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Abstract: The remote sensing analysis within the Hu'u District area is known to face a 9 
challenge with dense vegetation. The problem affects the accurate reading of spectral 10 
reflectance from satellites, influencing the differentiation between potential mineral zones 11 
and vegetation. Therefore, this study aims to carry out a remote sensing analysis of densely 12 
vegetated areas to differentiate minerals from vegetation and obtain potential mineral 13 
zones. The combination band ratios and principal component analysis (PCA) methods are 14 
used to acquire potential mineral zones. Furthermore, Landsat 8 images freely available on 15 
Google Earth Engine are adopted and the validation is carried out using a drill hole from 16 
previous study. The results show that band ratios method cannot distinguish mineral zones 17 
from vegetation. However, PCA method can recognize potential mineral zones. This is the 18 
result from PCA method with band combination of bands 1, 2, 3, 4, 5, and 6 as the first group 19 
and bands 2, 4, 5, and 6 as the second group. 20 
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1. Introduction 24 

Geological mapping is perceived as an indispensable component across 25 

different disciplines and applications. In this context, remote sensing datasets have 26 

been developed as a cost-effective, efficacious, as well as temporally and labor-27 

efficient methodology, particularly when subjected to traditional approaches of field 28 

mapping. Landsat data has also been extensively deployed for tasks such as 29 

discriminating among rock units, deciphering lineaments, and showing hydrothermal 30 

alterations. Due to economic concerns, mineral mapping using satellite data speeds 31 

up exploration, lowers expenses, as well as accurately and quickly identifies broad 32 

regions (Aita and Omar, 2021; Bakardjiev and Popov, 2015; Naftali et al., 2015; Shebl 33 

and Csamer, 2021). 34 

Optical appraisal of aerial pictures has been leveraged to correctly show these 35 

formations, particularly linear structures or lineaments. In the present era, with the 36 

advent of Geographic Information System (GIS) expertise, the high-resolution data 37 

gained from photos, autonomous parsing of satellite images, and Landsat, is strongly 38 

propagated (Wambo et al., 2016). Alteration mineral indices such as the OH-bearing, 39 

pyrophyllite, kaolinite, alunite, and calcite were established by detecting argillic, 40 

phyllic, and propylitic alternations in epithermal deposit and porphyry copper 41 

deposit using Landsat 8 (Ombiro et al., 2021; Parcutela et al., 2022; Shim et al., 2021; 42 

Zhang et al., 2016).  43 

Several studies have focused on methodologies to show geological structures by 44 

taking advantage of Principal Component Analysis (PCA) and Band Ratio (BR) among 45 

other techniques. The use of the conventional PCA approach may substantially 46 

enhance the precision of geological mapping, facilitating a more accurate 47 

identification and interpretation of geospatial and spectral data (Carranza and Hale, 48 

2010; Chen et al., 2021; Ghasemi et al., 2018). 49 

2. Study Area  50 

The study area is located within the Hu'u district, Dompu Regency on Sumbawa 51 

Island, situated in West Nusa Tenggara, Indonesia, and forms a portion of the territory 52 

under projects managed by PT Sumbawa Timur Mining (PT STM). Within the district, 53 

there exist three principal porphyry Cu-Au prospects, specifically the Humpa Leu 54 

East, Sori Hiu, and Onto prospects (Fadlin et al., 2023). The district has been 55 

hypothesized to be a paleovolcano, characterized by Upper Miocene Basaltic Andesite 56 

lava, with radiometric dating at an age of 5 ± 0.2 Ma years. Regionally, the rock 57 

formations are categorized as constituents of the Old Volcanics Rocks Formation 58 

(Verdiansyah et al., 2023). The Hu’u intricate features various surface possibilities, 59 

manifested as a lithocap of widespread epithermal-style alteration but some are 60 

connected to a porphyry situated underneath the ground (Verdiansyah et al., 2021). 61 

The Hu'u project region is situated at the junction of many significant fault 62 

zones, according to a seismotectonic assessment. A significant sinistral fault with an 63 

NW trend is projected across the region from the southwest face of the Tambora 64 

volcano. Furthermore, a significant dextral fault with an NE trend extends along the 65 

bay straight west of the Hu'u region (Burrows et al., 2020). 66 
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 67 
Figure 1. Hu’u District, West Nusa Tenggara, Indonesia as the study area 68 

3. Method 69 

3.1 Images Data 70 

Landsat 8 data used is freely obtained from Google Earth Engine as a 71 

compilation of images from April 2013 to 2023. This data is pre-configured in a Top 72 

of Atmosphere (TOA) format after radiometric and geometric corrections. 73 

Furthermore, cloud cover filter is the preprocessing conducted to obtain the least 74 

cloudy images. The purpose of the pre-processing is to derive a collection of satellite 75 

images, spanning several years, with minimal cloud interference. 76 

3.2 Pre-Processing 77 

The data, procured from the Google Earth Engine, originates from Landsat 8, 78 

Collection 2, Tier 1. This data is pre-configured in a TOA format after radiometric and 79 

geometric corrections. In addition, the pre-processing is to derive a collection of 80 

satellite images, spanning several years, with minimal cloud interference. Obtaining 81 

raw Landsat satellite images in the region of interest is crucial in providing the 82 

conditions in the targeted area.  83 

3.3 Band Ratio 84 

Band combinations tested in this study are 4/2, 6/7, 6/5, and 7/5 to obtain iron 85 

oxide, hydroxyl-bearing rocks, ferrous minerals, and clay, respectively. 86 

3.4 Band Ratio Composites 87 

The 3 combinations of band ratio composites experienced in the project are 88 

Sabin’s ratio, Kaufmann’s ratio, and composite of 4/2, 6/7, and 5. Sabin’s ratio is 89 

expected to define a hydrothermal alteration map, while Kaufmanns’ ratio is 90 

anticipated to distinguish altered rocks and lithological elements from the vegetation. 91 
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The composites of 4/2, 6/7, and 5 are used to differentiate altered rocks and outcrops 92 

from trees and plants. 93 

3.5 PCA 94 

There are two combinations of bands for PCA. The group of bands 1, 2, 3, 4, 5, 95 

and 6, as well as those from bands 2, 4, 5 and 6. Eigenvalue and eigenvector are 96 

required to calculate visualization in RGB format. 97 

4. Results 98 

4.1 Raw Landsat Satellite Images 99 

The true color composite requires the visual combinations of bands 2, 3, and 4 100 

from Landsat 8 satellite. The image area should have a low cover of clouds to disturb 101 

the reflectance of signal from a satellite. The cloud covering is inversely proportional 102 

to the accuracy of the results. From Figure 2, the region of interest can be known as a 103 

densely vegetated area, disturbing the reflectance of signal from a satellite. 104 

Meanwhile, the signal reads the vegetation instead of mineral and an advanced 105 

analysis is essential to obtain the reflection of mineral under tight vegetation. Figure 106 

2 is a compilation of Landsat 8 images from April 2013 to 2023 freely available and 107 

obtained from Google Earth Engine showing true color composite. 108 

 109 

Figure 2. True color composites are presented by bands 2, 3, and 4 to explain 110 

the real condition of the study area with the least clouds. 111 

4.2 Band Ratios 112 

Figure 3A, 3B, 3C, and 3D shows the results of band 4/2, 6/7, 6/5, and 7/5, 113 

respectively. Mineral potential zone is not reported due to vegetation and the 114 

expected result is unachieved by combining some bands. Therefore, this method does 115 

not apply to the study area due to increased vegetation. 116 
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 117 

Figure 3. (a) Band ratio 4/2, (b) Band Ratio 6/7, (c) Band Ratio 6/5, (d) Band 118 

Ratio 7/5. These combinations were conducted to detect potential zones. 119 

4.3 Band Ratio Composites 120 

Sabin’s ratio is expected to define the hydrothermal alteration map by 121 

combining bands 4/2, 6/7, and 6/5. Kaufmanns’ ratio is anticipated to distinguish 122 

altered rocks and lithological units from the flora using a combination of 7/5, 5/4, and 123 

6/7. Meanwhile, composites of 4/2, 6/7, and 5 are optimized to differentiate altered 124 

rocks and outcrops from woodlands. Figures 4A, 4B and 4C present the result of 125 

Sabin’s ratio, Kaufmann’s ratio, and a composite of 4/2, 6/7, and 5. These three 126 

composites cannot identify potential mineral zones and the vegetation is still the 127 

unworked factor. Even though the three bands are tested in one composite of RGB 128 

format, the expected result is not attained. 129 
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 130 

Figure 4. A) Sabin’s Ratio (band 4/2, 6/7, and 6/5), B) Kaufmann’s Ratio (band 131 

7/5, 5/4, 6/7), C) Composite of 4/2, 6/7, 5 132 

4.4 PCA 133 

The first combination group consists of bands 1, 2, 3, 4, 5, and 6 to recognize 134 

hydrothermally altered rocks and other minerals from trees. In addition, the second 135 

group of bands 2, 4, 5, and 6 are processed to obtain iron oxides from plants. 136 

Table 1. Eigen Values and Eigen Vectors for Bands 1, 2, 3, 4, 5 and 6 137 

  PC1 PC2 PC3 PC4 PC5 PC6 

Band 1 0.020360 0.192974 -0.334840 -0.494944 0.402861 0.665554 

Band 2 0.035911 0.238785 -0.402445 -0.452621 0.201009 -0.731068 

Band 3 0.103666 0.253710 -0.484258 -0.032229 
-
0.816609 0.149964 

Band 4 0.155918 0.433000 -0.377308 0.723144 0.350531 0.005456 

Band 5 0.754882 -0.595431 -0.265794 0.023034 0.066237 -0.007135 

Band 6 0.627209 0.547126 0.527643 -0.160181 
-
0.056473 0.002697 

Eigen 
Values 0.026078 0.004487 0.001089 0.000040 0.000011 0.000001 

Percentage 
of Eigen 
Values 82.251% 14.151% 3.436% 0.126% 0.035% 0.002% 
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Cumulative 
Percentage 
of Eigen 
Values 82.251% 96.402% 99.837% 99.963% 99.998% 100.000% 

 138 

Table 1 shows that PC1, PC2, and PC3 account for 99.83% of the variation to 139 

create the RGB composite for producing the primary component seen in Figure 5A. 140 

According to the illustration, the green and blue colors symbolize flora and rocks 141 

subjected to hydrothermal alteration, respectively. 142 

Table 2. Eigen Values and Eigen Vectors for Bands 2, 4, 5, and 6 143 

  PC1 PC2 PC3 PC4 

Band 2 -0.033644 0.223736 0.583605 0.779882 

Band 4 -0.153175 0.432613 0.643692 -0.612408 

Band 5 -0.761896 -0.611333 0.213294 -0.017100 

Band 6 -0.628427 0.623747 -0.446734 0.128249 

Eigen Values 0.025795 0.004078 0.000661 0.000027 

Percentage of 
Eigen Values 84.40% 13.35% 2.16% 0.09% 

Cumulative 
Percentage of 
Eigen Values 84.40% 97.75% 99.91% 100.00% 

 144 

PC4 comprises 0.09% of the variance data and has the greatest loading positive 145 

and negative Eigenvector values of 0.779882 and -0.612408 for bands 2 and 4, 146 

respectively. In broad terms, minerals related to iron oxides show low absorption and 147 

reflectance between 0.64-0.67 µm and 0.45-0.51 µm, respectively. Therefore, regions 148 

connected to iron oxides in bands 2 and 4 are bright in the PC4 picture. 149 

 150 
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 151 
Figure 5. A) The PC1, PC2, and PC3 components in RGB combination. Potential 152 

mineral zones are illustrated in dark blue. B) Principal component 4 (PC4). The bright 153 

pixels correspond to hydrothermally altered rocks. 154 

 155 

Figure 5A explains that potential mineral zones are depicted in dark blue, while 156 

vegetation is shown in green. In this context, the bright pixels represent 157 

hydrothermally altered rocks in Figure 5B. 158 

 159 
Figure 6. Drill hole locations (modified after (Burrows et al., 2020)). The yellow 160 

dots and white lines are drill holes and project boundaries, respectively. 161 

 162 

The drill hole data and boundaries of the company’s project area used are 163 

presented in Figure 6. The white lines and yellow dots represent the project area 164 
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boundaries and drill hole locations, respectively. From Figure 7, the locations of the 165 

drill holes are matched with the blue areas from the analysis representing potential 166 

mineral zones. Therefore, the green squares can be potential areas for upcoming 167 

exploration projects. 168 

 169 
Figure 7. Validated map. Yellow dots are drill holes. Dark blue are potential 170 

mineral zone. The green boxes are the suggested next exploration areas. 171 

5. Discussion and Conclusion 172 

The true color composite was reported to require the visual combinations of 173 

bands 2, 3, and 4 from Landsat 8 satellite. The image area had a low cover of clouds 174 

to disturb the reflectance of the signal from a satellite. The clouds covering was 175 

inversely proportional to the accuracy of the results and the region of interest could 176 

be known as a densely vegetated area. In this context, the vegetation disturbed the 177 

reflectance of the signal from a satellite. Therefore, an advanced analysis is essential 178 

to obtain the reflection of minerals under tight vegetation. 179 

Band ratios 4/2, 6/7, 6/5, and 7/5 were tested as visualized in Figure 3 but 180 

could not differentiate mineral potential zone. The vegetation disturbed the satellite 181 

signal reflectance and the expected result could not be accomplished by combining 182 

some bands. Therefore, this method did not apply to this study area due to high 183 

vegetation. Sabin’s Ratio (band 4/2, 6/7, and 6/5), Kaufmann’s Ratio (band 7/5, 5/4, 184 

6/7), and composite of band 4/2, 6/7, 5 were also examined as shown in Figure 4. 185 

Advanced analysis was conducted using PCA andpotential mineral zones were 186 

visible. Based on eigenvalue and eigenvector calculations, PC1, PC2, and PC3 187 

possessed data variance of more than 99.83% in RGB format. The dark blue and green 188 

tint sections showed possible mineral zones and flora, respectively. Meanwhile, the 189 

bright pixels represented hydrothermally altered rocks in Figure 5B. Figure 7 shows 190 
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that mineral zones from PCA method were located as drill holes and yellow dots were 191 

drill holes from the previous study. Dark blue zones were potential mineral areas and 192 

the green boxes were the suggested exploration areas. 193 

In conclusion, PCA method could reduce the effect and identify the targeted 194 

zones even though the vegetation disturbed the read of the satellite signal in detecting 195 

mineral areas. The integration of the method with machine learning might produce 196 

clearer differences for potential zones. 197 

 198 
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