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Abstract: The paper presents the results of developing a method for analyzing time series of GNSS
measurements based on a machine learning approach. The constructed algorithm was tested on GNSS
data from the vicinity of sources of large earthquakes occurred in regions with different tectonic
structures: the Japanese islands, Southern California, and the Peruvian-Chilean coast. It is shown
that the proposed approach allows one to build an adequate, versatile, interpretable, statistically
significant time series model using exclusively statistical data analysis methods, which will further

allow one to create automated processing systems operating in a near-real-time mode.
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Introduction

Since the late 1980s, data from Global Navigation Satellite Systems (GNSS) have
been widely used to solve a wide range of geodynamic problems. The development
of theoretical foundations for the application of satellite geodetic methods in solving
geodynamic problems determines the increasingly active use of GNSS methods in the
study of seismotectonic deformations in addition to classical geological and geophysical
methods. Currently, GNSS observation data are actively used to study recent movements
of the Earth’s surface, detect spatiotemporal variations in deformation fields near active
faults and active volcanoes, as well as in a number of other applied geophysical studies.

Regression analysis of GNSS time series is one of the most widely employed methods
for analyzing satellite geodetic data. This method enables researchers to collect new data
on geodynamical processes with higher accuracy by isolating various components of the ob-
served signal using classical statistical methods. Currently, regression analysis algorithms
are extensively employed to derive preliminary data for constructing earthquake source
models [Steblov et al., 2008], identifying precursors in contemporary crustal deformation
fields [Gitis et al., 2021; Liu and Kossobokov, 2021], and analyzing the frequency composition
of GNSS data [Nikolaidis, 2002], among other applications. The most advanced regression
models are employed in the processing of GNSS measurements at the International GNSS
Service data analysis centers [Blewitt et al., 2016; Bock et al., 2023] and in the construction
of the International Terrestrial Reference Frame, beginning with the ITRF2014 version
[Altamimi et al., 2023, 2016].

In the last decade, there has been a sharp increase in the number of studies devoted
to the processing of time series of various data using machine learning methods. Active
development of the methodology has led to the emergence of a number of new approaches
to the analysis of GNSS data time series based on machine learning methods. These
algorithms are aimed at solving the main problems arising in the processing of GNSS data
time series: detecting outliers, searching and modeling instantaneous shifts, modeling
transient deformation processes. In particular, the following have been proposed: 1) new
algorithms for studying time series in the frequency domain [Ji et al., 2020]; 2) new methods
for modeling transient processes, such as seasonal variations, nonstationary trends, etc.
[Xue and Freymueller, 2023; Yamaga and Mitsui, 2019]; 3) new algorithms for missing data
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recovery [Zhang et al., 2021]; 4) time series modeling methods based on the recurrent neural
network algorithm [Ozbey et al., 2024] and many others. New machine learning-based
methods can capture complex, nonlinear patterns and interactions that classical regression
models might miss.

In this article we consider GNSS measurements not as auxiliary information that
merely complements the available geological and geophysical data, but as direct input
data that requires direct interpretation. The volumes of the obtained GNSS measurements
due to continuous data from dense GNSS networks in tectonically active regions, their
variety due to large amount of postprocessing data and accumulation speed have brought
GNSS data very close to the ensemble of Big Data sources in Earth Sciences. This approach
seems quite justified, since GNSS data themselves contain sufficient information about the
nature of recent crustal deformation, and this information can be extracted using special-
ized quantitative Big Data methods, such as anomaly detection, filtering, interpolation,
clustering, etc. [Gvishiani et al., 2022].

The proposed approaches to interpreting time series of GNSS measurements are based
on the use of machine learning methods, which corresponds to modern global trends in
Earth sciences and allows creating new methods for studying the features of regional fields
of recent movements of the Earth’s surface and to move on to studying the patterns of
their formation. The purpose of this study is to build an adequate, versatile, statistically
significant and interpretable regression model to obtain correct estimates of the components
of time series in the time domain, which, in turn, can be used to study anomalies in the
field of deformations of the Earth’s surface and to build models of geodynamic processes.

Data and methods
Satellite geodetic data

Time series of high-precision daily estimates of GNSS station positions were used as
initial data for constructing regression models. These time series reflect the variability of
positions caused by both tectonic processes and systematic and random errors in GNSS
measurements. In order to achieve the requirement of versatility, the regression recovery
algorithm was tested and verified on time series of GNSS stations located in regions with
different tectonic structure and activity: the Japanese Islands (more than 1300 stations),
the coast of Peru-Chile (130 stations), and Southern California (71 stations). The GNSS
observation data were provided: 1) on the Japanese Islands — by the Japan Geospatial
Information Agency (GSI); 2) on the Peruvian-Chilean coast and in Southern California —
by the Nevada Geodetic Laboratory of the University of Reno [Blewitt et al., 2018]. The
stations for analysis were selected from the vicinity of the focal zones of strong regional
earthquakes in order to obtain the maximum possible amount of data on the action of
regional geodynamic processes: on the Japanese islands stations were selected in the
vicinity of the focal zone of the Tohoku earthquake, March 11, 2011, with M, = 9.0; on
the Peruvian-Chilean coast, in the vicinity of the focal zones of the Maule earthquake,
February 27, 2010, with M, = 8.8, the Iquique earthquake, April 1, 2014, with M, = 8.1
and the Illapel earthquake, September 16, 2015, with M,, = 8.3; in Southern California,
in the vicinity of the focal zone of the Ridgecrest earthquake, July 5, 2019, with M, =7.1
(Figure 1).

Algorithm for solving the regression recovery problem

In this work we construct an adequate, versatile, statistically significant and inter-
pretable regression model to extract meaningful signal from GNSS time series in tecton-
ically active regions. The model’s adequacy is assessed based on its ability to accurately
reproduce the time series in the time domain. The versatility of the model means its suit-
ability for describing time series characterizing the total action of geodynamic processes
in regions with different dynamics and tectonic structure. The statistical significance of
the model is determined by the success of passing statistical tests for the significance
of regression coefficients. The interpretability property of the model means the ability
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Figure 1. Examples of initial time series used in the analysis. (a) Station SANT (Santiago, Chile) near
the source zone of the Maule earthquake; (b) Station P091 (Southern California) near the source zone

of the Ridgecrest earthquake.

of further use of the obtained regression coefficients for solving geodynamic problems,
in particular, studying recent movements and deformations of the Earth’s surface and
modeling geodynamic processes.

Within the framework of machine learning methodology, such a regression recovery
problem is formulated as the mining of the statistical dependence M between moments of
time t; € T and the values of the time series y; € Y, which is usually specified in the form of
parametric family of functions:

M ={f(,0)6 B}, (1)
where f: T x® — Y is a fixed function, © is a set of admissible values of the parameters
6. In this formulation, the regression recovery problem is a classic supervised learning
problem where the set of time moments T determines the set of objects, and the set Y
determines the set of labels. The advantage of machine learning methods is the versatility
of the algorithm for solving the problem, while its fine-tuning is based on the modification
of three key principles: 1) the principle of generating a feature description of objects;
2) the principle of specifying a family of parametric functions that approximate the desired
statistical dependence (1); 3) the principle of determining the proximity of the predictive
model M and the original time series.

The feature description of objects is their formalized informational description, char-
acterizing some property or aspect of the object:

p]-:T—>P]-, ji=1...,mn (2)
where P; is the admissible set of values of the j-th feature. In the case of a one-dimensional
time series of GNSS observations, the only feature of objects is the time moments t € T, and
also, according to (2), any functions of the variable t.

The principle of constructing the family of functions (1) is determined by the type of
the analyzed data and the requirements for the resulting model. In this paper, the require-
ment for interpretability of the regression model determines the need to involve a priori
information to form a model characterizing the actions of real geodynamic processes. Due
to the additivity of deformation, the parametric family of functions (1) is represented by
functions linear with respect to their parameters, reflecting the contribution of various
deformation processes to the total displacement of the Earth’s surface, recorded by GNSS
[Nikolaidis, 2002]:

n
M= Zejp]-(T),QeR”, (3)
j=1
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where feature vector

(1,¢,sin(2mt), cos(27ct), sin(47ct), cos(4rnt), H(t > Ty),...,

H(t > Tl),H(t > TgOSt).postO(t),...,(t > Tkpmt).postk(t)) ' @

p(t) =

H is a Heaviside function [Bracewell, 2000], I and m are the number of instantaneous
shifts at time moments (Ty,..., T;) and episodes of postseismic nonlinear behavior started
at time moments (TgOSt,..., TkPOSt), respectively, post;(t) is a function, which describes the
summary effect of postseismic processes and can be written in different forms [Yamaga and
Mitsui, 2019]:

1n(1+%)—exp(—$) (I)

b

post(t) = ln(l—i—T")ln(l—i-TTb —exp(r—tb) (I (5)
ln(1+%)—exp(—rib)—exp(—%) (II1)

where 7,, 7), T, are attenuation constants. The model (3-5) allows us to simulate recent
movements and deformations of the Earth’s surface both in stable intraplate regions and in
areas with high tectonic activity at all stages of the seismic cycle.

The idea of machine learning is to find an optimal set of parameters 6 in a certain
sense for a sample X™ = (t;,y;), i = 1,...,m which determines a certain implementation
of the model a = a(X™) € M of family (3). This problem can be formalized by setting
a loss function £(a, t;) on each element of the data sample (t;,7;), which characterizes the
closeness of the predicted a(t;) and the true value of the time series (label) y; or, in other
words, the error of the model a on a given element of the sample. Setting the error function
allows us to construct a functional of the quality of the model 4 on the sample X™, which,
in the case of equivalent elements of the sample, is defined as the average value of the error
over the entire sample (empirical risk functional):

q

m

Q@ X" =3 Llat) (6)

i=1

The choice of the type of loss function and empirical risk functional depends on the
initial problem formulation and the characteristics of the data. The further solution of the
machine learning problem consists of finding the optimum of the empirical risk functional.
When specifying the empirical risk functional in the form (6), the solution is found using
the empirical risk minimization method (ERM):

a(X™) = argminQ(a, X™) (7)
aeM

The obtained solution minimizes the functional (6), but depends significantly on
the data sample on which the training took place, the selected families of functions (3)
and the methods for specifying the loss function and the empirical risk functional. The
common way to check the performance of a learning algorithm (7) is to use cross-validation
techniques, such as Leave-one-out, K-fold, etc. The key of this approach is to split the
original data set X" into two sub-sets — training set and test set. The training set is used to
build the model and adjust the hyperparameters of the algorithm. The test set is used to
check the generalizing ability of the model and assess its quality. Sequential methods (such
as Leave-one-out) are extremely computationally intensive for long-term GNSS time series.
On the other hand, the use of batch cross-validation methods (e.g., K-fold) in the analysis
of GNSS measurement time series is not possible due to the presence of short-term and
instantaneous shifts in the time series. Thus, in this paper we construct training and test
sets by dividing the original data set into even and odd elements. This approach allows
us to evaluate the quality of the constructed model and minimize data loss in the training
sample.
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Machine learning methods are sensitive to the quality of the initial data and the
presence of random errors that distort the statistical dependence existing in the data. Thus,
solving the regression recovery problem requires a preliminary analysis of GNSS displace-
ment time series in order to clean them, as well as collecting a priori information necessary
for constructing a regression model. In tectonically active regions, GNSS displacement time
series can be significantly complicated by the presence of instantaneous shifts caused by
earthquakes and volcanic eruptions, long-term transient processes occurring near source
zones of strong earthquakes and areas of preparation for volcanic eruptions, as well as
due to changes in the stress-strain state of the Earth’s crust and lithosphere. The effects of
these geodynamic processes of different spatiotemporal scales cannot always be correctly
separated, which requires the development and application of special methods and criteria.
In addition, the analyzed time series contain outliers and seasonal variations. Incorrect
consideration of all the above-described complicating factors can significantly distort the
resulting estimates of the geodynamic processes’ effects, which, in turn, will affect the
correctness of the subsequent interpretation of the time series.

The algorithm proposed in this work for solving the regression recovery problem
involves processing the original time series through two main phases, each comprising
several stages (Figure 2):

* data preparation phase;
* modeling phase.

The data preparation phase is aimed at primary processing and analysis of time series
data and consists of the following stages

1.  determination of the trend using robust optimization algorithms in order to obtain
a modified time series for subsequent analysis;

2. pre-processing of GNSS time series in order to remove outliers and fill in the gaps
that arose due to a malfunction of the station or after removing outliers;

3.  detecting the instantaneous shifts in time series.

An important feature of GNSS observation time series is their nonstationarity, both in
terms of sample mean and sample variance. Such properties of time series do not allow us
to use classic methods of statistical analysis of time series. In this regard, it is necessary
to make a preliminary analysis and modification of the original time series in order to
bring them to a quasi-stationary form, which will allow further use of statistical analysis
methods to solve problems of cleaning the time series from statistically unlikely events
(outliers), determining the times of instantaneous shifts, etc.

The first stage of such preliminary analysis consists in correct estimation of the trend,
which usually makes the largest contribution to the sample variance. The problem of
trend removal in GNSS time series is complicated by the presence of a seasonal component
(the fundamental harmonic has a period of 1 year), outliers, instantaneous and nonlinear
shifts, which requires the use of robust optimization methods for estimating the linear
trend. In the proposed algorithm, a modified robust Theil-Sen algorithm presented in
[Blewitt et al., 2016] is used for these purposes. This approach allows obtaining a robust
estimate of the linear trend and modifying the original series by removing the linear trend
model calculated for each point of the series. In this case, the modified time series can be
considered conditionally stationary within a short time window under the assumption of
an uncorrelated error model.

In the original version of the Theil-Sen algorithm, the slope of a straight line is
calculated as the median of the distribution of slopes of straight lines passing through all
possible pairs of points in the time series. In a modified version, pairs of data separated
by 1 year are selected to account for seasonal component, the fundamental harmonic of
which has a period of 1 year [Blewitt et al., 2016]. It is assumed that the measurement
errors are statistically independent and follow a normal distribution. The results of
numerical experiments showed that the distribution of the obtained slope estimates can
differ significantly from the normal one (in particular, multimodal distributions (Figure 3b)
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Figure 2. The algorithm operating scheme.

associated with possible trend changes, heavy-tailed distributions (Figure 3c) caused by
unlikely trend values obtained due to the presence of seasonality, instantaneous shifts
and nonlinear shifts in the time series). In order to reduce the error in determining the
median trend, we modified the algorithm described in [Blewitt et al., 2016] by determining
the trend based on the maximum mode estimate calculated from the histogram, and by
discarding slope values that are outside 2 standard deviations from the median (Figure 3).
The median absolute deviation (MAD) estimate [Blewitt et al., 2016], calculated based on
the median, was used as the standard deviation.

In the next stage of the preprocessing phase of the algorithm, we clean the modified
detrended time series to exclude outliers (Figure 4). In the following, we define an outlier
exclusively as an undesired point anomaly resulting from random measurement errors
[Blazquez-Garcid et al., 2021]. Thus, cleaning outliers from a time series is a crucial
preprocessing step since measurement errors can seriously distort model fitting. At the
same time, a thorough analysis of the detected outliers must be conducted to ensure that
meaningful signal components are not mistakenly removed. We evaluated several widely
used algorithms for outlier detection, including classical sliding window methods such
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Figure 3. Possible type of histograms for calculated slopes. (a) — quasi-normal distribution (median
(red line) and mode (green line) coincide), (b) — bi-modal distribution (mode shifted to the left related
to the median), (c) — heavy-tailed distribution (mode slightly shifted to the left related to the median).

as Z-score and Interquartile Range (IQR), as well as modern machine learning-based
approaches, specifically Local Outlier Factor (LOF) [Alghushairy et al., 2020] and Isolation
Forest [Liu et al., 2008].

The IQR and Z-score methods operate by comparing each point in the time series
to a local statistical threshold, computed within a sliding window centered at the point
of interest. Specifically, the IQR method uses the interquartile range, while the Z-score
method relies on the sample mean () and standard deviation (o):
yldetrend —u

o

outlier(Z-score) = > 3.

The interquartile range is the difference between the estimates of the first quartile (Q1)
and the third quartile (Q3) of the distribution. In this case, the values of the time series
that are outside 1.5-IQR from Q1 to the left and Q3 to the right are defined as outliers:

detrend _ .
outlier(IQR) :{ 3’1;1 crend <Ql-15-I1QR
Yi >Q3+1.5-1QR

The size of the sliding window for IQR and Z-score is chosen to be small enough
(namely, 30 days) to consider the time series segment as quasi-stationary, and the measure-
ment errors as conditionally independent and normally distributed.

The results of applying the outlier detection algorithms are shown in Table 1. Analysis
of the detected outliers shows that their removal improves the performance metric of the
resulting model. At the same time, classical methods are more reliable, since the tested
machine learning methods, if the hyperparameters are chosen incorrectly, can lead to the
loss of a significant amount of initial data.

One of the most challenging aspects of GNSS time series processing is the identification
of instantaneous shifts caused mainly by seismic and volcanic processes or changes in
GNSS station equipment. The solution to the problem of determining the moments of
coseismic displacements is necessary for further modeling of postseismic processes and
construction of the final regression model. Displacements in time series of coordinates
are defined as an instantaneous change in the sample mean, leading to a long-term effect
on the estimated parameters. Depending on their presence in the time series, unmodeled
displacements can seriously affect the coefficients of the resulting model.
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Figure 4. An example of cleaning outlier procedure results for P091 GNSS station (Southern
California) (a) and SANT GNSS station (Santiago, Chile) (b). Blue dotes denote daily estimates for
displacements, red dots denote identified outliers.

Table 1. Comparative analysis of the performance of various outlier detection algorithms and the impact of outlier cleaning procedures

on model fitting for J0O1 time series (Japanese islands)

Window Number Performance Coefficient Determined
Method size, of outliers metric, mm of determination, % offsets
days N E U N E U N E U N E U
1997.2041 1997.2232 2003.1000
2011.1932 1998.8918 2011.1932
IQR 30 482 445 545 178 258 551 9944 9998 7974 00005 2011.1932 20129631
2012.2746
1997.2041 1997.2233 2003.1000
2011.1932 1998.8918 2011.1932
Z-score 30 482 445 545 1.78 2.58 5.51 99.44 9998 79.74 2012.9631 2011.1932 2012.9631
2012.2746
Isolation 1997.2014 1997.2096 2003.1027
forest 1000 1968 1838 884  1.82 229 448 99.02 99.98  80.4 2013.6700 1999.6370 2013.6700
2015.4343 2013.6699
1999.3712 1999.3712 1999.3767
Local 2011.1904 2011.1904 2000.6243
Outlier 500 368 769 880 1.72 4.08 4.58 99.21 99.95 87.30 2012.9631 2003.1027
Factor 2011.1904
2012.9631
1997.2014 1997.2095 2003.1027
2011.1904 2011.1904 2011.1904
Raw data - - - - 2.44 5.11 7.09 99.22  99.94 78.23 2012.9631 2012.1762
2012.9631

The algorithm proposed in the article allows us to use any methods originally devel-
oped for analyzing data of various natures, such as financial, meteorological, sociological,
etc., to solve this complex problem [Crocetti et al., 2021; Londschien et al., 2023; Truong et al.,
2020]. The analysis of specialized methods for automated offset detection in synthetic
GNSS time series was carried out as part of the Detection of Offset in GPS Experiment
(DOGEXx) [Gazeaux et al., 2013]. During our experiments, we tested several methods:
the sequential JPL_STP1 analysis method, which showed good results on synthetic tests
[Gazeaux et al., 2013]; the changeForest method [Londschien et al., 2023], based on the
use of Random Forest technology, and several methods implementing the Change Point
Detection (CPD) approach [Truong et al., 2020].

The JPL_STP1 method is a sequential method in which each point in the series is tested
for possible shift. Identification of shift is based on constructing a linear regression using
data from two sliding windows before and after the time point under study. The potential
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shift is estimated as the difference between the absolute terms of the two constructed
regression models. To improve the robustness of the regression, a series of time window
sizes (from 10 days to 90 days) is considered, and the median of all the resulting shift
estimates is used as the final estimate of shift. The significance of the resulting shift
was tested using the F-test. We also modified the JPL_STP1 method by changing the
optimization method from the non-robust Least Squares to the more robust Theil-Sen
method. We conducted a series of experiments using the modified JPL_STP1 method on
various time series and found that it has a fairly high computational complexity due to the
sequential checking of all points in the series, as well as a fairly large number of “False
Positive” detections due to wrong estimates of linear regression coefficients on points
surrounding the real shift.

The changeForest algorithm [Londschien et al., 2023] is based on the use of Random
Forest to find time series segments with different sample statistical characteristics, while
on each segment, the data are assumed to be distributed equally. As a result of applying the
method, a tree-like structure is obtained by the division of the original series into segments.
Numerical experiments have shown the method produces an excessive number of “False
Positive” detections when applied to the analysis of GNSS time series (Figure 5, left panel).

The CPD approach is a general approach to finding changes in statistical quantities
(mean, variance, etc.) in time series. The essence of the method is to find the minimum
of the functional characterizing the total misfit between the model and the initial data
[Truong et al., 2020]:

mTin V(T)+pen(T), (8)

where 7 is the best possible segmentation, V(7') = Zszo ¢(Vt..t,,,) is the summary of cost
functions ¢(y) defined on all the sub-segments y;, ., of the initial time series, pen(7) is
the penalty function introduced to avoid large number of shifts.

We tested several CPD algorithms solving (8) and choose the fast approximate sliding-
window method Win [Truong et al., 2020]. The advantages of this method are its very low
computational cost and high possibilities of fine-tuning via variation of hyperparameters
which allowed us to get better shift detections for very different time series used in the
experiment (Figure 5, right panel).

To ensure that the chosen CPD algorithm can detect the actual displacements, we
compared the moments and magnitudes of coseismic displacements for the time series of
the P091 GNSS station located near the epicentral zone of the 2019 Ridgecrest earthquake.
We compared the data provided by the leading GNSS data analysis centers: SOPAC —
Scripps Orbit and Permanent Array Center and NGL — Nevada Geodetic Laboratory, and
the results of two our models (Table 2). All models including the selected CPD model,
correctly detected the time moment of coseismic slip caused by the 2019 Ridgecrest
earthquake. We calculated direct estimates of coseismic shift as the difference between
linear models built from 10-day pre-earthquake and 10-day postearthquake time series
segments. The obtained displacement magnitudes are close to the obtained direct estimates
(Nstip = =25.24mm, Eg;p = -2.53mm, Ug)jp = 2.22mm), and the difference in estimates is
due to different postseismic displacement models used.

The instantaneous shifts obtained at this stage of the preprocessing phase allow us to
determine the feature vector (4). It is known that significant postseismic displacements
are observed only during large earthquakes and within only a few hundred kilometers
from the earthquake source, that is why we used the magnitude of the observed shift as
a threshold value when determining the moments of the onset of postseismic processes. In
particular, postseismic processes were modeled only for those displacements that exceeded
the threshold of 10 standard deviations.

The final optional stage of the time series pre-processing phase is to interpolate
the time series to fill in any gaps in the data that exist or have arisen due to the outlier
cleaning procedure, using the monotonic piecewise cubic interpolation algorithm [Fritsch
and Carlson, 1980].
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Table 2. Comparison of times and magnitudes of coseismic shifts obtained using different algorithms (N — North, E — East, U — Vertical

components of time series)

o NGL offsets, SOPAC offsets, |Gabsatarov, 2012] This work
Coseismic offset mm mm offsets, mm offsets, mm
source

E U N E U N E U N E U
2019 Ridgecrest
earthquake My, =7.1
[USGS] —4.46 3.91 —25.72 —3.07 5.32 —29.62 1.51 3.85 —35.25 —0.1 -

2019-07-06 03:19:53
(UTC)

Determined
offset date

2019.5099 [2019-07-06]

2019.5110 [2019-07-06] 2019.5110 [2019-07-06] 2019.5096 [2019-07-06]

0.8

0.6

0.4

meters
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Figure 5. (Left panel) An example of instantaneous shift detection using changeForest algorithm
[Londschien et al., 2023] for J001 GNSS station (Japanese islands). (Right panel) An example of CPD
using Win algorithm [Truong et al., 2020] for J001 GNSS station (Japanese islands). From up to down:
North, East and U component of GNSS time series. Red lines for left panel and black dashed lines
for right panel denote moments of slips. Colors for right panel indicate the stable parts of the time
series.

The second phase of time series processing consists of directly constructing the re-
gression model (3-5). This phase is divided into two stages: 1) constructing a piece-
wise linear model without taking into account the effect of postseismic processes (Fig-
ure 6a); 2) constructing a complete time series model using the feature vector generated
based on the results of the previous modeling stage (Figure 6¢). The first stage is nec-
essary to select the best optimization method and determine the onset of postseismic
processes. Modeling is performed for the feature vector (4) with removed components
(5) responsible for modeling postseismic processes. The problem of selecting the best
optimization method is solved by performing calculations with various optimization
methods and selecting the best one based on the maximum of the determination coeffi-
cient (Figure 6b). The following are considered as candidate methods: a) Least Squares
method — a classical non-robust optimization method, in which the solution is defined
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asa(T,Y)= IgleiélZ?il(p(ti)Q —yi)z; b) Lasso method is an optimization method that works
well with models with a large number of zero coefficients, the solution is specified as
a(T,Y) = rgleig[ﬁ 2 (p(t;)e —yi)2 + Z?Zl 9]-]; ) Bayesian Ridge method, which is more
robust than Least squares due to defining additional prior distribution for 8, the solution is
given in the form a(T,Y) = renelél[ﬁ Y (p(t;)0 - ;) + Z;-’Zl 6].2]; d) The Theil-Sen method
is a robust optimization method based on the estimation of the median of the distribution

of model and initial data residuals. The determining of the onset of postseismic processes
is performed using the threshold method described above for the resulting estimates of

shifts.
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Figure 6. Results of regression modeling for J001 GNSS station (Japanese islands) (a) piecewise linear
model (blue line is a time series, orange line denote regression model); (b) The estimates of coefficient
of determination for different optimization algorithms (LR — Least Squares, L — Lasso, BR - Bayesian
Ridge, TS — Thiel-Sen); (c) resulting regression model accounting for postseismic process after 2011

Tohoku earthquake.

The construction of a complete nonlinear model is based on an iterative approach
in which the attenuation constants of postseismic processes (5) are considered as a hyper-
parameter and vary from 1 to 300 days. The best model is determined by the minimum
of the mean absolute error for all models maximizing the coefficient of determination.
This approach is quite similar to that used in the model [Gabsatarov, 2012]. The statistical
significance of the obtained regression models was tested using the standard F-test.

During the third phase of the algorithm operation, the residuals obtained during the
construction of the final regression model are used to study the rate of accumulation of
elastic deformations and their variations. The initial data for modeling the variations in the
process of deformation accumulation are obtained by analyzing the time series of residuals
of the final model in a 1 year-long sliding window, modified by adding to each of its points
a deformation trend model calculated as the difference between the estimated final trend
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and its modeled value, based on the MORVEL plate tectonic model [Argus et al., 2011].
The deformation trend in each time window is estimated using the modification of the
Theil-Sen algorithm proposed in the work, taking into account all possible pairs of points.

The proposed algorithm for analyzing GNSS time series is based on a combination
of the machine learning approach described above and classical methods of statistical
analysis of time series. This approach allows us to significantly reduce the amount of
a priori geological and geophysical data used and completely avoid the direct modeling
of the action of geodynamic processes, which accelerates the analysis of time series by
reducing the computational complexity of algorithms, and will allow further the designing
of fully automated systems for analyzing GNSS data.

Results

In order to test the proposed algorithm, we created its software implementation in
Python using open-source modules (NumPy, SciPy, Scikit-learn, Pandas, Matplotlib,
Ruptures). The architecture of the created software is a modular scheme, which allows us
to easily improve and replace individual blocks of the algorithm. Using an object-oriented
approach also simplifies the support and further improvement of software by combining
data and processing methods in one data structure. Further, these software features will
help us to expand the capabilities of the algorithm for interpreting data, increase the
accuracy of estimates and reduce the time to build a model.

The algorithm presented in the work is the first stage of creating an automated system
for statistical analysis of GNSS time series. In this regard, our task was to create a fully
operational version of the algorithm and test it on the most diverse data sets in order to
obtain data on the limits of applicability of the algorithm, determine its shortcomings
and outline promising areas of development. The algorithm was tested on a cloud server
(CPU: 2xXeon E5-2670 2.6 GHz (8 cores) RAM: 32 GB). Results of applying the algorithm
for several time series in the stable part of the lithospheric plate (ARTU station) and in
different tectonically active regions (subduction zones: PETS and J001 stations, shear zone:
P091 station) are shown in Table 3.

The piecewise linear model is quite good for analyzing data from stable inner plate
regions but absence of postseismic features in feature vector for piecewise model can
cause mismodeling for short-term and small nonlinear effects (Figure 8b) and even ruin
the solution for prominent nonlinear postseismic motions (Figure 7b). The complete
model demonstrated adequacy for approximately 85% of the tested time series, which
includes observations from various tectonically active regions, such as the immediate
vicinity of megathrust zones (Figure 7) and significant strike-slip events (Figure 8). Model
adequacy is defined here as the ability to accurately reproduce the GNSS time series based
on established machine learning performance metrics. Specifically, this is characterized by
a low sample variance of the residuals—reflected by a mean absolute error of approximately
2mm to 3 mm for the horizontal components and about 5 mm for the vertical component—
as well as high values of the coefficient of determination, averaging around 0.95 for
horizontal components and 0.85 for the vertical component (Figures 7d and 8d). In all
studied cases the constructed regression models were found to be statistically significant.

The obtained results (Table 3) indicate that even at this early stage of development, the
constructed regression model achieves performance that is comparable to or exceeds that of
existing classical regression analysis models [Blewitt et al., 2016; Bock et al., 2023; Gabsatarov,
2012] in terms of the performance metric. Testing further revealed that, in the absence
of postseismic effects in the time series—modeling of which remains computationally
intensive—the new algorithm operates significantly faster than its predecessor [Gabsatarov,
2012]. This enhanced efficiency is primarily attributed to the utilization of vectorized
computations and the elimination of the need to gather a priori information or perform
direct calculations of coseismic displacements.

However, we found that despite the high values of the coefficient of determination and
small values of mean absolute error, the final model didn’t account for all the deformation
effects. The complete model residuals (Figures 7d—8d) show prominent long-term nonlinear
effects possibly caused by slow-slip events.
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Table 3. Comparison of the results of different regression analysis algorithms. (N — North, E — East, U — Vertical components of time

series)
Number of Number of modeled Performance Length
. Program . . .. . .

Station . . instantaneous shifts postseismic processes metric, mm of time
Location Model running .

name time series,

N E U N E U N E U years
Kamchatka  [Gabsatarov, 6min30s 1 1 1 1 1 1 9.55 13.38 14.13
Peninsula, 2012] 25.15
pprs  Kuril- This work 9min 05s 7 11 6 1 1 0 1.05 152  3.87
Kamchatka
subduction  SOPAC - 3 3 3 2 2 2 191 344 539 1793
zone NGL - 33 33 33 7 7 0 1.81 1.76 5.95 17.93
Ural [Gabsataro, 3min 50s 0 0 0 0 0 0 122 342  5.67
mountains, 2012] 22.81

ARTU  Stablepartof  Thig ork 2min30s 4 0 0 0 099 094 458
the Eurasian
lithospheric ~ SOPAC - 0 0 0 0 0 141 150 659 2281
plate NGL - 1 1 1 1.55 1.58 7.27 22.81

[Gabsatarov, .
Iapanese 2012] 6 min 38s 1 1 1 1 1 1 3.25 27.58 8.18 15.72
islands,

1001 Rpan This work 53min 165 7 6 5 2 2 0 1.81 333 594  20.18
subduction SOPAC - - - - - - = = = - -
zone

NGL - 40 40 40 7 7 7 4.45 1.89 5.35 15.72
o [Gabsatarov, 4min17s 1 1 1 1 1 1 171 1.31 431
California, 2012] 17.52

po9;  [Eastern This work 3min0ls 7 5 1 1 0 0 0.96 1.00 3.18
California
Shear Zone  SOPAC - 2 1 1 1 0 1.82 118 422  17.9

NGL - 7 7 7 - 1 1 1.53 1.88 4.75 17.52
(a) (b)
N component - N component
0 W Gy, i :
g g o %WN N
~100 Mgy g -20 j
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Figure 7. An example of regression modeling for SANT GNSS station (Santiago, Chile). Blue dotes

denote daily estimates for displacements, red line denotes constructed regression model. (a) —

piecewise linear regression model, (b) — residuals of piecewise linear regression model, (c) — final

regression model, (d) — residuals of final regression model.
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Figure 8. An example of regression modeling for P091 GNSS station (Southern California). The

designations in the figure are similar to Figure 6.

The disadvantages of the presented algorithm revealed during the tests include the
excessively simple CPD method, which does not cope well enough with the determination
of instantaneous shifts in the case of long and intensive nonlinear processes, a rough
method for selecting the onsets of postseismic processes, the need to further reduce the
algorithm’s operating time for long time series and more complex models of postseismic
processes. Due to the modular structure of the algorithm and the software implementing
it, these problems can be overcome by using more complex models taking into account
shifts and postseismic effects such as application of a recurrent neural network to extract
nonlinear transient displacements [Xue and Freymueller, 2023] and mark the onset of
postseismic processes, new neural network-based methods to extract instantaneous shifts
[Ozbey et al., 2024].

Conclusion

In this paper, we present the theoretical foundations of the algorithm for processing
GNSS time series using machine learning methods in solving the problem of regression
recovery. This algorithm allows us to solve the problem of constructing a linear model of
crustal deformation at the location of GNSS station without using a priori information and
direct modeling.

The versatility and adequacy of the algorithm were tested by analyzing time series of
GNSS stations located in various tectonically active regions (the Japanese islands, Northern
California, the coast of Peru-Chile) both near the sources of large earthquakes with different
types of mechanisms (thrust and strike-slip) and magnitudes from M,, = 7.1 to M, = 9.0
and at distances of up to several hundred kilometers across and along the azimuths of
the strike of the main rupture plane. According to the results of statistical tests for
the significance of the regression coefficients all the resulting regression models were
recognized as statistically significant.

In addition, we created a software implementation of the presented algorithm, allow-
ing to obtain initial data for constructing models of geodynamic processes and studying
variations in the field of recent movements and deformations of the Earth’s surface. The
obtained variations of the studied fields can be used for a feature description of points on
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the Earth’s surface when solving the clustering problem in order to identify stable domains
in the recent crustal movements field and its spatiotemporal variations.

The presented results will allow creating a theoretical and practical basis for a versatile
tool for analyzing variations in the fields of recent movements and deformations of the
Earth’s surface in order to identify a regional fault-block structure and localize areas of
increased geodynamic hazard based on the use of new data analysis methods.
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