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Abstract: We consider Bloch eigenmodes in three linear stability problems: the kinematic dynamo
problem, the hydrodynamic and MHD stability problem for steady space-periodic flows and MHD
states. A Bloch mode is a product of a field of the same periodicity, as the state subjected to
perturbation, and a planar harmonic wave, eiq·x. The complex exponential cancels out from the
equations of the respective eigenvalue problem, and the wave vector q remains in the equations
as a numeric parameter. The resultant problem has a significant advantage from the numerical
viewpoint: while the Bloch mode involves two independent spatial scales, its growth rate can be
computed in the periodicity box of the perturbed state. The three-dimensional space, where q resides,
splits into a number of regions, inside which the growth rate is a smooth function of q. In preparation
for a numerical study of the dominant (i.e., the largest over q) growth rates, we have derived
expressions for the gradient of the growth rate in q and proven that, for parity-invariant flows and
MHD steady states or when the respective eigenvalue of the stability operator is real, half-integer q
(whose all components are integer or half-integer) are stationary points of the growth rate. In prior
works it was established by asymptotic methods that high spatial scale separation (small q) gives rise
to the phenomena of the α-effect or, for parity-invariant steady states, of the eddy diffusivity. We
review these findings tailoring them to the prospective numerical applications.
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1. Introduction

A central notion of the hydromagnetic dynamo theory is the magnetic α-effect. It is
built on the seminal idea of E. Parker, who suggested [Parker, 1955] that the interaction of
small-scale fluctuations of the flow (“cyclonic events”) and of magnetic field may give rise
to an electromotive force that has a component parallel to the mean magnetic field, and it
can amplify the mean field. A systematic analysis of this idea under various simplifying
assumptions was carried out by German scientists [Krause and Rädler, 1980; Steenbeck et al.,
1971], who developed the theory of the mean-field magnetohydrodynamics and coined the
term α-effect (see [Rädler, 2007] for an account of the history of the subject).

In principle, any averaging procedure satisfying the Reynolds rules (see, e.g., [Krause
and Rädler, 1980]) can be employed to define mean fields. Historically, the magnetic α-effect
in a weakly non-axisymmetric flow was the first example of the α-effect derived rigorously
by asymptotic methods from the first principles [Braginskii, 1964a,b]. An expression
for the α-effect in an almost axisymmetric fluid flow was obtained by S. I. Braginskii in
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the cylindrical coordinates by averaging in the azimuthal variable φ. This model was
used to explain how the geomagnetic dynamo operates [Braginskii, 1964c,d, 1975], and
later, in a more general form of the αω-dynamo, for explanation of the origin of the solar
magnetic field (see [Cameron et al., 2016; Charbonneau, 2005, 2014; Miesch, 2012]). A very
careful tuning of the localization and amplitude of the α-effect turned out to be necessary
[Ossendrijver, 2000; Popova, 2016] to achieve this goal.

The mean magnetic field obtained by averaging based on separation of spatial scales
(together with temporal ones, for time-periodic or quasiperiodic flows) also proved to be
amenable to mathematical treatment from the first principles without additional assump-
tions. We focus attention on the α-effect and eddy (“turbulent”) diffusivity relying on this
physical mechanism. A magnetic mode is supposed to depend on the so-called “fast”, x, (re-
sponsible for small scales) and “slow”, X = εx, (responsible for large scales) variables. We
assume for simplicity that the small-scale (i.e., independent of slow variables) generating
flow is steady, and the flow and magnetic modes are 2π-periodic in each Cartesian axis xi ;
the periodicity box in x is denoted by T3 = [−π,π]3. The mean field is then understood as
an average over the fast variables that depends on the slow variables,

⟨b(x,X)⟩ = (2π)−3
∫

T3
b(x,X) dx

(averaging over fast time is also necessary if the generating flow and the modes are pe-
riodic in the fast time). The scale ratio, ε, is regarded as a small parameter and used
for construction of an asymptotic expansion of the mode and the associated eigenvalue
of the magnetic induction operator in power series in this parameter. By this technique
(known as homogenization of elliptic operators), it is possible to derive equations for the
evolution of the mean field, expressions for the α-effect tensor in terms of small-scale
neutral magnetic modes [Roberts, 1970; Vishik, 1987] (see also [Andrievsky et al., 2015;
Rasskazov et al., 2018]) and, when the α-effect vanishes (e.g., when the generating flow
V is parity-invariant, i.e., satisfies V(x) = −V(−x)), for the magnetic eddy diffusivity tensor
[Lanotte et al., 1999; Roberts, 1972] (see also [Zheligovsky, 2011]).

This approach gave an opportunity to prove without recourse to numerics existence
of large-scale dynamos employing the magnetic α-effect. The α-effect operator controlling
the leading terms in the expansion of the eigenvalues has the spectrum symmetric about
the imaginary axis [Vishik, 1987], and thus generation is guaranteed for sufficiently high
scale separations unless the entire spectrum lies on this axis, which is not a generic case.
Among other applications of the homogenization techniques, let us mention the dynamo
for flows with an internal scale, where the limit operator is the sum of the α-effect and
molecular diffusivity operators [Vishik, 1986; Zheligovsky, 1991], and the weakly nonlinear
convective dynamo [Chertovskih and Zheligovsky, 2015].

It is important that large-scale magnetic modes residing in the entire space that arise
in the kinematic dynamo problem, turn out to have a special structure: they are small-scale
(i.e., having the same periodicity as the generating flow) fields, amplitude-modulated by
large-period harmonics, or, equivalently, they are products of the small-scale fields and
planar harmonic waves, eiq·x, responsible for their large-scale shape (here q is a constant
wave vector; the scale separation is high when |q| = ε > 0 is small). This can be expected,
because for small-scale flows the domain of the magnetic induction operator decomposes
into a direct sum of invariant eigenspaces comprised of vector fields of this structure.
Functions of this type emerged in the solid-state physics: by the Bloch theorem [Bloch,
1929], solutions to the Schrödinger equation with a space-periodic potential, that describe
the state of an electron in a periodic crystal, have such a structure. The ansatz was widely
used in the dynamo theory, e.g., it was systematically investigated by G. O. Roberts [Roberts,
1970, 1972], and used to introduce the axial non-symmetry of the magnetic modes in the
study of the dynamo properties of the Couette–Poiseuille flow between coaxial cylinders
[Ruzmaikin et al., 1989; Soloviev, 1985a,b,c, 1987]. (In the latter case the flow depends on
the radial coordinate r only, and the exponential dependence B′ = b(r)exp(i(nφ+αz)) on
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the coordinate z along the axes of the cylinder and the azimuth φ can be assumed; n and
α are an integer and real, respectively, parameters of the problem.) In [Zheligovsky et al.,
2001], a limited scale separation was studied by considering magnetic modes for wave
vectors q, whose components are only 0 or 1/2 (we henceforth call such wave vectors
half-integer).

Homogenization of elliptic operators was also employed for the study of large-scale
perturbations of steady flows (in the absence of magnetic field) [Dubrulle and Frisch,
1991] and of magnetohydrodynamic (MHD) steady states [Zheligovsky, 2003] (see also
[Zheligovsky, 2011]). The three problems are similar: in the hydrodynamic stability problem,
the evolution of the mean field is generically controlled by the anisotropic kinetic α-effect
(aka the AKA-effect), or by the eddy viscosity in its absence; in the MHD stability problem
the combined α-effect or the combined eddy diffusivity act in place of the kinetic ones. (A
straightforward modification of the formalism is used to study the large-scale stability of
small-scale time-periodic or quasi-periodic hydrodynamic and MHD states.)

A question arises naturally, whether the large-scale instabilities predicted by this
technique play a significant role in physics of fluids, or they merely provide a demonstration
of magnetic, kinetic and MHD instabilities to perturbations involving a spatial scale much
larger than the spatial period of the perturbed state? We will address it numerically and
report the results in the next paper in this series.

We focus on the small-scale turbulent motion of incompressible fluid and, in the MHD
stability problem, on magnetic field, that are characterized by a certain range of spatial
scales within a hierarchy of scales, and study their instability to perturbations of larger
scales. By this mechanism the energy contained in a given scale range can be transferred to
larger-scale structures. The container is assumed to be large enough for the boundaries not
to affect the processes of the considered scale lengths. The flow V(x) and magnetic field
B(x) (when present) that are subjected to the perturbations are supposed to be 2π-periodic
in the three-dimensional space, and we explore linear perturbations of the Bloch type.

In the present paper we prepare the tools for implementation of this numerical
investigation: we state the Bloch eigenvalue problems for the three linear stability problems
at hand and give an exposition of the mathematical results that facilitate their numerical
treatment. The plan of the paper is as follows: In section 2 we recall the governing equations
for the linear stability analysis that we intend to perform. Using the biorthogonality of
eigenfunctions of the operator of linearization and its adjoint, in section 3 we derive an
expression for the gradient of the instability mode growth rate, regarded as a function of the
wave vector q. It is used in section 4 to show that for half-integer wave vectors the gradient
is zero, i.e., for them the necessary condition for the maximum growth rate is satisfied,
provided that the MHD steady state experiencing the perturbation is parity-invariant or
the respective eigenvalue of the operator of linearization is real; this result justifies the
choice of wave vectors in [Zheligovsky et al., 2001]. In section 5 we review the results of the
multiscale stability theory. Our concluding remarks are summarized in the last section.

2. The governing equations of the MHD stability problem

We consider linear stability of an MHD state (V(x), B(x)), which, for the sake of
simplicity, is supposed to be steady. It satisfies the usual system of equations:

ν∇2V+V× (∇×V) + (∇×B)×B−∇P +F =0, (1.1)

η∇2B+∇× (V×B) + J =0, (1.2)

∇ ·V = ∇ ·B =0. (1.3)

Here V, B and P are the flow velocity, magnetic field and pressure of the spatial scale under
investigation, the source terms F and J describe the influence of other scale ranges on the
flow V and magnetic field B, ν is the molecular viscosity of the fluid and η its magnetic
molecular diffusivity.
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As usual in the linear stability analysis, we study perturbed regimes of the form
(V(x) +V′(x)eλt, B(x) +B′(x)eλt , P (x) +P ′(x)eλt). Assuming an exponential time dependence
of the perturbation, we reduce the stability problem to an eigenvalue problem for the
perturbation mode (V′ ,B′):

ν∇2V′ +V′ × (∇×V) +V× (∇×V′) + (∇×B′)×B+ (∇×B)×B′ −∇P ′ =λV′ , (2.1)

η∇2B′ +∇× (V′ ×B+V×B′) =λB′ , (2.2)

∇ ·V′ = ∇ ·B′ =0. (2.3)

The pressure perturbation P ′ satisfies the Poisson equation expressing the solenoidality of
the l.h.s. of (2.1).

We study perturbation modes of the Bloch type

(V′(x), B′(x)) = eiq·x(v(x), b(x)), (3.1)

P ′(x) = eiq·xp(x), (3.2)

where the fields (v,b) have the same spatial periodicity cell T3 = [−π,π]3 as the perturbed
steady state (V,B). We seek the wave vector q for which (for a given ν and η) the growth
rate of the mode (3.1), γ(q) = Reλ(q), attains the maximum over all q. It suffices to consider
q in the cube |qm| ≤ 1/2, since

eiq·x(v,b) = ei(q−n)·xein·x(v,b),

and the field ein·x(v,b) has the same spatial periods as the perturbed state V(x),B(x) for any
integer-component n.

Let us define the projection of a Bloch field eiq·xf(x) onto the subspace of solenoidal
vector fields. A field f, 2π-periodic in each xk , admits a Fourier series expansion

f(x) =
∑
n

f̂nein·x,

where summation is over all three-dimensional integer-component vectors n. Solenoidality
of the field eiq·xf is equivalent to the orthogonality f̂n · (n+q) = 0 for all wave vectors n. We
set

Pq : f 7→
∑
n

(
f̂n −

f̂n · (n+q)
|n+q|2

(n+q)
)
ein·x, (4.1)

well-defined for q , 0, and

P0 : f 7→ f̂0 +
∑
n,0

(
f̂n −

f̂n ·n
|n|2

n
)
ein·x (4.2)

for q = 0. Then eiq·xPqf is the solenoidal part of eiq·xf(x) and eiq·x(I −Pq)f is a gradient;
here I denotes the identity operator. It is straightforward to show that

Pqf =P−qf, (5)

where the bar denotes complex conjugation.
For MHD perturbation modes (3), the problem (2) reduces to the eigenvalue problem

for their T3-periodic parts,
Mq(v,b) = λ(q)(v,b), (6)
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for the operator

Mq : (v,b) 7→
(
ν∆qv+Pq

(
v× (∇×V) +V× (∇× v) + iV× (q× v)

+ (∇×b)×B+ i(q×b)×B+ (∇×B)×b
)
,

η∆qb+∇× (v×B+V×b) + iq× (v×B+V×b)
)
. (7)

Here
∆q : v 7→ ∇2v+ 2i(q · ∇)v− |q|2v (8)

is a self-adjoint operator with respect to the scalar product

⟨⟨f1,f2⟩⟩ =
〈
f1 · f2

〉
≡ (2π)−3
∫

T3
f1(x) · f2(x) dx

in the functional Lebesgue space L2(T3) (we use the product for vector fields fi in C3 and C6).
For q , 0, ∆q is negatively defined. In view of (5), complex conjugation of the equation (6)
establishes that the modes (3.1) for opposite q have the same growth rates (the associated
eigenfunctions are complex conjugate), and thus it suffices to search for the maximum
growth rate in the parallelepiped

Q = {q | 0 ≤ q1 ≤ 1/2, − 1/2 ≤ q2 ≤ 1/2, − 1/2 ≤ q3 ≤ 1/2}.

Since the Lorentz force (∇×B)×B in the Navier–Stokes equation (1.1) is quadratic in
magnetic field, for B = 0 the MHD stability problem splits into two independent problems:
the hydrodynamic stability problem for the flow perturbation modes (V′(x), 0), and the
kinematic dynamo problem for magnetic perturbations (0, B′(x)). We consider all the three
stability problems.

3. Computation of the gradient of the growth rates

The dominant (i.e., maximum over all wave vectors q) growth rates of stability modes
can be computed by applying a quasi-Newton method of the steepest descent type (such as
the variable metric method BFGS [Press et al., 1992]). At each step, this requires computing
the gradient of the growth rate in components of q. We express it in terms of the respective
eigenfunction of the adjoint operator.

We henceforth assume for simplicity that λ is of multiplicity one, which is the generic
case for q , 0; we call such eigenvalues simple. (The important non-generic case is λ = 0 for
q = 0, because the kernel of the operator of linearization is three-dimensional in the
kinematic dynamo and hydrodynamic stability problems, and six-dimensional in the MHD
stability problems. To calculate the gradient in this case, the same approach is applicable,
but this problem is algebraically more involved.) We can find its derivatives in qm using the
biorthogonality of the eigenfunctions of a linear operator and its adjoint. Differentiating
(6) in qm yields (if the derivative exists)

(Mq −λ)
(

∂
∂qm

(v,b)
)

+ (ζv,ζb) =
∂λ
∂qm

(v,b), (9)
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where

ζv = 2ν
(
−qmv+ i

∂v
∂xm

)
+ iPq(V× (em × v) + (em ×b)×B) +

∂Pq

∂qm

(
v× (∇×V)

+V× (∇× v) + iV× (q× v) + (∇×b)×B+ i(q×b)×B+ (∇×B)×b
)
,

ζb = 2η
(
−qmb+ i

∂b
∂xm

)
+ iem × (v×B+V×b),

em are unit vectors of the Cartesian coordinate system and(
∂Pq

∂qm

)
: f 7→

∑
n

(
2(nm + qm)

f̂n · (n+q)
|n+q|4

(n+q)− f̂n · em
|n+q|2

(n+q)− f̂n · (n+q)
|n+q|2

em

)
ein·x. (10)

The operator O ∗ adjoint to O in L2(T3) is defined as usual by the identity

⟨⟨O (v1,b1), (v2,b2)⟩⟩ = ⟨⟨(v1,b1),O ∗(v2,b2)⟩⟩

that holds true for any pair (v1,b1), (v2,b2) of three-dimensional T3-periodic smooth fields
vk and bk (not necessarily solenoidal ones). It is easy to verify that the projection Pq is
self-adjoint, and

M ∗q : (v,b) 7→
(
ν∆qv+ (∇×V)×Pqv+∇× (Pqv×V) + iq× (Pqv×V)

− (∇×b+ iq×b)×B,
η∆qb+∇× (B×Pqv) + iq× (B×Pqv)− (∇×B)×Pqv

−V× (∇×b+ iq×b)
)
. (11)

If λ is an eigenvalue ofMq, then λ is an eigenvalue of the adjoint operatorM ∗q . For
solving the problem

M ∗q (v∗,b∗) = λ(v∗,b∗) (12)

efficiently, we employ the projection Pq. After we apply Pq to the hydrodynamic com-
ponent of (12), the transformed eigenvalue problem involves Pqv∗, but not the field
v∗ individually (since the projection Pq and the modified Laplacian ∆q commute). In view
of the identity

∇×b∗ + iq×b∗ = e−iq·x∇× (eiq·xb∗) = e−iq·x∇× (eiq·xPqb
∗) = ∇×Pqb

∗ + iq×Pqb
∗,

upon applying Pq to the magnetic component, the new equations involve b∗ also only as
the argument of Pq. This decreases the dimension of the functional subspace, where the
solution is sought, and hence solving the modified problem requires less computational
resources than solving (12). For Pqv∗ and Pqb∗ known, (12) yields

(I −Pq)v∗ = (λ− ν∆q)−1(I −Pq)
(
(∇×V)×Pqv

∗ − (∇×Pqb
∗ + iq×Pqb

∗)×B
)
,

(I −Pq)b∗ = −(λ− η∆q)−1(I −Pq)
(
(∇×B)×Pqv

∗ +V× (∇×Pqb
∗ + iq×Pqb

∗)
)
.

The two orthogonal complements are easily obtained in the Fourier space. We normalize
the eigenfunction (v∗,b∗) by imposing the condition

⟨⟨(v,b), (v∗,b∗)⟩⟩ = 1. (13)
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Scalar multiplying now (9) by (v∗,b∗) and taking the real part, we find the gradient of
the growth rate of the perturbation,

∂γ

∂qm
=Re⟨⟨(ζv,ζb), (v∗,b∗)⟩⟩

=Re
〈〈
−2νqmv+

∂Pq

∂qm

(
v× (∇×V) +V× (∇× v+ iq× v) + (∇×b+ iq×b)×B

+ (∇×B)×b
)
,v∗

〉〉
− Im

〈〈
2ν

∂v
∂xm

+Pq

(
V× (em× v) + (em×b)×B

)
,v∗

〉〉
− 2ηqmRe⟨⟨b,b∗⟩⟩ − Im

〈〈
2η

∂b
∂xm

+ em × (v×B+V×b),b∗
〉〉
. (14)

By construction,
Mq(v,b) = e−iq·xM (eiq·x(v,b)), (15)

whereM is the linearization (see (2)) of the system of the MHD equations (1); its explicit
form, as well as that of the adjoint operatorM ∗, can be obtained by setting q = 0 in (7) and
(11), respectively. In particular,

M : (v,b) 7→
(
ν∇2v+P (v× (∇×V) +V× (∇× v) + (∇×b)×B+ (∇×B)×b),

η∇2b+∇× (v×B+V×b)
)
, (16.1)

where P =P0 is the projection into the space of solenoidal fields,

P : f 7→ f−∇(∇−2(∇ · f)), (16.2)

and ∇−2 denotes the inverse Laplacian. A similar relation holds for the adjoint operators:

M ∗q (v,b) = e−iq·xM ∗(eiq·x(v,b)). (17)

These identities are used both for the analysis of the problem (see the next section) and in
the numerical work.

The operators encountered in the hydrodynamic stability problem are obtained from
(7) and (11) for B = b = 0,

Hq : v 7→ ν∆qv+Pq

(
v× (∇×V) +V× (∇× v) + iV× (q× v)

)
, (18.1)

H ∗q : v 7→ ν∆qv+ (∇×V)×Pqv+∇× (Pqv×V) + iq× (Pqv×V) (18.2)

and in the kinematic dynamo problem for B = v = 0,

Dq : b 7→ η∆qb+∇× (V×b) + iq× (V×b), (19.1)

D ∗q : b 7→ η∆qb−V× (∇×b+ iq×b). (19.2)

We denote by γb, γv and γbv the maximum, over the wave vectors q, growth rates of the
generated magnetic field and perturbations in the kinematic dynamo, hydrodynamic and
MHD linear stability problems, respectively.

For computingMq(v,b), the code for computation of the linearizationM (v,b) (16)
can be used upon transforming, following (15), the previously integer wave numbers
nk → nk +qk when computing all spatial derivatives except in ∇×V and ∇×B. This way we
avoid programming the additional (involving q) terms in (7) and spending the processor
time to compute them separately. The same approach can be used, in view of (17), for
computing the results of the action of the adjoint operatorM ∗q (11): it suffices to use the
code for computation ofM ∗, adjoint toM , for the transformed wave numbers. (Of course,
this remark also applies to computations for the two stability problems for an amagnetic
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steady state.) Similarly, the solenoidality of the fields constituting the mode (3.1) in terms
of the coefficients of the Fourier series

v =
∑
n

v̂nein·x, b =
∑
n

b̂nein·x

is equivalent to the orthogonality v̂n · (n+q) = b̂n · (n+q) = 0 for all wave vectors n.
The magnetic induction operatorD : b 7→ η∇2b+∇× (V×b) arising in the kinematic

dynamo problem has a well-known property:

∇× (D ∗b) =D −(∇×b)

(see, e.g., [Rasskazov et al., 2018]), whereD − : b 7→ η∇2b−∇× (V×b) denotes the magnetic
induction operator for the reverse flow −V. Consequently, the eigenvalue problem

D ∗qb
∗ = λb∗ (20)

can be solved using the code for the kinematic dynamo problem for the reverse flow,

η∆qc
∗ −∇× (V× c∗)− iq× (V× c∗) = λc∗,

(upon transforming the wave numbers nk → nk+qk , as discussed in the previous paragraph).
Substituting its solution c∗ = ∇ × b∗ + iq × b∗ into (20) yields an elliptic equation, easily
solvable in the Fourier space and furnishing b∗ = (η∆q −λ)−1(V× c∗).

The ability to compute the gradient (14) suggests that, in order to find the maximum
growth rate, we might seek solutions to the system of equations

∂γ/∂qm = 0. (21)

However, this is not optimal for several reasons: Solving numerically a nonlinear system
of equations can be problematic [Press et al., 1992]. The gradient can have singularities
near bifurcation points at a branch of eigenvectors of a linear operator (in particular, when
the branch emerges or disappears). Furthermore, in different regions of the q space the
locally maximum growth rate can be attained in distinct branches; it is continuous, but not
differentiable at the borders between the regions.

In order to check, whether a wave vector q, for which (21) is satisfied, is associated with
a locally maximum growth rate (for instance, when following branches of eigenvalues for
half-integer wave vectors), we can analyze the eigenvalues of the Hessian ∥∂2Reλ/∂qm∂qn∥.
For a simple eigenvalue, the second derivatives comprising this matrix are obtained by
differentiating (14) in qn. The resulting expression involves the derivatives ∂(v,b)/∂qn and
∂(v∗,b∗)/∂qn. These vector fields satisfy (9) and the equation obtained by differentiating
(14) in qm,

(M ∗q −λ)
(

∂
∂qm

(v∗,b∗)
)

+ (ζv∗,ζb∗) =
∂λ
∂qm

(v∗,b∗), (22)

where

ζv∗ = 2ν
(
−qmv∗ + i

∂v∗

∂xm

)
+ (∇×V)×

∂Pq

∂qm
v∗ +∇×

(
∂Pq

∂qm
v∗ ×V

)
+ iq×

(
∂Pq

∂qm
v∗ ×V

)
+ iem × (Pqv

∗ ×V)− i(em ×b∗)×B,

ζb∗ = 2η
(
−qmb∗ + i

∂b∗

∂xm

)
+∇×

(
B×

∂Pq

∂qm
v∗

)
+ iq×

(
B×

∂Pq

∂qm
v∗

)
+ iem × (B×Pqv

∗)

− (∇×B)×
∂Pq

∂qm
v∗ − iV× (em ×b∗).
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If the eigenvalue λ is simple, the solvability conditions for the two equations, (9) and (22),
reduce to

∂λ
∂qm

= ⟨⟨(ζv,ζb), (v∗,b∗)⟩⟩.

Solving these equations, we can determine the derivatives ∂(v,b)/∂qm and ∂(v∗,b∗)/∂qm up
to arbitrary additive terms proportional to the eigenvector ofMq (M ∗q , respectively) associ-
ated with the eigenvalues λ (λ, respectively). These terms are chosen in such a way that the
normalization condition〈〈

(v,b),
∂

∂qm
(v∗,b∗)

〉〉
+
〈〈

∂
∂qm

(v,b), (v∗,b∗)
〉〉

= 0

(obtained by differentiating (13) in qm) is satisfied.
For q = 0, the kernel of the linearization has dimension at least 3 for the problems of

hydrodynamic stability and kinematic magnetic dynamo, and at least 6 for the full MHD
linear stability problem. Consequently, for neutral stability modes for q = 0, the approach
outlined above is inapplicable, but the multiscale analysis (see section 5) establishes when
zero is a locally maximum growth rate. For a generic steady flow or MHD state, the α-effect
acting on large-scale fields (Bloch modes for small q) is not offset by the action of diffusion
of the same order O(|q|) of smallness; consequently, instability to large-scale perturbations
persists for all diffusivities η and/or viscosities ν, i.e., for any sufficiently small |q|. In the
absence of the α-effect (e.g., for parity-invariant flows or MHD states), the main mechanism
for development of large-scale instability is negative eddy diffusivity (or eddy viscosity
in the hydrodynamic problem), and zero is the locally maximum instability growth rate
whenever eddy diffusivity is not negative.

4. Stationary half-integer wave vectors

Here we show that half-integer wave vectors q satisfy (21) provided either (i) the
eigenvalue λ is real, or (ii) the perturbed state is comprised of parity-invariant fields V and
B, i.e.,

V(x) = −V(−x), B(x) = −B(−x) (23)

provided the center of symmetry coincides with the origin of the coordinate system. We
consider a simple eigenvalue λ in order to be able to use the expression (14) for the
derivative in the l.h.s. of (21). In other words, under the stated conditions, half-integer
wave vectors are stationary points of the growth rates γ(q). We consider the two cases
following [Zheligovsky and Chertovskih, 2020], where this was shown in the context of the
kinematic dynamo problem. The existence of the derivatives is assumed.

(i) The eigenvalue λ is real. Suppose q = 0 (and hence all terms proportional to
qm vanish in the r.h.s. of (14)). Then the eigenfunctions (v,b) and (v∗,b∗) ofMq andM ∗q are
real-valued (otherwise, their real and imaginary parts belong to the respective invariant
subspace) implying that all terms in the r.h.s. of (14) that are imaginary parts vanish. For
q = 0, the coefficients in the l.h.s. of the Fourier series (10) are odd in n; thus, the operator
∂Pq/∂qm maps real vector fields to imaginary fields. This establishes (21) for q = 0. For
other half-integer q, the proof is more technical, but it is based on the same ideas.

Complex conjugation of (6) with the use of (15) demonstrates that

e−iq·xM (eiq·xe−2iq·x(v,b)) = λ(q)e−2iq·x(v,b),

i.e., the T3-periodic vector field e−2iq·x(v,b) is also an eigenfunction ofMq associated with

the eigenvalue λ. Consequently, for real λ, the fields e−iq·x(e−iq·x(v,b)± eiq·x(v,b)) (at least
one of which is non-zero) also belong to the same eigenspace. Hence, a solution to (6) takes
the form

(v,b) = e−iq·xg, (24.1)
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where g(x) is real-valued. (Not surprisingly: by (3.1), eiq·x(v,b) = (V′ ,B′) is an MHD
perturbation mode satisfying the eigenvalue problem (2) for the linearizationM (16) of the
system of equations of magnetohydrodynamics (1); this operator does not involve complex
coefficients, and its real eigenfunctions are associated with real eigenvalues λ. A similar
comment pertains to the eigenfunction of the adjoint operatorM ∗.) In view of the identity
(17), by a similar argument, the eigenfunction ofM ∗q associated with the eigenvalue λ can
be expressed as

(v∗,b∗) = e−iq·xg∗, (24.2)

where g∗ is real-valued (this is compatible with the normalization (13)).
On substituting the eigenfunctions (24) into (14), we find that the two terms involving

the factor ν cancel out (or they both vanish, if qm = 0), as well as the two terms involving
the factor η. None of the remaining terms gives a non-zero contribution. In particular,
expanding a vector field f in the Fourier series reveals that if eiq·xf is real, then eiq·xPqf is
real and eiq·x(∂Pq/∂qm)f is imaginary; consequently, all terms in (14) involving Pq or
∂Pq/∂qm vanish. Thus, under our assumptions on q and λ, (21) is satisfied.

(ii) The fields V and B are parity-invariant. The eigenvalue problem (6) for the operator
(15) can now be recast at the point −x as

eiq·xM (e−iq·x(v(−x),b(−x))) = λ(v(−x),b(−x))

⇒ e−iq·xM (eiq·xe−2iq·x(v(−x),b(−x))) = λe−2iq·x(v(−x),b(−x)),

i.e., e−2iq·x(v(−x),b(−x)) is also a T3-periodic eigenfunction of the operatorMq associated

with the eigenvalue λ. Since the fields e−iq·x
(
eiq·x(v(x),b(x)) ± e−iq·x(v(−x),b(−x))

)
belong

to this eigensubspace (one-dimensional by our assumption), the eigenfunction under
consideration takes the form (24.1), where g is parity-invariant (g(x) = −g(−x)) or parity-
antiinvariant (g(x) = g(−x)); only one of the two possibilities realizes since λ is a simple
eigenvalue. In terms of the Fourier coefficients v̂n and b̂n of v and b, respectively, this
property can be expressed as v̂n = −v̂−2q−n, b̂n = −b̂−2q−n for parity-invariant fields (v,b),
and v̂n = v̂−2q−n, b̂n = b̂−2q−n for parity-antiinvariant ones. By a similar argument, the
eigenfunction of the adjoint operator M ∗q (17) associated with the eigenvalue λ has the
same structure (24.2), where g∗ is also parity-invariant or antiinvariant. The parity of
g and g∗ is the same, because otherwise ⟨⟨(v,b), (v∗,b∗)⟩⟩ = 0 which is incompatible with the
normalization (13) stemming from the biorthogonality of the bases of eigenfunctions of
Mq andM ∗q in L2(T3). (Actually, for a parity-invariant state (V,B), parity-invariant and
antiinvariant vector fields constitute invariant subspaces of the linearizationM and its
adjoint, implying that their eigenfunctions g = eiq·x(v,b) and g∗ = eiq·x(v∗,b∗) have the same
parity.)

On substituting the expressions (24) into (14), we find that the two terms involving
the factor ν cancel out, as well as the two terms involving the factor η (or they are zero if
qm = 0). By (4.1) and (10), eiq·xPqf preserves parity invariance and antiinvariance of eiq·xf,
and eiq·x(∂Pq/∂qm)f swaps them. Therefore, all remaining terms in (14) give rise to volume
integrals of parity-antiinvariant fields, which are zero. Thus, in the case (ii) (21) is also
satisfied.

The demonstration is not affected by assuming B = 0, i.e., it holds for the hydrody-
namic linear stability problem and the kinematic dynamo problem.

As a side remark, we note that, for a parity-invariant steady state (V,B), if (v(x),b(x)) is
an eigenfunction of the operatorMq associated with an eigenvalue λ, the field (v(−x),b(−x)) is
an eigenfunction ofMq associated with the eigenvalue λ (it is straightforward to verify this

considering (6) at the point −x and using the identity Pq(f(−x)) = (Pqf)(−x)).

5. The formalism of the multiscale stability theory

We outline here the main ideas of the derivation of the combined MHD α-effect
and diffusivity tensors in the multiscale linear stability theory for MHD steady states
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residing in the entire space [Zheligovsky, 2003] and tune the results for the purposes of
the present investigation. Let us stress, that we inspect exclusively the results that are
obtained from the first principles by asymptotic methods for systems, where a significant
scale separation is present; we are not interested here in the rich variety of results of the
mean-field electrodynamics relying on additional assumptions, such as the first-order
smoothing approximation (also referred to as the second-order correlation approximation),
see, e.g., [Krause and Rädler, 1980] and the reviews [Brandenburg and Subramanian, 2005;
Brandenburg et al., 2012].

A comment on the kernel of the operatorM is in order. It consists of the so-called
neutral modes satisfying the equations

ν∇2V′ +V′ × (∇×V) +V× (∇×V′) + (∇×B′)×B+ (∇×B)×B′ −∇P ′ =0, (25.1)

η∇2B′ +∇× (V′ ×B+V×B′) =0, (25.2)

∇ ·V′ = ∇ ·B′ =0. (25.3)

Let us denote by M̃ the restriction ofM on the subspace of T3-periodic six-dimensional
vector fields (v,b) such that both components, v and b, are three-dimensional solenoidal
fields. It is straightforward to show that constant six-dimensional vectors belong to the
kernel of its adjoint M̃ ∗ = PM ∗ (here P is meant to be applied to both components of
M ∗q (11) for q = 0). This has two important corollaries (see [Zheligovsky, 2011]). First,

⟨fv⟩ =
〈
fb

〉
= 0 is generically the solvability condition for the equation M (v,b) = (fv,fb)

for solenoidal fv and fb, when a solution is supposed to have solenoidal hydrodynamic
and magnetic components v and b (this condition follows from the Fredholm alternative
theorem). Second, the kernel ofM involves six small-scale neutral modes (V′ ,B′ , P ′), which
we denote Svk(x) = (Svvk (x),Svbk (x),Svp

k (x)) and Sbk (x) = (Sbvk (x),Sbbk (x),Sbp
k (x)) for k = 1,2,3;

they are normalized by the conditions〈
Svk

〉
= (ek ,0,0),

〈
Sbk

〉
= (0,ek ,0) for 1 ≤ k ≤ 3

and have solenoidal components Svvk ,Svbk ,Sbvk ,Sbbk . Generically, these neutral modes span
the kernel ofM .

Assuming the dependence of large-scale stability modes on the two spatial variables,
the fast (on which the perturbed steady fields V(x),B(x) depend) and slow one, we consider
the limit |q| = ε→ 0 and expand a mode and the associated eigenvalue in the power series

V′ =
∞∑
n=0

V′n(x,X)εn, B′ =
∞∑
n=0

B′n(x,X)εn, P ′ =
∞∑
n=0

P ′n(x,X)εn, λ =
∞∑
n=0

λnε
n. (26)

Substituting the series into (2) yields a hierarchy of equations of the form

M (V′n,B
′
n) = Fn(V′n−1,B

′
n−1,λn−1, P

′
n−1, ...,V

′
0,B
′
0,λ0, P

′
0). (27)

The first equation in the hierarchy isM (V′0,B
′
0) = λ0(V′0,B

′
0). We choose λ0 = 0, since,

when Reλ0 , 0, a small-ε perturbation does not change the sign of the real part and thus
the large-scale mode has the same stability properties as the unperturbed small-scale mode
(V′0,B

′
0). Thus, generically we find

(V′0,B
′
0, P
′
0) =

3∑
k=1

(〈
V′0

〉
kS

v
k(x) +

〈
B′0

〉
kS

b
k (x)

)
(28)

(here ⟨·⟩k denotes the kth component of the averaged vector; the subscripts enumerate
scalar elements of matrices and vectors; when other indices are present, they are shown
after the comma).
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The solenoidality of the flow and magnetic field perturbations (2.3) implies

∇X ·
〈
V′n

〉
= 0, ∇x ·V′n +∇X ·V′n−1 = 0, (29.1)

∇X ·
〈
B′n

〉
= 0, ∇x ·B′n +∇X ·B′n−1 = 0 (29.2)

for all n ≥ 0 (we assume V′n = B′n = 0 for n < 0), where ∇x and ∇X denote gradients in the
fast and slow spatial variables, respectively.

5.1. The combined MHD α-effect

It is possible to solve the hierarchy of equations (27) at all orders. The solvability
condition yields successively equations for the averages ⟨V′n⟩ and ⟨B′n⟩, and the terms λn.
In view of (29), it reduces for n = 1 to the relations

3∑
k=1

(
Avv
k ∇X

〈
V′0

〉
k +Abv

k ∇X
〈
B′0

〉
k

)
−∇XP ∗0 = λ1

〈
V′0

〉
, (30.1)

∇X ×
3∑

k=1

(
Avb
k

〈
V′0

〉
k +Abb

k

〈
B′0

〉
k

)
= λ1

〈
B′0

〉
. (30.2)

Here Avv
k and Abv

k are symmetric 3× 3 matrices with the entries

Avv
k,j ′j =

〈
−Vj ′S

vv
k,j −VjS

vv
k,j ′ +Bj ′S

vb
k,j +BjS

vb
k,j ′

〉
, (31.1)

Abv
k,j ′j =

〈
−Vj ′S

bv
k,j −VjS

bv
k,j ′ +Bj ′S

bb
k,j +BjS

bb
k,j ′

〉
, (31.2)

and Avb
k and Abb

k are three-dimensional vectors:

Avb
k =

〈
V×Svbk −B×S

vv
k

〉
, Abb

k =
〈
V×Sbbk −B×S

bv
k

〉
. (31.3)

The first-order partial differential operator in the l.h.s. of (30), acting on the vector field
(⟨V′0⟩, ⟨B

′
0⟩), is called the operator of the combined MHD α−effect.

We denote by γb
α , γv

α and γbv
α the maximum slow-time growth rates of the generated

magnetic field and perturbations due to the action of the α-effects in the kinematic dynamo,
hydrodynamic and MHD linear stability problems, respectively. These values are defined
as maxq Reλ1, where the coefficient λ1 is the leading term in the expansion (26) of the
eigenvalue λ.

The eigenvalue problem (30) can be stated for different boundary conditions for
the mean perturbation (V′ ,B′). As this is often done in the literature, we investigate
here the simplest for analysis case of the mean perturbation, space-periodic in the slow
variables (whose periodicity may be incompatible with that of the state (V,B) subjected
to perturbation). Such a perturbation mode takes the Bloch form (3), and the mean
perturbation is then a plain Fourier harmonics〈

(V′0,B
′
0)
〉

= (Cv,Cb)eiq·x, (32)

where Cv and Cb are constant three-dimensional vectors. Following [Rasskazov et al., 2018],
we introduce an orthonormal basis of positive orientation in R3 consisting of unit vectors

l = (sinθ cosϕ, sinθ sinϕ, cosθ),

l(1) = (cosθ cosϕ, cosθ sinϕ, − sinθ), (33)

l(2) = (−sinϕ, cosϕ, 0),
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such that q = εl. The solenoidality of
〈
V′0

〉
and

〈
B′0

〉
(see (29)) translates into the orthogo-

nality Cv ·q = Cb ·q = 0, whereby

Cv = C1l
(1) +C2l

(2), Cb = C3l
(1) +C4l

(2). (34)

Scalar multiplying each equation (30) by l(1) and l(2) reduces the problem (30) to the
eigenvalue problem for a 4× 4 matrix

iA(θ,ϕ) = i



∑
k,j ′ ,j

Avv
k,j ′j l

(1)
k lj ′ l

(1)
j

∑
k,j ′ ,j

Avv
k,j ′j l

(2)
k lj ′ l

(1)
j

∑
k,j ′ ,j

Abv
k,j ′j l

(1)
k lj ′ l

(1)
j

∑
k,j ′ ,j

Abv
k,j ′j l

(2)
k lj ′ l

(1)
j∑

k,j ′ ,j

Avv
k,j ′j l

(1)
k lj ′ l

(2)
j

∑
k,j ′ ,j

Avv
k,j ′j l

(2)
k lj ′ l

(2)
j

∑
k,j ′ ,j

Abv
k,j ′j l

(1)
k lj ′ l

(2)
j

∑
k,j ′ ,j

Abv
k,j ′j l

(2)
k lj ′ l

(2)
j

−
∑
k,j

Avb
k,j l

(1)
k l

(2)
j −

∑
k,j

Avb
k,j l

(2)
k l

(2)
j −

∑
k,j

Abb
k,j l

(1)
k l

(2)
j −

∑
k,j

Abb
k,j l

(2)
k l

(2)
j∑

k,j

Avb
k,j l

(1)
k l

(1)
j

∑
k,j

Avb
k,j l

(2)
k l

(1)
j

∑
k,j

Abb
k,j l

(1)
k l

(1)
j

∑
k,j

Abb
k,j l

(2)
k l

(1)
j


. (35)

We need to find the values of θ and ϕ delivering the maximum growth rate γvb
α .

Because of the factor i in front of the real matrix A, this requires finding the eigenvalue of
A with the largest in absolute value imaginary part.

In the case of the kinematic dynamo problem, Sbbk in (31.3) span the kernel of the
magnetic induction operatorD =D0, only the vectors Abb

k are non-zero in (31), and the
eigenvalue problem for the matrix (35) reduces to the eigenvalue problem for its 2× 2 right
lower corner cell. Its eigenvalues are [Rasskazov et al., 2018]

λb
1±

(l) = − i
2

∑
k,j,m

ϵkjmA
bb
k,j lm ±

√
ab, ab = l · (det sAbb) (sAbb)−1l,

where ϵkjm is the unit antisymmetric tensor and the entries of the symmetrized magnetic
α-effect tensor sAbb = (Abb + (Abb)∗)/2 are sAbb

k,j = (Abb
k,j +Abb

j,k )/2. (The singularity, formally

arising when the matrix sAbb is non-invertible, is removed by expressing the inverse matrix
in terms of the cofactors.) Hence the maximum growth rate due to the magnetic α-effect is
[Rasskazov et al., 2018]

γb
α ≡max

θ,ϕ
Reλb

1(θ,ϕ) =
√

max(α1α2, α2α3, α1α3), (36)

where αi are the three real eigenvalues of the 3× 3 matrix sAbb. (For a symmetric magnetic
α-effect tensor Abb, (36) stems from the results of [Moffatt, 1978], section 9.3 .)

In the case of the large-scale hydrodynamic stability problem, of the Navier–Stokes
equation, H =H0, and all the quantities (31) vanish except for the matrices Avv

k describing
the AKA-effect. The eigenvalue problem for the matrix (35) reduces to the eigenvalue
problem for the 2× 2 cell in the upper left corner of (35). The two eigenvalues are

λv
1±

=
i
2

∑
k,j

akj (δ
j
k − lklj )±

1
2

√
av,
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where δ
j
k is the Kronecker symbol,

akj =
∑
j ′

Avv
k,j ′j lj ′ ,

av =
( ∑
k,j,m

ϵkjmakj lm

)2
−
(∑

k,j

akj (l
(1)
k l

(1)
j − l

(2)
k l

(2)
j )

)2
−
(∑

k,j

akj (l
(1)
k l

(2)
j + l

(2)
k l

(1)
j )

)2

=
( ∑
k,j,m

ϵkjmakj lm

)2
−
(
tr sa− l · sal

)2
+ 4det sa l · (sa)−1l.

(The identity l = l(1) × l(2) has been used to derive the expression for the discriminant av.)
Thus, the AKA-effect gives rise to large-scale modes of hydrodynamic linear perturbations
that are growing or decaying only if the part of the AKA-effect tensor Avv

k,j ′j , antisymmetric
in k and j, is non-zero, and then the frequency of oscillations in time is controlled by the
symmetric part sa of the tensor a, where sakj = (akj + ajk)/2. In contrast to the case of the
kinematic dynamo problem, no analytical expression is available for the maximum growth
rate γv

α , and it must be determined numerically (as well as in the case of the full 4×4 matrix
(35)).

5.2. The combined MHD eddy diffusivity

The operator of the combined MHD α-effect in the l.h.s. of (30) can vanish identically,
implying λ1 = 0,

〈
P ′0

〉
= 0. The leading term coefficient in the expansion of the eigenvalue

λ is then λ2, which is an eigenvalue of the MHD eddy diffusivity operator. We denote by
γb

e , γv
e and γbv

e the maximum slow-time growth rates of the generated magnetic field and
perturbations in the kinematic dynamo, hydrodynamic and MHD linear stability problems,
respectively, due to the action of the eddy diffusivity and eddy viscosity. These values are
defined as maxq Reλ2, where the coefficient λ2 is the leading term in the expansion (26) of
the eigenvalue λ.

This happens, for instance, if the MHD steady state (V(x),B(x)) is parity-invariant (see
(23)). For such a steady state, the domain of the operator of linearization,M , splits into two
invariant subspaces: one is comprised of six-dimensional parity-invariant vector fields, the
other one of parity-antiinvariant fields. Consequently, Svvk ,Svbk ,Sbvk ,Sbbk ,∇Svp

k and ∇Sbp
k are

three-dimensional parity-antiinvariant fields, whereby all the quantities (31) vanish.
By linearity, solutions to the equation (27) for n = 1 take the form

(V′1,B
′
1, P
′
1) =

3∑
k=1

(〈
V′1

〉
kS

v
k(x) +

〈
B′1

〉
kS

b
k (x)

)
+

3∑
k=1

3∑
m=1

Gv
mk

∂
〈
V′0

〉
k

∂Xm
+Gb

mk

∂
〈
B′0

〉
k

∂Xm

. (37)

Here vector fields Gv
mk(x) = (Gvv

mk ,G
vb
mk ,G

vp
mk) and Gb

mk(x) = (Gbv
mk ,G

bb
mk ,G

bp
mk) are T3-periodic

zero-mean solutions to auxiliary problems:

MGv
mk =

(
− 2ν∂Svvk /∂xm +VmS

vv
k −BmS

vb
k + (Svp

k −V ·S
vv
k +B ·Svbk )em,

− 2η∂Svbk /∂xm −VSvb
k,m +VmS

vb
k +BSvv

k,m −BmS
vv
k

)
, (38.1)

∇x ·Gvv
mk =− Svv

k,m; (38.2)

MGb
mk =

(
− 2ν∂Sbvk /∂xm +VmS

bv
k −BmS

bb
k + (Sbp

k −V ·S
bv
k +B ·Sbbk )em,

− 2η∂Sbbk /∂xm −VSbb
k,m +VmS

bb
k +BSbv

k,m −BmS
bv
k

)
, (39.1)

∇x ·Gbv
mk =− Sbv

k,m. (39.2)
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The divergence of the magnetic component of (38.1) and (39.1) implies, respectively,
relations

∇x ·Gvb
mk = −Svb

k,m, ∇x ·Gbb
mk = −Sbb

k,m,

which guarantee together with (38.2) and (39.2) that the solenoidality conditions (29) hold
true for n = 1. Vector fields Gvv

mk ,G
vb
mk ,G

bv
mk ,G

bb
mk ,∇G

vp
mk and ∇Gbp

mk are parity-invariant.
The solvability condition for the equation (27) for n = 2, upon substituting (28) and

(37), becomes

ν∇2
X
〈
V′0

〉
+

∑
k,m,j

Dvv
jmk

∂2
〈
V′0

〉
k

∂Xm∂Xj
+Dbv

jmk

∂2
〈
B′0

〉
k

∂Xm∂Xj

−∇XP ∗1 = λ2
〈
V′0

〉
, (40.1)

η∇2
X
〈
B′0

〉
+∇X ×

∑
k,m

Dvb
mk

∂
〈
V′0

〉
k

∂Xm
+Dbb

mk

∂
〈
B′0

〉
k

∂Xm

 = λ2
〈
B′0

〉
. (40.2)

We have denoted

Dvv
jmk =

〈
−VjG

vv
mk −VGvv

mk,j +BjG
vb
mk +BGvb

mk,j

〉
, (41.1)

Dbv
jmk =

〈
−VjG

bv
mk −VGbv

mk,j +BjG
bb
mk +BGbb

mk,j

〉
, (41.2)

Dvb
mk =

〈
V×Gvb

mk −B×G
vv
mk

〉
, (41.3)

Dbb
mk =

〈
V×Gbb

mk −B×G
bv
mk

〉
. (41.4)

The second-order partial differential operator in the l.h.s. of (40) is called the operator of the
combined MHD eddy diffusion; in general, it is anisotropic.

As in the case of the combined α-effect operator, the problem (40) admits mean-field
eigenfunctions (32) satisfying (34). Their coefficients (C1,C2,C3,C4) are eigenvectors of the
4× 4 matrix

D(θ,ϕ) = −



ν +
∑
k,j

dvvkj l
(1)
k l

(1)
j

∑
k,j

dvvkj l
(2)
k l

(1)
j

∑
k,j

dbvkj l
(1)
k l

(1)
j

∑
k,j

dbvkj l
(2)
k l

(1)
j∑

k,j

dvvkj l
(1)
k l

(2)
j ν +

∑
k,j

dvvkj l
(2)
k l

(2)
j

∑
k,j

dbvkj l
(1)
k l

(2)
j

∑
k,j

dbvkj l
(2)
k l

(2)
j

−
∑
k,j

dvbkj l
(1)
k l

(2)
j −

∑
k,j

dvbkj l
(2)
k l

(2)
j η −

∑
k,j

dbbkj l
(1)
k l

(2)
j −

∑
k,j

dbbkj l
(2)
k l

(2)
j∑

k,j

dvbkj l
(1)
k l

(1)
j

∑
k,j

dvbkj l
(2)
k l

(1)
j

∑
k,j

dbbkj l
(1)
k l

(1)
j η +

∑
k,j

dbbkj l
(2)
k l

(1)
j


(42)

obtained by scalar multiplying the flow and magnetic components of (40) by l(1) and l(2)

(33). Here

dvvkj =
∑
j ′ ,m

Dvv
j ′mk,j lj ′ lm, dbvkj =

∑
j ′ ,m

Dbv
j ′mk,j lj ′ lm, dvbkj =

∑
m

Dvb
mk,j lm, dbbkj =

∑
m

Dbb
mk,j lm.

In the large-scale kinematic dynamo problem, only the vectors Dbb
mk are non-zero, and

in the large-scale hydrodynamic stability problem, only Dvv
jmk do not vanish in (41). This

leaves us with the eigenvalue problems for the 2×2 right lower or left upper corner cells of
(42), respectively.

Russ. J. Earth. Sci. 2023, 23, ES3001, https://doi.org/10.2205/2023es000834 15 of 20

https://doi.org/10.2205/2023es000834


Linear perturbations of the Bloch type. . . I. Mathematical preliminaries Chertovskih and Zheligovsky

The eigenvalue equation for the kinematic dynamo problem takes the form

(λb
2 + η)2 − trw(λb

2 + η) + det w = 0 for w =


∑
k,j

dbbkj l
(1)
k l

(2)
j

∑
k,j

dbbkj l
(2)
k l

(2)
j

−
∑
k,j

dbbkj l
(1)
k l

(1)
j −

∑
k,j

dbbkj l
(2)
k l

(1)
j

.
We can reduce the degree of the trace of w (regarded as a polynomial in components of the
vectors (33)), from 3 to 2, and of the determinant from 6 to 4:

trw =
∑
k,j,m

ϵkjmd
bb
kj lm, det w =

∑
k,k′ ,j,j ′ ,m,m′

ϵkk′mϵjj ′m′

2
dbbkj d

bb
k′j ′ lmlm′ .

If the respective eigenvalue is real, then the maximum growth rate due to magnetic eddy
diffusivity in terms of the optimal values θopt and ϕopt is

γb
e ≡max

θ,ϕ
Reλb

2(θ,ϕ) =
∂det w/∂θ
∂ trw/∂θ

∣∣∣∣∣
θ=θopt,ϕ=ϕopt

− η =
∂det w/∂ϕ

∂ trw/∂ϕ

∣∣∣∣∣
θ=θopt,ϕ=ϕopt

− η

(provided the denominators do not vanish).
The similarity of the structure of the matrices (35) and (42) and a simple algebra also

yield

λb
2±

(l) =
1
2

∑
k,j,m

ϵkjmd
bb
kj lm ±

√
db − η,

db = −l · (det sdbb) (sdbb)−1l = −
∑

k,k′ ,j,j ′ ,m,m′

ϵkk′mϵjj ′m′

2
sdbbkj

sdbbk′j ′ lmlm′ ,

where the symmetrized 3×3 matrix sdbb = (dbb+(dbb)∗)/2 has the entries sdbbkj = (dbbkj +dbbjk )/2

(no singularity arises when the matrix sdbb is non-invertible).
Employing again the similarity of the structure of the matrices (35) and (42), for the

eddy viscosity acting on large-scale amagnetic perturbations of the flow, we find

λv
2±

= −1
2

∑
k,j

dvvkj (δjk − lklj )±
√
dv − ν,

dv = −
( ∑
k,j,m

ϵkjmd
vv
kj lm

)2
+
(∑

k,j

dvvkj (l(1)
k l

(1)
j − l

(2)
k l

(2)
j )

)2
+
(∑

k,j

dvvkj (l(1)
k l

(2)
j + l

(2)
k l

(1)
j )

)2
.

Thus, the growth of large-scale modes of hydrodynamic linear perturbations is possible
only if the eddy viscosity tensor Dvv

j ′mk,j features a non-zero part, symmetric in k and j.
In all the three cases, maximization of the growth rates in θ,ϕ must be implemented

numerically.

5.3. Computation of the combined MHD eddy diffusivity tensor

It is known (see, e.g., [Andrievsky et al., 2015; Rasskazov et al., 2018]) that, in the large-
scale kinematic dynamo problem, computing the tensor of magnetic eddy diffusivity can
be significantly accelerated: instead of solving nine problems (39), we solve three auxiliary
problems for the adjoint operator,D ∗Zb

n = V× en, and use the equivalent expression

Dbb
mk,n = ⟨⟨Zb

n , 2η ∂Sbbk /∂xm + em × (V×Sbbk )⟩⟩.

(The numerical load of finding one field Gbb
mk is approximately the same as that of finding

one field Zb
n.) When computing the combined MHD eddy diffusivity tensor, the same
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approach is applicable: while using the formulae (41) requires solving nine problems
(38) and nine problems (39), it suffices to compute T3-periodic parity-invariant solutions
Zv
nj = (Zvv

nj ,Z
vb
nj ) and Zb

n = (Zbv
n ,Zbb

n ) to six auxiliary problems for the adjoint operator of the
form

M ∗Zv
nj = (Vjen +Vnej ,−Bjen −Bnej )

and three problems of the form

M ∗Zb
n = (en ×B,−en ×V).

Then

Dξv
jmk,n =− ⟨⟨M ∗Zv

nj ,G
ξ
mk⟩⟩

=⟨⟨Zvv
nj , 2ν ∂Sξvk /∂xm −VmS

ξv
k +BmS

ξb
k − (Sξp

k −V ·S
ξv
k +B ·Sξbk )em⟩⟩

+ ⟨⟨Zvb
nj , 2η ∂Sξbk /∂xm +VSξb

k,m −VmS
ξb
k −BS

ξv
k,m +BmS

ξv
k ⟩⟩,

Dξb
mk,n =− ⟨⟨M ∗Zb

n ,G
ξ
mk⟩⟩

=⟨⟨Zbv
n , 2ν ∂Sξvk /∂xm −VmS

ξv
k +BmS

ξb
k − (Sξp

k −V ·S
ξv
k +B ·Sξbk )em⟩⟩

+ ⟨⟨Zbb
n , 2η ∂Sξbk /∂xm +VSξb

k,m −VmS
ξb
k −BS

ξv
k,m +BmS

ξv
k ⟩⟩,

where the metaindex ξ replaces indices v or b. The gain in efficiency is smaller when
computing the eddy viscosity tensor Dvv

mk in the large-scale hydrodynamic stability problem:
solving nine auxiliary problems (38) for Gvv

mk is replaced by solving six auxiliary problems
for the adjoint operator H ∗Zv

nj = Vjen +Vnej and applying

Dvv
jmk,n = −⟨⟨H ∗Zv

nj ,G
vv
mk⟩⟩ = ⟨⟨Zv

nj , 2ν ∂Svvk /∂xm −VmS
vv
k − (Svp

k −V ·S
vv
k )em⟩⟩.

6. Concluding remarks

We have examined the mathematical and computational aspects of the analysis of
the linear stability of steady space-periodic flows and MHD states to Bloch eigenmodes.
Three linear stability problems have been considered: the kinematic dynamo problem, the
hydrodynamic and MHD stability problem. They all reduce to eigenvalue problems for the
modified operators of linearizationDq (19.1), Hq (18.1) andMq (7), respectively, that are
solved in the periodicity box of the steady state that is perturbed. This is computationally
advantageous, since the need to simultaneously resolve numerically multiple spatial scales
is thus avoided.

Application of an algorithm of the steepest descent type for computing the dominant
growth rate requires evaluating its gradient at each step. We have derived expressions for
∂γ/∂qm in terms of the dominant eigenfunctions of the adjoint operators D ∗q (19.2), H ∗q
(18.2) and M ∗q (11) (see (14) for the MHD stability problem; for the kinematic dynamo
and hydrodynamic stability problems, the expressions are obtained from (14) by setting
B = v = 0 or B = b = 0). They are suitable for computing the gradient and have been
employed for proving that half-integer wave vectors q are stationary points of γ , when
a parity-invariant space-periodic flow or MHD steady state is perturbed, or when the
eigenvalue of the operator of linearization is real. We have also discussed computation
of the Hessian of γ(q), which is needed for numerical verification that a maximum γ is
obtained.

It was demonstrated within the framework of the multiscale stability theory that when
the spatial scale separation is high, the α-effect or, for parity-invariant steady states, the
eddy diffusivity govern the evolution of the large-scale perturbations. We have overviewed
these results from the viewpoint of the prospective numerical application. The α-effect and
eddy diffusivity tensors are expressed in the terms of solutions to the auxiliary problems.
Again, our goal is to compute the maximum, over the direction of the infinitesimal (as
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required in this theory) wave vector q, slow-time growth rates of the modes arising due to
the action of these phenomena. In the case of the magnetic α-effect, the maximum growth
rate can be readily determined (36) from the eigenvalues of the symmetrized α-effect tensor.
No similar direct relations between the dominant growth rates and the α-effect or eddy
diffusivity tensors are known in any other case (i.e., in the presence of the α-effect in the
hydrodynamic and MHD stability problems, or in the presence of the eddy diffusivity in
any of the three stability problems). It is desirable to establish such relations; the well-
known analogy between the evolution of the magnetic field and fluid vorticity suggests
that at least for the AKA-effect this may be possible.

Acknowledgments: the project was financed by the grant № 22-17-00114 of the Russian
Science Foundation (https://rscf.ru/project/22-17-00114/).
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