the observations

Lgr = (180 · 60)/∆, (6)

where the numerator and the denominator are di-
mensioned in arcmin. Selection of the most opti-
mal poles was not performed.

Output of the first stage is the set of coordi-
nates of SRBF poles RP and their weight coeffi-
cients x. This set serves as input of the second stage
when approximating the potential T on the sphere
R (H = 0 m).

In this case, equation (5) takes a form

ΦTj (P ,Q) =
j∑
n=0

√
2n+ 1 σn

(R+H
R

)n+1
· Pn(cos ψ), (7)

where the sphere of radius R+H plays now role of
reference sphere, and degree variances correspond
to potential T :

σ2
n = (C2

n + S2
n ) ·

(GM
R

)2
m4/c4.

The SRBF ΦT
j (P ,Q) (7) is plotted in Figure 1 as

a function of spherical harmonics degree n for dif-
ferent values of flight height H : 2000, 4600, 6000,
8000 and 10000 m. The value of spherical distance
is fixed to ψ = 1◦. It can be clearly seen from the
graph that ΦT

j (P ,Q) has the divergent nature for
L → ∞. With increasing elevation H the oscilla-
tions become more severe. It can mean that with
an increase in H the procedure of downward con-
tinuation of gravitational information using the
SRBF (7) can lose stability and lead to a deterio-
ration of the results. But for the considered values
H = 2000, 4600 and 6000 m, as it will be seen later
from the computational experiments, the accuracy
of field recovery remains quite high.

The graph in the Figure 2 shows the SRBF
ΦT
j (P ,Q) as a function of the spherical distance ψ

for l = 241 and L = 4320.
Tables 1, 2 and 3 provide calculation statistics

for the residual T res potential field, which is the
difference between the reference potential values
T and the approximation result T cal

T res = T − T cal ,

and for the residual field δgres of gravity distur-
bances

δgres = δg − δgcal ,

with δg denoting reference values, and δgcal stand-
ing for approximated ones.

The minimum, maximum, mean and standard
deviation values of T res and δgres are given in the
Table 1 for flight level H = 4600 m. In the column
with number of points, in parentheses the number
of poles used is shown.

Recall that at the first stage the gravity distur-
bance δg is approximated and its output sets of
poles RP and coefficients x are used as input for
the second stage to approximate T . Thus, between
x, on the one hand, and T , on the other hand, there
is only an indirect relationship, since the measure
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Figure 1: Behavior of SRBF as a function of harmonic series expansion
degree n for different flight heights H .

Figure 2: SRBF as a function of spherical distance ψ for l = 241 and L = 4320.

for calculation of x is the accuracy of recovering of
δg, and not T .

As can be seen from Table 1, approximation by
SRBF demonstrates high accuracy of recovery even
for the whole test area but for inner zone the re-
sults are an order of magnitude better.

To obtain a more complete picture regarding the
SRBF method, additional calculations were made.

1. In order to determine whether approximators
constructed for both T and δg can be gener-
alized, 100 points were randomly selected in
the test area; 49 of them fell into the inner
zone (Figure 3). In these points values of T
and δg were calculated at the heights H = 0 m
and H = 4600 m, respectively. The statistics
of results are displayed in the Table 2. Two

computation options were considered. In one
case, sets of poles RP and coefficients x ob-
tained for grid spacing ∆ = 2.5′ were used, and
in the other – for ∆ = 1′ . It is natural to expect
that the use of a set corresponding to a smaller
step should give better accuracy, since more
detailed observation information is used. It is
the case for δg, but calculations for the poten-
tial T show no improvement. Perhaps the rea-
sons for this are the smoother nature of the
potential and the fact mentioned above that
there is only indirect connection between RP ,
x and T .

2. In order to determine the robustness of the es-
timates, the approximation was made at dif-
ferent heights, namely H = 2000 m and H =
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Table 1: Statistics of approximation results for δg and T at a height level H = 4600 m

Number Frequency Step min max mean std
Region of points band ∆

(number l–L
of poles)

δgres (mGal)

7081 241–4320 2.5′ −0.4083 0.4951 −0.0002 0.0251
(4647)

40◦–43◦, 43621 241–5400 1′ −0.1660 0.1622 −3.0e−05 0.0050
153◦–157◦ (28770)

43621 241–5400 1′ −1.4061 0.9187 0.0003 0.0624
(7241)

3577 241-4320 2.5′ — — — 0.0090
(4647)

40.5◦–42.5◦, 21901 241–5400 1′ — — — 0.0024
153.5◦–156.5◦ (28770)

21901 241–5400 1′ — — — 0.0265
(7241)

T res(m2/c2)

7081 241–4320 2.5′ −1.4423 1.7844 0.0078 0.2026
(4647)

40◦–43◦, 43621 241–5400 1′ −3.3988 4.9013 0.0045 0.8899
153◦–157◦ (28770)

43621 241–5400 1′ −1.8811 2.0591 0.0079 0.2002
(7241)

3577 241–4320 2.5′ −0.0595 0.1068 0.0004 0.0182
(4647)

40.5◦–42.5◦, 21901 241–5400 1′ −1.8121 2.3117 −0.0478 0.7807
153.5◦–156.5◦ (28770)

21901 241–5400 1′ −0.0885 0.1884 0.0009 0.0246
(7241)

6000 m. A grid with step ∆ = 2.5′ was con-
sidered. The Table 2 provides the statistics of
results. In general, it can be seen that the sig-
nal weakens with the height, which is natural
to expect, but the accuracy of the approxima-
tion does not deteriorate.

3. In order to see the influence of number of used
SRBF poles two scenarios of tests for ∆ = 1′

were performed. In one case the grid density
Lgr was used as in (6) and it led to 28,770 poles
in the area of interest (see Table 1). In another
case we took 2 times less value of Lgr provid-
ing 7241 poles. Comparing results one can
see that more poles lead to increase in accu-
racy of recovering of δg by an order of mag-
nitude. But for disturbing potential T accu-
racy of results deteriorated. One reason for
this is the influence of instability of the down-

ward continuation problem. Further, recall
that approximation of gravity disturbances is
performed in the plane of observations. In
contrast, approximation of disturbing poten-
tial is carried out in the orthogonal plane and,
consequently, has a nature of extrapolation.
This fact can be assumed among other rea-
sons of degradation of approximation accu-
racy for T .

4 Conclusions

We discussed here the determination of the dis-
turbing gravity potential on the surface of the
sphere of radius R (spherical approximation of
the geoid) from band-limited airborne gravity data
at flight level. Simulated gravity data, generated
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Figure 3: Location of test points (red). The points used in the calculation of x are shown in blue dots.
The inner zone is limited by black rectangle.

Table 2: Statistics of approximation results for δg and T on the set of test points

Number Frequency RP and X min max mean std
Region of points band for ∆

l −L

δgres (mGal)

40◦–43◦, 100 241–4320 2.5′ −0.3138 0.1921 −0.0088 0.0662

153◦–157◦ 241–5400 1′ −0.2013 0.1299 0.0002 0.0441

40.5◦–42.5◦, 49 241–4320 2.5′ −0.1341 0.0910 −0.0048 0.0415

153.5◦–156.5◦ 241–5400 1′ −0.0467 0.0360 −0.0039 0.0197

T res(m2/c2)

40◦–43◦, 100 241–4320 2.5′ −0.8263 0.5797 0.0030 0.1492

153◦–157◦ 241–5400 1′ −0.8409 0.5860 0.0051 0.1567

40.5◦–42.5◦, 49 241–4320 2.5′ −0.0232 0.0045 0.0010 0.0177

153.5◦–156.5◦ 241–5400 1′ −0.0491 0.0440 0.0010 0.0178

from the high-frequency EGM, were used for nu-
merical testing of the proposed method. These
tests have shown that approximation by SRBF pro-
vides highly accurate and stable results of down-
ward continuation of gravity signal from flight lev-
els at least as high as H = 6000 m.

The SRBF method provides an approximating
construction as a linear combination of SRBF (3)
not only for the initial field of gravity disturbance
δg, but also for the disturbing potential T . On the
one hand, it allows to calculate the values of these
functions at any points in the approximation area,
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Table 3: Statistics of approximation results for δg and T at different flight levels

Region Height, m min max mean std

δgres (mGal)

40◦–43◦, 2000 −0.4883 0.5922 −0.0003 0.0310

153◦–157◦ 4600 −0.4083 0.4951 −0.0002 0.0251

6000 −0.3710 0.4499 −0.0002 0.0226

40.5◦–42.5◦, 2000 — — — 0.0111

153.5◦–156.5◦ 4600 — — — 0.0090

6000 — — — 0.0081

T res(m2/c2)

40◦–43◦, 2000 −2.1812 2.5425 0.0097 0.2473

153◦–157◦ 4600 −1.4423 1.7844 0.0078 0.2026

6000 −1.6990 1.9237 0.0064 0.1805

40.5◦–42.5◦, 2000 −0.0664 0.1113 0.0005 0.0199

153.5◦–156.5◦ 4600 −0.0595 0.1068 0.0004 0.0182

6000 −0.0688 0.1179 0.0004 0.0186

on the other hand, it becomes possible to deter-
mine the values of different transforms of potential
by applying the corresponding operators to the ex-
pression (3).

Further studies would be advisable on the next
questions:

• to research influence of noise on the accuracy
and stability and its propagation to the re-
sults of approximation and downward con-
tinuation by using simulated data with added
random noise or real data;

• to investigate influence of a number and lo-
cation of the SRBF poles on the results of
approximation and downward continuation.
Methods for optimal poles selection devel-
oped, for example, in [Neyman et al., 2021;
Sugaipova, 2018] can be recommended for this
task.
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