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Abstract: The verification of statistical models of sea surface elevations based on the decomposition of
the wave profile into degrees of a small parameter (wave steepness) and in terms of multidimensional
integrals of wave spectra was carried out. For verification, wave measurement data were used
to calculate the skewness and excess kurtosis of surface elevations, as well as the distribution of
crests and troughs. Two factors are identified that limit the use of estimates of skewness Aη and
excess kurtosis Eη obtained from existing models. First, the model estimates Aη and Eη are always
non-negative, although the measurement data show that the lower limit of the ranges in which the
skewness and excess kurtosis change is in the region of negative values. Secondly, almost all existing
models are one-parameter models, using wave steepness and wave age as predictors; whereas the
measured data indicate that there is no clear relationship. The values of Aη and Eη vary greatly
for fixed values of the predictors. Existing statistical models can only describe average changes Aη
and Eη . This limits the scope of their application. The analysis of the probability density functions
of the troughs FT h and crests FCr showed that the function calculated for Aη < 0 in the region
above the distribution mode exceeds the values corresponding to the Rayleigh distribution, and the
relationship FT h ≈ FCr holds. The second order nonlinear model is inconsistent with this result.
Negative skewness values are observed much less frequently than positive ones, so the functions
FT h and FCr calculated for the whole ensemble of situations are consistent with the second-order
nonlinear model.
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distributions.
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Introduction

Despite the fact that Stokes published a paper in 1849 [Stokes, 1849] showing the
kinematic nonlinearity of the profile of finite amplitude surface waves, the linear model
remained the dominant model of sea surface waves for a long time. The linear model
represents the wave field as the sum of a large number of independent sinusoidal compo-
nents, the whose amplitudes are random variables, and the whose phases are uniformly
distributed over [0,2π]. Such a model assumes, according to the central limit theorem,
that the elevation and slope of the surface follow a Gaussian distribution [Longuet-Higgins,
1957]. Within the linear model, the distribution of wave heights and the distributions of
crests and troughs are described by the Rayleigh distribution [Longuet-Higgins, 1952; Naess,
1985].

At the beginning of the second half of the last century, an active research on the
nonlinear effects in the wave field was started. It was found that the nonlinear interaction
between the components of the wave field leads to deviations from the Gaussian distri-
bution [Longuet-Higgins, 1963; Phillips, 1960]. Wave measurements have shown that the
distribution of sea surface elevations is better described by the Gram–Charlier distribution
than by the Gaussian distribution [Kinsman, 1965]. Laboratory experiments have confirmed
that the statistical moments of the elevations of the water surface created by the waves
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deviate from the values corresponding to the Gaussian distribution [Huang and Long, 1980].
The theory of modulation instability of Stokes waves was developed [Benjamin and Feir,
1967; Zakharov, 1967].

The senior statistical moments (or cumulants) of sea surface elevations are indicators
of the nonlinearity of sea waves. Several types of models are used to calculate them. The
most widely used models based on the Stokes wave [Huang et al., 1983; Jha and Winterstein,
2000; Tayfun and Alkhalidi, 2016]. As a general rule, these models take into account the
second term in the Stokes expansion, that is, they are second order nonlinear models.
Models based on the approximate third order Stokes expansion are not commonly used
[Boccotti, 2000]. In this paper, we will limit ourselves to analyzing the possibility of
calculating the senior cumulants of sea surface elevations using a second order nonlinear
model. Also in the last two decades, models have been created in which skewness and
excess kurtosis are calculated from wave spectra [Annenkov and Shrira, 2013, 2014; Janssen,
2003; Janssen and Bidlot, 2009; Mori and Janssen, 2006].

Waves on the sea surface are always random in the sense that the topography of
the surface changes in an irregular manner in both time and space. The main criteria
used in the verification of statistical models of sea surface elevation distributions is the
correspondence of the statistical moments calculated within their framework to the data of
direct wave measurements. An additional criterion is the deviation of the distributions
of heights, crests and troughs from the Rayleigh distribution. To verify statistical models,
this paper summarizes the results of experiments conducted at the Marine Hydrophysical
Institute of the Russian Academy of Sciences on a stationary oceanographic platform
located in the Black Sea [Zapevalov, 2024; Zapevalov and Garmashov, 2021, 2022, 2024].

Statistical Description

This section defines the main characteristics of waves that are used for statistical
analysis of non-Gaussian sea states. Here we are going to use the useful statistical moments,
which can be calculated from measuring the surface elevations at a fixed point, as follows

µn = ⟨ηn(t)⟩

where η(t) is the surface elevation, t is the time, the angular brackets mean averaging. It
is assumed that the mean value of a random variable η is zero (µ1 = 0). To analyze the
effects associated with wave nonlinearity, skewness and excess kurtosis are commonly us

Aη = µ3/µ
3/2
2 and Eη = µ4/µ2

2 −3. The energy of the wave field is determined by the second
statistical moment. Usually in oceanography, instead of µ2, the significant wave height HS
is used, equal to the average height of 1/3 of the highest waves, which is determined by the
ratio

HS = 4
√
µ2. (1)

Given (1), the wave steepness can be defined as ε = HS
4 kp, where kp is the wave number

of the peak of the wave spectrum. The inverse wave age is defined as ζ =
U10
Cp

, where

U10 is the wind speed at an altitude of 10 m; Cp is the phase velocity of a wave with a
wave number kp [Donelan et al., 1985; Young and Donelan, 2018]. The smaller the value
of ζ, the later the stage of development of the waves corresponds to. The value ζ0 = 0.83
corresponds to a fully developed wave, at ζ < ζ0 the wave field will create a swell, at ζ > ζ0
wind waves will be created.

The changes in the wave steepness at different stages of the wave field development
are shown in Figure 1. For the swell, the correlation coefficient between the parameters
ζ and ε is 0.15, the dependence of the wave steepness on the stage of development is
approximated by linear regression [Zapevalov and Garmashov, 2021] ε = 0.016+ 0.0061ζ.
For wind waves, the correlation between these parameters is much higher and equal to
0.65, the linear regression equation has the form ε = 0.021ζ.
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Figure 1. The correlation between the inverse wave age ζ and wave steepness ε.

A Second-Order Nonlinear Model

The analysis of nonlinear effects is usually carried out within the framework of
models that are based on the decomposition of the wave profile by degrees of a small
parameter ε. The steepness of the sea waves lies within the limit 0 < ε < 0.1 [Zapevalov and
Garmashov, 2021]. The profile of the wave is represented as the sum of the linear and non-
linear components η(x, t) = ηL(x, t)+ ηN (x, t). The linear component is a superposition
of sinusoidal waves ηL(x, t) = ∑∞

n=1 an cosψn, where x is the spatial coordinate, an are
amplitudes of the wave components, ψn = knx−ωnt+ϕn, kn and ωn are a wave number and
an angular frequency, ϕn is the phase. The amplitudes are Rayleigh distributed random
variables. In a second order nonlinear model, terms proportional to ε are considered. In
recent years, a model has been widely used in which the nonlinear component is given in
the form [Gao et al., 2020; Jha and Winterstein, 2000; Toffoli et al., 2007].

η2(x, t) =
∞

∑
m=1

∞

∑
n=1

{aman[B−mn cos(ψm −ψn)+B+mn cos(ψm +ψn)]},

where transfer functions B−mn and B+mn are obtained from solution of Laplace’s equation for
the velocity potential with nonlinear boundary conditions.

Relationships linking skewness and excess kurtosis to wave steepness are obtained in
[Tayfun and Alkhalidi, 2016] for a second-order nonlinear model

Aη = 3ε+O(ε3), (2)

Eη = 12ε2
+O(ε4). (3)

Let's compare the model dependence (2) with the results of calculations based on
wave measurements (Figure 2). For a swell, the statistical relationship between skewness
and wave steepness is approximated by linear regression

Aswell = 2.52ε+ 0.02. (4)

For wind waves (ww), the linear regression has the form

Aww = 1.79ε+ 0.05. (5)

The values Aη calculated within the framework of nonlinear models, including within
the framework of the second-order nonlinear model, are always positive [Huang et al., 1983;
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Figure 2. The dependence of asymmetry on steepness. The points are measurement data, lines 1, 2
and 3 correspond to equations (2), (4) and (5).

Naess, 1985; Tayfun and Alkhalidi, 2016]. This is in contrast to field measurements where
the lower limit of the range in which skewness values are found is in the region of negative
values [Guedes Soares et al., 2004; Jha and Winterstein, 2000; Zapevalov and Garmashov,
2022]. In laboratory experiments, negative skewness values were also observed. [Huang
and Long, 1980; Zavadsky et al., 2013]. In addition, the model dependencies provide a clear
link between Aη and ε, whereas Figure 2 shows that for fixed values ε the values Aswell and
Aww vary within wide limits.

Similar contradictions between model calculations and measurement results occur for
excess kurtosis and wave steepness. In Figure 3, in addition to the model dependence (3),
linear and quadratic regressions are shown. These are described by the equations

Eswell = 0.93ε− 0.02, (6)

Eswell = 32.63ε2
− 0.43ε− 0.01, (7)

Eww = 1.01ε, (8)

Eww = −11.63ε2
+ 1.87ε− 0.01. (9)
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Figure 3. Dependence of the excess kurtosis on the wave steepness. The points are the measurement
data, line 1–5 correspond to equations (3), (6), (7), (8) and (9).
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Spectral Wave Model

Currently, global and regional spectral wave models have become a working tool
for sea wave forecasting [Grigorieva et al., 2020]. Comparison with in situ and remote
measurement data shows that these models describe the spatial and temporal changes in
wave energy quite well [Mikhailichenko et al., 2016; Stopa et al., 2016]. In [Janssen, 2003;
Janssen and Bidlot, 2009], on the basis of the canonical transformation in the Hamiltonian
theory of water waves, relations were obtained linking skewness and excess kurtosis with
the characteristics of the wave spectrum. If these relationships are correct, then the results
of calculations using spectral wave models can be used to correct the data from altimetric
measurements by reducing the sea state bias [Badulin et al., 2021; Cheng et al., 2019]. They
can also be used to predict dangerous water areas, since the excess kurtosis is a relevant
parameter in the detection of freak waves [Luxmoore et al., 2019; Pelinovsky and Shurgalina,
2016].

It has been shown that the skewness calculated in terms of the directional wave
spectrum is always positive [Longuet-Higgins, 1963]. In [Mori and Janssen, 2006], for a
narrow-band wave train, the dependence of the skewness and the excess kurtosis on the
steepness of the waves is obtained as follows

Aη = 3ε, (10)

Eη = 24ε2
. (11)

For the wave spectral model, the dependence of the skewness on the wave steepness
coincides with the dependence (2) obtained in the framework of a second-order nonlinear
model. In equations (3) and (11) the numerical coefficients for ε2 differ by a factor of two.
The limitations of using equations (10) and (11) were shown in the previous section.

In a special case for the modified JONSWAP spectrum, whose parameters are explicit
functions of the age of the waves, the following dependence was obtained [Annenkov and
Shrira, 2014]

Eη = 0.04+ 0.082ζ0.87
. (12)

The modified JONSWAP spectrum for wind waves satisfying the condition 0.83 < ζ < 5
is [Donelan et al., 1985]

ED(ω,θ) = 4π2αDg
2

ω5 ( ωωp )exp[−(
ω
ωp

)
2

]γ
exp

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−

( ω
ωp

−1)
2

(2σ2
D )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
D Θ(θ),

where θ is the azimuth angle, αD = 0.006ζ0.55, σD = 0.08(1+ 4
ζ3 ),

γD = { 1.7 if 0.83 < ζ < 1
1.7+ 6.0lgζ if 1 ≤ ζ < 5

,

Θ(θ) is a spreading function. The spreading function is defined as Θ(θ) = 1
2βsech2(βθ),

where β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

261( ω
ωp

)
1.3

if 0.56 ≤
ω
ωp

< 0.95

228( ω
ωp

)
−1.3

if 0.95 ≤
ω
ωp

< 1.6

1.24 if 1.6 <
ω
ωp

.

The agreement of formula (12) with measurement data is shown in Figure 4. The same
figure shows a linear regression relationship, which looks like this:

Eη = 0.029ζ.
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Figure 4. Dependence of the excess kurtosis on the inverse wave age. The points are measurement
data, the line 1 is a dependence (12).

Distribution of Crests and Troughs

The deviation of the wave height distribution due to nonlinearity is small for the
main part of the distribution, but not for the tail, and is therefore of great importance
in predicting the occurrence of abnormally high waves [Stansell, 2004]. This statement
also applies to crests and troughs. The height of the crest Cr is the maximum value of the
surface elevation η(t) between the moment when it crosses the zero level from bottom
to top and the moment when it crosses this level from top to bottom [Forristall, 2000].
Similarly, the depth of the trough T h is determined. The depth of the trough is the absolute
value of the minimum value η(t) between two successive intersections of the zero level
from top to bottom and from bottom to top.

In the linear model, the probability density functions of random variables Cr and T h
coincide and are described by the Rayleigh distribution, which has the form

FR(x) =
x

x2
0

exp(− x2

2x2
0

),x ≥ 0,

where x0 is scale parameter.
For waves propagating in deep water, a simplified second-order nonlinear model can

be used in the narrowband spectrum approximation, which is described by the amplitude-
modulated Stokes wave equation

η(x, t) = ar(x, t)cosθ+
1
2kpa

2
r (x, t)cos(2θ), (13)

where ar(x, t) is a wave envelope. The local maxima of the second term in (13) coincide
with the crest and trough of the linear wave, so the maximum values of the crest and trough
are respectively equal to Crmax = ar +

1
2kpa

2
r , T hmax = ar −

1
2kpa

2
r , Thus, in the second-order

nonlinear model, the peaks are higher and the troughs shallower than predicted by linear
theory [Toffoli et al., 2008].

Let us compare the distributions of the crest and trough calculated from the measure-
ment data with the model prediction. To use the measurement data obtained in different
situations, we introduce normalization

η̃(t) = η(t)
HS

.

Probability density functions FCr and FT h depend on the range Aη for which they are
calculated [Zapevalov, 2024]. As can be seen from Figure 5, the probability density functions
FCr and FT h for Aη > 0 correspond to a second-order nonlinear model. Contradictions arise
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when Aη < 0. In this case, when x is greater than the distribution mode, the inequality
FT h > FR holds. Negative values of skewness are observed much less frequently than
positive values [Zapevalov and Garmashov, 2022]. Therefore, if we calculate the averages
over the full range Aη functions FCr and FT h then they are consistent with a second-order
nonlinear model.
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Figure 5. Probability density functions FCr and FT h calculated for three ranges of skewness Aη . The
blue curve is FCr , the red curve is FT h, the black curve is FR.

Conclusion
A wide range of fundamental and applied problems are concerned with the descrip-

tion and prediction of nonlinear effects in sea surface waves. Verification of statistical
models based on wave measurement data showed the following. Models based on the
decomposition of the wave profile by wave steepness, as well as models based on multidi-
mensional integrals of wave spectra, do not describe changes in the skewness and excess
kurtosis of sea surface elevations in the range where these parameters change at sea. These
models can only describe average dependencies on the wave steepness or inverse waves
age in a limited range (Aη > 0, Eη > 0). This is not sufficient for their use in engineering
applications, where load calculations require information about the limits of changes in
parameters characterizing the impact of waves on an object.

The non-linearity of sea waves is determined by several physical mechanisms; there-
fore their correct description requires the construction of multi-parametric models.

Acknowledgments. The work was completed within the framework of the state assignment
on the topic FNNN-2024-0001 “Fundamental studies of the processes that determine fluxes
of matter and energy in the marine environment and at its boundaries, the state and
evolution of the physical and biogeochemical structure of marine systems in modern
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