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Abstract: Over the past 20 years, increasing temperature and receding ice-cover have led to changes in
the Arctic ecosystem. Our study aims to create models that predict the position of high chlorophyll-a
concentration (Chl-a) zones in the European Arctic Corridor (the Barents, Norwegian and Greenland
Seas) to monitor these changes. Firstly, we use remotely sensed data to assess spatial and temporal
changes in correlation between Chl-a and environmental parameters that could influence Chl-a in
the region – Photosynthetically Active Radiation (PAR), Sea Surface Temperature (SST), Mixed Layer
Depth (MLD) and Sea Surface Salinity (SSS) – over the 2010–2019 time period. We found significant
correlation (∣r∣ = 0.6–0.8) between Chl-a and PAR and SST, and medium correlation (∣r∣ = 0.4–
0.6) between Chl-a and SSS and MLD, correlation was highest during spring periods. Then, using
a Random Forest Machine Learning algorithm in the Classifier modification, we created models for
each sea to predict the position of high-productivity zones (Chl-a > 1 mg m−3) using environmental
parameters. Our results suggested that Chl-a variability in the European Arctic Corridor is mostly
determined by PAR (28–32% of Chl-a class variability), SST (25–29%), and SSS (26–31%); MLD
played a lesser role (12–17%). According to validation, all the models showed high performance
scores (F1-score = 66–95%) and slightly underestimated the total area of high productivity.

Keywords: chlorophyll-a, ocean productivity, Arctic Ocean, modeling, ocean colour, remote sensing,
Barents Sea, Norwegian Sea, Greenland Sea.

Citation: Kuzmina, S., P. Lobanova, S. Chepikova (2025), Spatial and Temporal Variability of
Chlorophyll-a and the Modeling of High-Productivity Zones Based on Environmental Parameters:
a Case Study for the European Arctic Corridor, Russian Journal of Earth Sciences, 25, ES1010, EDN:
SDYCMN, https://doi.org/10.2205/2025es000952

1. Introduction

The European Arctic Corridor, or EAC, (Figure 1) accounts for about 50% of the total
primary production of the Arctic, making it a highly productive region [Oziel et al., 2020,
2022; Sakshaug et al., 2009; Siegel et al., 2002]. This is due to several factors. Firstly, two
types of water masses meet in the area: warm and salty Atlantic waters, and cold and
relatively fresh Arctic waters that form frontal zones characterized by high productivity
[Hansen et al., 1990; Longhurst, 2007; Makarevich et al., 2022; Qu and Gabric, 2022]. Sec-
ondly, energy associated with the North Atlantic Current contributes to the breakdown of
stratification in summer, and therefore, a flux of nutrients into the surface layer necessary
for phytoplankton growth [Sakshaug et al., 2009]. Finally, the area is partially covered
in ice, which adds to the formation of phytoplankton blooms specific to polar latitudes,
including ice-edge blooms that contribute significantly to the overall productivity of the
region [Anderson, 1986; Borstad and Gower, 1984].
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Over the past 20 years, productivity of polar seas has been changing due to the
instability of the climate, which is the most pronounced in the Arctic [Arrigo and van Dijken,
2015; Oziel et al., 2022; Wassmann et al., 2010]. Rising temperature and reduced sea ice
cover add to the changes in overall conditions contributing to a phytoplankton bloom:
higher overall temperature and earlier warming of the water column could lead to an
earlier bloom onset; lessening sea-ice cover could lead to a greater surface area available for
phytoplankton to bloom [Oziel et al., 2020]. An earlier phytoplankton bloom with a larger
surface area could lead to a higher overall productivity for the region [Lewis et al., 2020]. To
assess and monitor these changes accurately, it is necessary to have an extensive database
of ocean productivity. The biggest problem in studying ocean productivity in the ocean,
and in the Arctic especially, is the lack of in situ data needed for a statistically significant
analysis of its spatial and temporal variability: a possible solution is using remotely sensed
data to study the productivity of the Arctic [Lee et al., 2015a].

Ocean productivity can be estimated via its relationship with chlorophyll-a concentra-
tion (Chl-a), since organic matter production is a result of photosynthesis, which utilizes
chlorophyll pigments (mainly Chl-a) [Delafontaine and Peters, 1986; Lee et al., 2015a; Ryther
and Yentsch, 1957]. The study of ocean productivity based on satellite data provides the
basis for modeling PP for the Arctic as a whole: once one has determined the contribution of
multiple environmental factors to Chl-a variability in the surface layer, one would be able
to develop models for assessing Arctic waters’ productivity – in our case, the productivity
of EAC [Kuzmina et al., 2022, 2023; Lee et al., 2015a; Martyanov et al., 2018; Oliver et al.,
2018; Skogen et al., 1995; Slagstad and Støle-Hansen, 1991; Vernet et al., 2021; Wassmann
et al., 2006].
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Figure 1. Map of the European Arctic Corridor. Surface currents are: polar waters in blue, coastal
waters in green, Atlantic waters – in red. Dashed black line is the Barents Sea polar front. From [Oziel
et al., 2020].

Defining the term “ocean productivity” is divided into two schools of thought: viewing
productivity (1) as a process occurring at a certain rate in a single volume – i.e., the rate of
synthesis of organic matter, or photosynthesis [Behrenfeld and Falkowski, 1997; Platt and
Sathyendranath, 1988], and (2) as an amount of substance (for example, carbon or Chl-a
pigment) formed in a single volume per unit of time – i.e., the amount of photosynthetic
products produced in a single time unit [Behrenfeld et al., 2005; Carr et al., 2006; Falkowski
et al., 1998; Nielsen, 1963; Riley, 1940].
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Following the second definition, a higher Chl-a would suggest a higher value of ocean
productivity in an area. While we acknowledge that there is a complex and non-linear
connection between Chl-a and ocean productivity, we believe that Chl-a is still a good
indicator of overall ocean productivity on a monthly scale [Bode et al., 2011].

Therefore, in this study we assess the productivity of the EAC by assessing the position
and overall total area of high-productivity zones (HPZs) in the EAC. We define these HPZs
using a threshold value of Chl-a in a grid cell (4× 4 km) – greater than 1 mg m−3 [Balch,
1992; Carr, 2001], – and zones with Chl-a below that threshold value are assumed to be
low-productivity zones (LPZs) [Lee et al., 2015b].

It is worth noting that in this case we model only part of the region’s productivity,
mostly so for the Barents Sea [Kondrik et al., 2017]. This is the part that is mostly attributed
to algae like diatoms and dinoflagellates, i.e., algae that do not have a calcium skeleton,
algae that we observe using ocean color Chl-a images. The presence of coccolithophores –
another very abundant species for the EAC – is reflected in other parts of the color spectra
(with wavelengths not used in this study [Balch et al., 1991]), and their productivity cannot
be assessed through standard ocean color products. It means that in this study, the produc-
tivity of the region can be estimated to be somewhat less than in situ productivity. One
must also take into account the fact that coccolithophore presence affects the optical prop-
erties of the waters: during a coccolithophore bloom, higher Rrs(λ) in the blue and green
areas of the spectrum have been observed in the Baltic, North and Celtic Seas, although
usually the accuracy of ocean color products is not degraded significantly [Cazzaniga et al.,
2021].

Because autotrophic organisms’ productivity is determined by photosynthesis, occur-
ring via the pigment Chl-a, it is influenced by those environmental factors that contribute
to the maximum rate of photosynthesis and phytoplankton growth. These are, in order of
highest contribution: light [Morel, 1978; Odum, 1971], nutrients (which enter the upper
ocean layers as a result of upwelling, horizontal advection (surface currents, polar fronts),
with river runoff, ice sheet melt, and precipitation [Chandler et al., 2015; Sverdrup, 1953]),
and sea surface temperature (SST) [Talling, 1957; Teira et al., 2005].

The study region is characterized by two phytoplankton blooms: in spring and autumn
[Ardyna et al., 2014; Kahru et al., 2011]. In the Greenland and Norwegian Seas, the bloom
occurs later than in the Barents Sea (June and May, respectively); the autumnal bloom
is usually more intense than the spring one, and this intensity is ever-increasing due to
overall climate changes in the Arctic [Ardyna et al., 2014; Lewis et al., 2020; Longhurst, 2007;
Vernet et al., 2021]. In each sea, a spring bloom peak occurs firstly in the southern part of
the sea, gradually moving northward [Qu and Gabric, 2022]. Maximum Chl-a is observed
in the southern parts of the seas, near ice edges [Perrette et al., 2011], on the shelf, as well
as in the frontal regions [Reigstad et al., 2002]. Chl-a is often higher in the Barents and
Norwegian Seas than in the Greenland Sea [Qu and Gabric, 2022]; however, the duration of
the spring bloom in the Norwegian Sea is shorter [Børsheim et al., 2014].

The purpose of this work is to identify environmental factors that determine Chl-a
in EAC waters (case study for the Barents, Norwegian, and Greenland Seas), as well as to
create and validate models for the position of HPZs using the Random Forest machine
learning algorithm in the Classifier modification (RF). This work has, as far as the authors
are aware, for the first time, used RF to predict the position of HPZs and LPZs (as Chl-a
classes) in the European Arctic Corridor and identify the remotely-sensed factors that
influence it.

2. Materials and Methods

The following satellite and reanalysis data were used in the study: 1) ocean color
data from the Ocean Colour Climate Change Initiative database, version 5 (https://www.
oceancolour.org) – chlorophyll-a concentration (Chl-a, mg m−3) and euphotic layer depth
(Zeu, m), monthly data in 4×4 km pixels; the latter was calculated as a function of a diffuse
attenuation coefficient at 490 nm (Kd490) described in [Lobanova, 2017]; 2) mixed layer
depth (MLD, m) calculated using a method by Dukhovsky D.S. presented in [Bashmachnikov
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et al., 2018] on the basis of vertical density profiles obtained from temperature and salinity
data from the EN4 Hadley Center and ARMOR data bases, monthly data in 4×4 km pixels;
3) sea surface salinity (SSS, psu) from the Microwave Imaging Radiometer with Aperture
Synthesis (MIRAS) satellite Soil Moisture and Ocean Salinity (SMOS) from the European
database Space Agency (ESA) (https://earth.esa.int), monthly data in 25× 25 km pixels;
4) sea surface temperature (SST, °C) from NASA's Physical Oceanography Distributed
Active Archive Center MUR SST database (https://podaac.jpl.nasa.gov/MEaSUREs-MUR),
daily data in 1 × 1 km pixels; 5) photosynthetically active radiation (PAR, E m2 day−1)
from the MODIS-Aqua spectroradiometer from NASA's Ocean Biology Processing Group
database (https://oceancolor.gsfc.nasa.gov), monthly data in 4× 4 km pixels.

All data were interpolated to a grid with a spatial resolution of 4× 4 km using the 2D
linear interpolation available in MATLAB, and averaged monthly for the period from 2010
to 2019. This was done to eliminate gaps in data caused by atmospheric interference such
as, for example, cloud cover for ocean color data.

To estimate the connection between Chl-a and environmental parameters we used
Pearson’s correlation coefficient:

r(A,B) = 1
N−1 ∑

N
i=1 (

Ai−µA
σA

) ⋅ (Bi−µB
σB

), where µA/B and σA/B are the mean and standard

deviation of A/B.
In each 4×4 km pixel we created vectors with a value of the parameter for each month

in the time period from 2010 to 2019 for all available data and calculated the correlation
coefficient between the Chl-a vector and the environmental parameter vectors. For each
pixel we had between 20 to 30 available data points, 5–20 for autumnal data, and the data
availability was the most limited in the northernmost parts of the region, where sea ice
cover and clouds prevented data access the most (see Appendix A, Figure A1).

To predict the position of HPZ, for the first time a Random Forest machine learning
algorithm was used in the Classifier modification, which has already proven itself to be
a useful research tool in different environmental studies [Cutler et al., 2007; Kuzmina et al.,
2023; Rivero-Calle et al., 2015].

Random Forest Classifier is a machine learning algorithm that uses decision trees to
classify data. The advantages of using this algorithm in particular are that it 1) allows
for non-linear connections between data points, 2) allows for spatially and temporally
non-continuous datasets and 3) is resistant to overfitting.

When modeling, to define the position of high- and low-productivity zones all Chl-a
values were divided into two data sets distinguishing these zones, resulting in two classes:
the HPZ class and the LPZ class, the positions of which were later predicted by the
proposed models. The allocation of classes was determined by a threshold value for Chl-a
of 1 mg m−3 [Balch, 1992].

The resulting data sets were divided into training and test data sets using a ratio
conventional for machine learning of 2:1 respectively for each sea. For the second validation
set, we used all available data except year 2019 as a training set to maximize the accuracy
of our models’ performance by maximizing the amount of training data available to the
algorithm [Joseph, 2022; Nguyen et al., 2021].

Three models were developed: one for each sea in the EAC.
Based on our results, we obtained quantitative estimates (precision, recall, and F1-

score) of the quality of the models:

Precision = T P /(T P +FP ) ⋅ 100%,

Recall = T P /(T P +FN) ⋅ 100%,

F1-score = (2 ⋅Precision ⋅Recall)/(Precision+Recall) ⋅ 100%,

where T P is true positive (correctly predicted class), FP – false positive (incorrectly pre-
dicted class in terms of overestimation, i.e., detection of a class where there was not one
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in the test data), and FN – false negative values (incorrectly predicted class in terms
of underestimation, i.e., non-detection of a class where there was one in the test data),
F1-score – the weighted average between precision and recall. Resulting metrics describe
the proportion of correctly predicted cases: thus, 100% is the best indicator for each metric,
0% – the worst.

3. Results
3.1. Relationship Between Chlorophyll-a Concentration and Environmental Parameters

To estimate the relationship between Chl-a and environmental factors we analyzed
spatial and temporal variability of the correlation coefficients between the parameters for
the entire study period (Figures 2–3). The closest relationship between the parameters can
be seen in spring: at this time, the correlation between Chl-a and PAR is positive, between
Chl-a and SST is positive in open waters, negative – in coastal waters (∣r∣ > 0.4). Following
high correlation between Chl-a and SST, dynamically active Atlantic waters can be traced;
as their effect weakens when going further northward, correlation decreases.

In summer, correlation between Chl-a and SST is negative in the Norwegian and Green-
land Seas, and positive in the southern and central part of the Barents Sea (∣r∣ = 0.4–0.6).
The reverse is typical for Chl-a and PAR: the correlation is positive in the Norwegian and
Greenland Seas and the northern part of the Barents Sea, negative – in the coastal part of
the Barents Sea (∣r∣ = 0.6–0.8).

During autumn, spatial variability of correlation between Chl-a and environmental
parameters becomes more non-linear: correlation between Chl-a and SST in open waters
of the Barents and eastern Greenland Seas is positive, but lower than in spring. In coastal
waters, the Norwegian Sea and the western part of the Greenland Sea correlation is reversed.
The correlation between Chl-a and PAR is mostly negative in contrast to the spring period,
and less pronounced.

The correlations between Chl-a and SSS, Chl-a and MLD are the most homogenous in
spring (Figure 3): correlation between Chl-a and SSS is positive, between Chl-a and MLD –
negative (∣r∣ = 0.4–0.6).

In summer, the correlation between Chl-a and these two parameters is mostly low
(∣r∣ < 0.2), positive moderately high correlation between Chl-a and SSS is observed in the
east of the Barents Sea, and between Chl-a and MLD – in the Greenland Sea. For SSS,
negative moderately high correlation is also observed near the coast and in the east of the
Greenland and Norwegian Seas, while an area characterized by positive correlation shifts
to the west towards a mixing zone of the Norwegian (warm) and the East Greenland (cold)
currents.

In autumn, the correlation distribution between the parameters appears to be the
most non-linear. For Chl-a and SSS, in the central part of the Barents and Norwegian Seas,
positive correlation is observed (r > 0.4), in the Greenland Sea and in the north of the
Barents and Norwegian Seas there is negative correlation (∣r∣ = 0.4–0.6). For Chl-a and
MLD, the areas of positive correlation are: the southern part of the Barents Sea, a border
between the Barents and Norwegian Seas, and the Greenland Sea frontal zones, where
active mixing occurs; in other areas correlation is predominantly negative.

3.2. Development and validation of the models

Using the Random Forest machine learning algorithm, we developed models to predict
the position of high- and low-productivity zones in the study area. Model Quality Metrics
(MQMs) exceed 90% for each sea for the initial test sample (Table 1). The models for the
Greenland and Barents Seas show slightly higher MQMs (by 3–5%) than the model for the
Norwegian Sea.

In the preliminary testing, we also considered Zeu as a predictor. However, this
resulted in the contribution of Zeu to the variability of Chl-a classes being more than 80%
of all predictors’ (Zeu, PAR, SST, SSS, MLD). Almost 90% of Chl-a class’ variability was
accounted for by Zeu and PAR (81–82% and 6–8% respectively), and SST, SSS and MLD
accounted for between 3 to 5% of variability. We made the decision to then remove Zeu
as a predictor, as, firstly, the Zeu data is available with the same discrepancy as Chl-a
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Figure 2. Spatial and temporal variability of a correlation coefficient between chlorophyll-a con-
centration (Chl-a, mg m−3) and environmental parameters: sea surface temperature (SST, °C), and
photosynthetically active radiation (PAR, E m2 day−1) in 2010–2019. The correlation coefficient is
grouped and calculated by seasons. All correlation coefficients have a p-value ≤ 0.05.

data – therefore, our models would not expand our understanding of HPZs’ positions in
high cloud-cover, low-light areas. Moreover, we came to the conclusion that this would be
a falsely strong connection, seeing as Zeu was calculated through Kd490 – a parameter that
accounts for the amount of suspended particles in the water. Seeing as most of the study
area is type I waters – where most suspended matter is phytoplankton – we believe that
this connection is mostly artificial [Morel and Prieur, 1977]. Therefore, we have made the
decision to remove Zeu as a predictor to better understand how environmental factors –
PAR, SST, SSS and MLD, – account for Chl-a variability.

Based on the results of the models, the contribution of the environmental parameters
to the variability of the position of high-productivity zones (i.e., Chl-a classes) in the
area was estimated (Table 1). Here, the greatest contribution to the spatial and temporal
variability of HPZs was made by PAR, SSS and SST: for PAR, this contribution is 28–32%,
depending on the sea, for SSS it is 26–31%, and for SST it is 25–29%, however, MLD
accounts for only 12–17% of the variability.

To further evaluate the models’ performance, we validated them for the year 2019,
which is the last year available for the analysis. For this, the training set consisted of all
available data except for 2019, and the test one was the 11 available months of year 2019
(January – November). MQMs for this data set retained high values, although decreased
slightly: precision: 67–71%, recall: 66–68%, F1-score: 66–68%. This is the dataset that
shall now be discussed in further detail.
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Figure 3. Spatial and temporal variability of a correlation coefficient between chlorophyll-a concen-
tration (Chl-a, mg m−3) and environmental parameters: sea surface salinity (SSS, psu) and mixed
layer depth (MLD, m) in 2010–2019. The correlation coefficient is grouped and calculated by seasons.
All correlation coefficients have a p-value ≤ 0.05.

Based on the analysis of the models, all three quite accurately represent the general
nature of both temporal (Figure 4) and spatial (Figure 5) variability of the distribution of
high- and low-productivity zones. The model for the Greenland Sea achieves this best in
terms of overall performance (highest MQMs), seeing as it almost always correctly shows
the position of HPZs, however, it lacks in quantitive assessment, as it underestimates total
HPZ area during an autumn bloom. The model for the Norwegian Sea generally correctly
predicts the position of HPZs, but underestimates the total area of HPZs, especially during
spring and autumn blooms. The Barents Sea model does not always correctly predict HPZ
position, however it predicts the total area of HPZs during a spring bloom (March – June)
the best out of the three models and only during the autumn bloom does it underestimate
it.

As can be seen from Figure 5, the most accurate results for the models are characteristic
for months with lower Chl-a. For the Norwegian and Greenland Seas, the greatest bias both
in the extension of HPZs and in their position occurs during a spring bloom (May – June);
for the Barents Sea, the greatest bias in predicting the total HPZ area is characteristic of the
autumn bloom (September – October); in predicting the position of HPZs – for the spring
bloom.
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Table 1. Contribution (in %) of environmental parameters to the variability of chlorophyll-a con-
centration classes in the seas. Here PAR is photosynthetically active radiation, SST is sea surface
temperature, MLD is mixed layer depth. To assess the accuracy of the models, the following model
quality metrics were used: precision, recall, and F1-score. Metrics in brackets refer to the metrics for
two classes – LPZ and HPZ, metrics in bold refer to a mean metric between the two classes

Parameter Barents Sea Norwegian Sea Greenland Sea

PAR 29% 28% 32%

SST 28% 29% 25%

SSS 31% 26% 28%

MLD 12% 17% 14%

Model Quality Metrics

Precision 0.96 (0.95; 0.97) 0.93 (0.95; 0.90) 0.96 (0.97; 0.95)

Recall 0.96 (0.93; 0.98) 0.91 (0.97; 0.86) 0.95 (0.97; 0.93)

F1-score 0.95 (0.94; 0.97) 0.92 (0.96; 0.88) 0.95 (0.97; 0.94)

Data set size in
4× 4 km pixels,
training/test data

1,774,134/887,067 613,026/306,513 862,802/431,401

Figure 4. Validation results for the proposed models. Comparison of the estimated and remotely
sensed total area of high-productivity zones (total sum of high-productivity cells in the region) based
on chlorophyll-a concentration in 2019. Solid black line is satellite data (test set), dotted blue line is
data estimated by the models for the same period.

4. Discussion
4.1. Sverdrup’s Critical Depth Hypothesis

According to Sverdrup's theory, a bloom can begin when MLD becomes shallower
in the late spring – early summer period, when most of the phytoplankton concentrate
inside the euphotic layer above the critical depth [Sverdrup, 1953]. The theory has been
confirmed many times both by Sverdrup himself and by other researchers for different
water bodies [Brody and Lozier, 2015; Delafontaine and Peters, 1986; Sathyendranath et al.,
2015; Siegel et al., 2002]. However, in recent years, more and more researches have argued
against it [Behrenfeld, 2010; Chiswell, 2011; Fischer et al., 2014; Lewandowska et al., 2015].
The theory describes an idealized, uniformly mixed layer; it does not take into account
convection rate and turbulent flows within the layer, and it does not consider changes
in composition in auto- and heterotrophic communities; a phytoplankton spring bloom
often does not coincide with the formation of steady stratification, but begins somewhat
earlier [Behrenfeld, 2010]. Despite the criticism of the theory, according to the results of
our study (the relationship between Chl-a and MLD, see Figure 3), this hypothesis could
be confirmed when describing the general annual cycle of phytoplankton growth: the
correlation between Chl-a and MLD is negative in spring, when at the beginning of the
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Figure 5. Validation results for the proposed models. Comparison of the estimated and remotely
sensed position of high-productivity zones during a spring bloom and summer less productive
months in 2019. Here “1” is a high-productivity zone with chlorophyll-a concentration greater than
1 mg m−3, “0” is a low-productivity zone with chlorophyll-a concentration less than 1 mg m−3. In
each month, the left map refers to modeled results and the right map – to satellite data (test set).

bloom, Chl-a is dependent on MLD (i.e., a pycnocline needs to become shallower for the
onset of a bloom). At the same time, correlation between the parameters is positive in
summer: a decrease in MLD indicates stronger stratification, which prevents inflow of
nutrients from the lower layers, thus, Chl-a decreases. In autumn, correlation is positive in
areas where MLD is deepened, and vertical mixing occurs further: with deepening of MLD,
nutrients can enter the surface layer, and Chl-a can increase.

4.2. Phytoplankton as the Main Suspended Matter in the Open Ocean

According to the results of our study, the relationship between Chl-a and Zeu is
predominantly negative (r ∶ −0.9 . . .−0.7), as has already been found in previous studies
[Delafontaine and Peters, 1986; Estrada et al., 1993; Smith and Baker, 1978].

This relationship is explained by several processes: firstly, during a bloom phytoplank-
ton tends to shade itself (self-shading effect) [Shigesada and Okubo, 1981]. That in turn
leads to a decrease of productivity in spring, when water turbidity increases due to abun-
dant phytoplankton blooms (Zeu is shallow at this moment). Secondly, in summer, when
Chl-a decreases due to nutrient limitation, Zeu increases since a decrease in dissolved and
suspended matter allows light to penetrate into deeper layers. In autumn, two factors work
together: a decrease in Zeu due to a decrease in surface illumination, and a decrease in Zeu
due to an increase in the concentration of suspended matter (here once again suspended
matter is mainly phytoplankton starting its autumn bloom).
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4.3. Influence of Environmental Factors on Chlorophyll-a Concentration and the
Formation of Highly Productive Zones

In this study we analyzed the correlation between Chl-a and environmental factors
that affect phytoplankton’s ability to photosynthesize and grow.

We found significant correlation between Chl-a and SST, Chl-a and PAR.
The nature of the relationship between Chl-a and SST can be explained by the sea-

sonal variability of these parameters. In spring and early summer, when SST increases,
a phytoplankton bloom begins and Chl-a rises. However, that is not always the case: in
the northernmost parts of EAC a spring bloom does not occur, as the abundant ice-cover
and light-limitation prevent phytoplankton growth until early summer [Qu and Gabric,
2022; Silva et al., 2021]. Furthermore, in coastal regions the correlation is mostly inverse:
warmer waters in the Norwegian shelf have been found to have a negative correlation with
the onset of a spring bloom [Hansen et al., 2010].

In summer, SST continues to increase, however, stratification is established, and
phytoplankton stop actively growing, hence, the relationship is reversed. The positive
correlation between Chl-a and SST in summer can be explained by abundant continental
waters runoff. In this case, SST is an indicator of the influx of warm, nutrient-rich water
from rivers or warm Atlantic waters, which cause a slight destruction of stratification,
an influx of nutrients to the surface layer [Ardyna and Arrigo, 2020; Qu and Liu, 2020].
Additionally, positive correlation in the high latitudes could indicate a summer bloom that
occurs in polar regions [Silva et al., 2021].

Finally, in autumn, SST decreases, and Chl-a can increase again, due to the destruction
of stratification, and upwelling of nutrients from underlying layers [Ardyna and Arrigo,
2020; Dalpadado et al., 2020]. Alternatively, together with decreasing of SST, there is
decreasing of Chl-a due to reducing phytoplankton photosynthetic activity.

Overall, we believe that remotely-sensed SST is more so an indicator of the variability
of Chl-a, and less so a parameter that directly determines Chl-a in the area.

The correlation between Chl-a and PAR is determined both by the dependence of
photosynthesis on light during bloom seasons – spring and autumn, – and by the parallel
seasonal evolution of Chl-a and PAR during the summer season, when photosynthesis is
less intense. During a spring bloom, the relationship between the parameters is positive:
photosynthesis starts rapidly with a rise in light availability, and thus, Chl-a rises. Similar
conditions have been described for the Barents and Greenland Seas in [Qu and Gabric,
2022], for the EAC – in [Silva et al., 2021].

In summer, as light intensity decreases after the solstice, the maximum rate of pho-
tosynthesis decreases as well. Meanwhile, Chl-a decreases due to nutrient limitation, as
strong stratification is established [Ardyna and Arrigo, 2020]. Moreover, at this time the
waters are mostly dominated by coccolithophores, not diatoms and small flagellates, and
they cannot be observed via Chl-a ocean color images [Qu and Gabric, 2022; Silva et al.,
2021]. Overall, correlation between the parameters is mostly positive, however we believe
that at this time light availability is not the driving factor for the changes in monthly Chl-a.

Finally, in autumn, the relationship is mostly negative, since Chl-a increases with
destruction of stratification through wind and convective mixing and the following nutrient
influx, while PAR continues to decrease [Silva et al., 2021].

We found some significant correlation between Chl-a and SSS, Chl-a and MLD.
The correlation between Chl-a and SSS almost always illustrates salinity as either

an indicator of the intrusion of salty Atlantic waters into the region or an influx of fresh
continental or glacial waters: in the first case, the relationship is positive, in the second,
it is negative. The salty and dynamically active Atlantic waters mix the water column,
destroying stratification; additional nutrients upwell from underlying layers and contribute
to the increase of Chl-a [Ardyna and Arrigo, 2020]. Fresh water is an indicator of continental
runoff (in summer and autumn), sufficient amount of nutrients is essential for diatoms
blooming (mainly nitrates and silicates), as well as melting of the sea ice contributing to
the phytoplankton bloom in a thin, well-lit fresh water layer that forms consequently in
spring [Perrette et al., 2011; Silva et al., 2021].
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Through analyzing the correlation between Chl-a and MLD, which is the most spatially
universal in spring, a complex connection between Chl-a and the euphotic and upper mixed
layers can be observed. In spring, as stratification is established, MLD becomes shallower
and, after some time, coincides with the euphotic depth; phytoplankton, having “settled”
on the pycnocline, begin to photosynthesize, when a sufficient amount of solar radiation
and nutrients (accumulated during winter months) is reached. This relationship between
the shallowing of ML and increase in Chl-a has been observed in the Labrador and Irminger
Seas in the North Atlantic [Naustvoll et al., 2020].

To further enhance our understanding of the conditions that influence Chl-a in each
sea, we produced hexagonal binning plots (Figure 6) that show two of the most prevalent
factors influencing productivity for each sea and their relationship to Chl-a: for the Barents
and Greenland Seas SSS and PAR are the more important factors, while for the Norwegian
Sea – SST and PAR take the lead.

In the Greenland and Norwegian Seas just before the start of the spring bloom, when
phytoplankton are still limited by light, a thin layer above the shallow pycnocline can
form due to the relatively fresh waters that come from glaciers melting on land as well as
from sea ice melting [Levasseur, 2013]. This layer is relatively fresh and warm; it lies very
close to the surface, so phytoplankton can comfortably photosynthesize in it even during
limited light conditions [Borstad and Gower, 1984; Tremblay and Gagnon, 2009]. Moreover,
mainland meltwater is rich in nutrients that are necessary for the growth of phytoplankton.
These are, for example, silica compounds, which are the base for the diatom skeleton
[Anderson, 1986; Hegseth and Sundfjord, 2008; Perrette et al., 2011]. [Oliver et al., 2018]
modeled the same conditions for the Labrador Sea, confirming the increase in PP when
glacial Greenland water flowed into the sea.

Furthermore, melt ponds that form on sea ice can provide phytoplankton with con-
ditions that could lead to an increase in productivity due to the nutrients dissolved in
the meltwater and abundant light comfortably penetrating the shallow ponds [Chandler
et al., 2015]. Under-ice blooms have also been detected in the Arctic containing high
diatom concentrations that exhibited high growth and production rates [Arrigo et al., 2012].
Conditions indicating such blooms are seen in Figure 6 in areas where PAR is between
10–20 E m2 day−1, salinity is below 33 psu, and SST is above 6 °C. Similar conditions were
also observed at the end of June 2021 during the 83rd cruise of the RV “Academic Mstislav
Keldysh” in the Kara Sea [Demidov et al., 2022] at stations where ice melted within a month
from the measurements taken.

During summer, photosynthesis is limited by nutrients. Thus, in spite of high illumi-
nation, there are low Chl-a values corresponding to data points with relatively high PAR,
SST and salinity (Figure 6).

Local phytoplankton blooms are observed during the intrusion of dynamically active,
nutrient-rich and salty Atlantic Ocean waters into the area [Haug et al., 2017; Torres-Valdés
et al., 2013]. Similar conditions happen after vertical water mixing in the deep convection
regions and in the frontal zones of the Greenland and Norwegian Seas (high illumination,
high salinity and low temperature zones in Figure 6). For example, [Hansen et al., 2010]
described an increase in PP in anticyclonic eddies observed near the Norwegian Sea fronts.
Vertical mixing can cause an upwelling of nutrients into the surface layer, which are then
utilized by phytoplankton for photosynthesis.

In autumn, when illumination decreases again and salinity is relatively high, the
second bloom can occur due to the beginning of winter convection. This is especially
relevant for the Barents Sea (see Figure 6): high Chl-a is characteristic for the light-limited
areas (PAR is about 20–30 E m2 day−1) with salinity above 30 psu. It is important to
mention that high Chl-a coinciding with low PAR could be caused by errors in ocean color
data characteristic of low-light conditions beyond 70°N, however most of these errors
tend to be flagged as such at the L3 processing stage for MODIS and SeaWiFS sensors,
whose data was used in this study [Babin et al., 2015]. Conversely, some studies described
conditions in the North Sea where under low-light conditions satellite sensors have failed
to accurately detect the exact date of the onset of a bloom [Silva et al., 2021].
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Figure 6. Hexagonal binning plots for the Barents, Norwegian and Greenland Seas: chlorophyll-a
concentration (in color, mg m−3) and environmental parameters: sea surface salinity (SSS, psu), sea
surface temperature (SST, °C) and photosynthetically active radiation (PAR, E m2 day−1) in 2010–
2019. Figure adapted from [Kuzmina et al., 2023].

4.4. Models’ Performance and its Affecting Factors

There are many models predicting the productivity of the Arctic seas, especially the
European Arctic Corridor seas. Previous studies [Martyanov et al., 2018; Wassmann et al.,
2006] have used physically–biologically coupled 3D modeling to predict PP and carbon
flux in the Barents Sea; this model underestimated the vertical carbon export of the sea
and, similarly to our models, had higher variability of results in the more ice-covered
areas of the region. Another study found that PP in the region was influenced by nutrient
availability, ice coverage and temperature- and wind-induced stratification [Mousing et al.,
2023]. A recent study of PP in the Greenland shelf has found that sea ice coverage was
better seen and felt in models that used ocean color data as compared to models that used
coupled 3D modeling [Vernet et al., 2021].

Ocean productivity in this region is influenced by warm Atlantic waters and cold
Arctic waters, as well as river and ice runoff, light availability and sea ice extent [Mousing
et al., 2023]. Our results showed greater variability of model performance (assessed through
MQMs and quantitively through the sum-total area of HPZs in 2019) during spring, when
the productivity is more influenced by sea ice extent [Mousing et al., 2023; Wassmann et al.,
2006]. We did not use ice extent or sea ice concentration data in our models, so perhaps
part of the variability and bias of our models could be explained by this. This could be
further investigated in future projects.
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5. Conclusions

In this study we describe the spatial and temporal distribution of the connections
between Chl-a and environmental parameters in the EAC. We confirmed that Chl-a is
greatly dependent on light availability: the best correlation is noted between Chl-a and
PAR, and it is predominantly positive. The relationship between Chl-a and SST is positive
in spring, but almost strictly negative in summer. A somewhat weaker relationship is seen
between Chl-a and SSS, it is positive in spring. The relationship between Chl-a and MLD
is strictly negative in spring and mostly positive in summer.

According to the results of our modeling, the greatest contribution to the variability
of Chl-a is made by the variability of PAR (contribution – 28–32%), SSS (26–31%) and
SST (25–29%), the contribution of MLD is almost twice as low (12–17%). Together, these
parameters describe the conditions that most favorably affect the productivity of the area:
the availability of light in the spring and autumn periods and the availability of nutrients
with vertical mixing in the summer and autumn periods.

Modeling the position of high- and low-productivity zones (HPZ and LPZ, respec-
tively) in the studied seas showed that: 1) all three models predict the overall temporal
and spatial variability of the distribution of HPZs and LPZs with an accuracy compara-
ble to observed values (depending on the sample, 66 to 96% of the results were correct);
2) the model for the Greenland Sea has the best overall performance, since it showed the
highest quality metrics and almost always correctly predicted both the total area and the
location of HPZs; 3) the model for the Norwegian Sea on the whole correctly determines the
position of HPZs, but underestimates their total area; 4) the model for the Barents Sea does
not always correctly predict the position of HPZs, but it is the best at predicting the total
area of HPZs. The models’ performance might in the future be improved by introducing
more factors (sea ice concentration and thickness, wind stress).

Acknowledgments. The authors acknowledge Saint Petersburg State University for a re-
search project no. 116442164.

Appendix A

Figure A1. Size of dataset (N) used to calculate correlation coefficients between chlorophyll-a
concentration (Chl-a, mg m−3) and environmental parameters: sea surface temperature (SST, °C),
photosynthetically active radiation (PAR, E m2 day−1), sea surface salinity (SSS, psu), mixed layer
depth (MLD, m) and euphotic layer depth (Zeu, m) in 2010–2019.
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