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Far fields of internal gravity waves from a source moving
in the ocean with an arbitrary buoyancy frequency
distribution
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The generation of internal gravity waves in the ocean with an arbitrary distribution of
the buoyancy frequency generated by a moving source of perturbations is considered.
The basic dispersion characteristics determining the properties of the generated
far wave fields are studied analytically and numerically. The results of numerical
computations of internal wave fields for different generation modes are presented. It is
shown that the far wave fields of a separate mode can be presented as a sum of wave
trains. The article investigates the specific characteristics of how these wave trains
are generated. The proposed approach can be used to model internal wave wakes
from a moving typhoon. KEYWORDS: Internal gravity waves; stratified ocean; far fields;

asymptotics.
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1. Introduction

The moving atmospheric cyclones have a signifi-
cant impact on the ocean circulation, the local sea
surface temperature, and the generation of inter-
nal gravity waves. It is expected that the wave
fields generated by this generation can play a signif-
icant role in various mechanisms of energy transfer
in the ocean interior. The tangential wind stress
induced by a moving hurricane forms a structure
in the ocean in the form of a wave train or trace.
The experimental detection of these wave struc-
tures was one of the impressive achievements of
modern oceanology [Bulatov and Vladimirov, 2012,
2015; Gill, 1984; Massel, 2015; Mei et al., 2017;
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Morozov, 2018; Pedlosky, 2010; Sutherland, 2010;
Velarde et al., 2018].
The propagation of internal dispersion waves in

stratified ocean media has specific features related
to the dependence of the propagation velocity on
the wavelength. If a perturbation source moves
in such a medium, then it creates a wave pattern
around itself, the main features of which are the
lines of the constant phase. The structure of wave
patterns at large distances from the moving source
(much greater than its dimensions) is practically
independent of its shape and is mainly determined
by the dispersion law and the source velocity [Bu-
latov and Vladimirov, 2012, 2015; Svirkunov and
Kalashnik, 2014].
The system of hydrodynamic equations describ-

ing the wave perturbations is a complex math-
ematical problem, and the main results of solv-
ing the problems on the internal wave generation
can be obtained only in the most general integral
form or numerically. In numerical calculations, the
ocean is usually represented by a simplified hydro-
dynamic system with a model density distribution.
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The integral representations of solutions require
the development of asymptotic methods for their
research. These methods allow us to conduct high-
quality analysis and estimation of the solutions ob-
tained in the field measurements of internal waves
in the ocean [Frey et al., 2017; Furuichi et al., 2008;
Gill, 1984; Kang and Fringer, 2010; Lecoanet et
al., 2015; Morozov et al., 2003, 2008; Tiugin et al.,
2012].
The modern approaches to the description of lin-

ear internal waves are based on the representation
of wave fields by Fourier integrals, an analysis of
their asymptotics, and the geometric construction
of enveloping wave fronts in the framework of the
kinematic theory of dispersion waves. Based on the
kinematic theory, it is possible to formulate analyt-
ical representations only for the phase surfaces of
wave fields of internal gravity waves from a moving
typhoon [Svirkunov and Kalashnik, 2014].
The goal of this work is to solve a more complex

problem of constructing asymptotics. We also de-
scribe special features of the phase and amplitude
structures of the far fields of internal gravity waves
generated by a localized perturbation source. The
source is moving in the ocean of a finite depth with
an arbitrary stratification. Indeed, at large dis-
tances, the real sources of perturbations (moving
typhoon) allow a physically justified approximation
by a system of localized point sources taken with
certain weights [Bulatov and Vladimirov, 2018; Fu-
ruichi et al., 2008; Gill, 1984; Kang and Fringer,
2010; Lecoanet et al., 2015]. The use of real hy-
drology allows us to take into account the specific
characteristics of wave dynamics with regard to the
variability of the marine environment density ob-
served in the field measurements of internal waves
in the ocean.

2. The Problem Formulation and
Analytic Representations of the
Solutions

The elevation 𝜂 of the field of internal gravity
waves generated by a source that begins to move
at a velocity 𝑉 at a depth 𝑧0 at a time 𝑡 = 0 in
a stratified ocean of finite depth −𝐻 < 𝑧 < 0
can be determined from the problem [Bulatov and
Vladimirov, 2012, 2015, 2018]

𝐿𝜂 = Θ(𝑡)𝑄(𝑡, 𝑥, 𝑦, 𝑧, 𝑧0) (1)

𝐿 =
𝜕2

𝜕𝑡2
(
𝜕2

𝜕𝑥2
𝜕2

𝜕𝑦2
𝜕2

𝜕𝑧2
) +𝑁2(𝑧)(

𝜕2

𝜕𝑥2
+

𝜕2

𝜕𝑦2
)

where Θ(𝑡) = 0, 𝑡 < 0, Θ(𝑡) = 1, 𝑡 ≥ 0, 𝑁2(𝑧) is the
Brunt-Vaisala frequency and 𝑄(𝑡, 𝑥, 𝑦, 𝑧, 𝑧0) is the
source density distribution. The form of the func-
tion 𝑄(𝑡, 𝑥, 𝑦, 𝑧, 𝑧0) depends on the source charac-
ter. If we consider the force directed upwards along
the vertical as a moving source, then we have

𝑄(𝑡, 𝑥, 𝑦, 𝑧, 𝑧0) = 𝛿(𝑧 − 𝑧0)(
𝜕2𝛿(𝑥− 𝑉 𝑡)

𝜕𝑥2
𝛿(𝑦)+

𝜕2𝛿(𝑦)

𝜕𝑦2
𝛿(𝑥− 𝑉 𝑡))

Further, we consider the case of a moving point
source of a mass:

𝑄(𝑡, 𝑥, 𝑦, 𝑧) =

𝜕2

𝜕𝑡𝜕𝑧0
(𝛿(𝑥− 𝑉 𝑡)𝛿(𝑡)𝛿(𝑦)𝛿(𝑧 − 𝑧0))

Since the problem under study is linear, the ob-
tained solutions can further be used to obtain rep-
resentations for the fields of internal waves gener-
ated by nonlocal sources of a different nature [Bu-
latov and Vladimirov, 2012, 2015; Svirkunov and
Kalashnik, 2014].
The boundary conditions are taken in the follow-

ing form (the vertical axis 𝑧 is directed upwards)

𝜂 = 0, 𝑧 = 0, −𝐻 (2)

Then the solution of problem (1)–(2) that de-
scribes the steady-state wave mode of far wave
fields in the coordinate system moving together
with the source has the form of a sum of wave
modes:

𝜂(𝜉, 𝑦, 𝑧) =
∑︁
𝑛

𝜂𝑛(𝜉, 𝑦, 𝑧)

where

𝜂𝑛 =
1

4𝜋

∞∫︁
−∞

𝐷𝑛(𝑧, 𝑧0, 𝜈)×

exp(𝑖(𝜇𝑛(𝜈)𝜉 − 𝜈𝑦))𝑑𝜈 (3)

𝐷𝑛(𝑧, 𝑧0, 𝜈) =
𝜇2
𝑛(𝜈)

𝜇2
𝑛(𝜈) + 𝜈2

×
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𝜇𝑛(𝜈)

𝜈

𝜕𝜇𝑛(𝜈)

𝜕𝜈
+ 1

)︂
×

𝑓𝑛(𝑧, 𝜈)
𝜕𝑓𝑛(𝑧0, 𝜈)

𝜕𝑧0
, 𝜉 = 𝑥− 𝑉 𝑡

The eigenfunctions 𝑓𝑛(𝑧, 𝜈) and the eigenvalues
𝜇2
𝑛(𝜈) are determined from the problem [Bulatov

and Vladimirov, 2012, 2015, 2018]

𝜕2𝑓𝑛(𝑧, 𝜈)

𝜕𝑧2
+ (𝜇2

𝑛(𝜈) + 𝜈2)×

(︂
𝑁2(𝑧)

𝜇2
𝑛(𝜈)𝑉

2
− 1

)︂
𝑓𝑛(𝑧, 𝜈) = 0

𝑓𝑛(0, 𝜈) = 𝑓𝑛(−𝐻, 𝜈) = 0

For an arbitrary distribution of the buoyancy fre-
quency, this spectral problem is solved numerically.
The dispersion dependence 𝜇𝑛(𝜈) is a solution of
the equation

𝜔2
𝑛(𝑘) = 𝑉 2𝜇2

𝑛(𝜈), 𝑘
2 = 𝜇2

𝑛(𝜈) + 𝜈2

where 𝜔𝑛(𝑘) is an eigenvalue of the basic vertical
spectral problem of internal gravity waves [Ped-
losky, 2010; Sutherland, 2010; Velarde et al., 2018].
In what follows, we consider a separate wave mode,
and the subscript 𝑛 is omitted.
The integrals (3) describe the field of a separate

mode of internal gravity waves far from the trajec-
tory of motion of a local perturbation source for
large 𝜉 and 𝑦. The asymptotics of these integrals
can be calculated by the stationary phase method
under the assumption that, for example, 𝜉 is a large
parameter and the ratio 𝑦/𝜉 is fixed. The function
𝜂(𝜉, 𝑦, 𝑧) is an even function of 𝑦, and therefore,
for definiteness, we can assume that 𝑦 > 0. The
stationary points of the phase function of integral
(3) are determined by solving the equation

𝜇′(𝜈) = 𝑦/𝜉 (4)

We denote 𝑞 = max𝜇′(𝜈). Then for 𝜉 < 𝑦/𝑞,
the phase function of integral (3) has no station-
ary points, and the field 𝜂(𝜉, 𝑦, 𝑧) is exponentially
small. For 𝜉 > 𝑦/𝑞, the phase function has sev-
eral stationary points (at least two, 𝜈1,2 = ±𝜈*)

which appear in pairs 𝜈1,2𝑘
= ±𝜈*𝑘 , 𝑘 = 1, 2, . . . ,𝐾,

because the function 𝜇𝑛(𝜈) is odd (𝜈*𝑘 are positive
roots of (4)). Then the asymptotics of a separate
wave mode at a far distance from the perturbation
source has the form

𝜂 ≈
𝐾∑︁
𝑘=1

𝐷(𝑧, 𝑧0, 𝜈
*
𝑘)√︀

2𝜋𝜉|𝜇′′(𝜈*𝑘)
cos(𝜇(𝜈*𝑘)𝜉 − 𝜈*𝑘𝑦 −

𝜋

4
) (5)

where the sum is taken over all of the 𝐾 stationary
points. The wave region is concentrated inside the
wedge with the half-angle 𝜙 = arctan 𝑞. On the ray
𝑦/𝜉 =const, the field decreases as

√
𝜉, and in this

case, the wave length 𝜆 of the wave mode along
the ray is constant: 𝜆 = 2𝜋/(𝜇(𝜈*)− 𝜈*𝑦/𝜉). Solv-
ing the equation 𝜇(𝜈) − 𝜈𝑦/𝜉 = Φ together with
(4) for 𝜉 and 𝑦, we obtain the lines of equal phase
determined parametrically (with parameter 𝜈)

𝜉 =
Φ

𝜇(𝜈)− 𝜇′(𝜈)𝜈

𝑦 =
𝜇′(𝜈)Φ

𝜇(𝜈)− 𝜇′(𝜈)𝜈

Asymptotics (5) cease to work near the wave
fronts, i.e., in the case where the stationary points
tend to reach for each other and 𝜇′′(𝜈) → 0. We
consider the asymptotics in a neighborhood of the
wave fronts, assuming that 𝜉 and 𝑦 are large. The
wave fronts are determined by the values 𝜈0𝑖 for
which 𝜇′′(𝜈0𝑖 ) = 0. Then in the neighborhood of
the points 𝜈 = 𝜈0𝑖 , the function 𝜇(𝜈) admits the
expansion

𝜇(𝜈) = 𝜇(𝜈0𝑖 ) + 𝑞𝑖(𝜈 − 𝜈0𝑖 )− 𝑏𝑖(𝜈 − 𝜈0𝑖 )
3 + . . .

and the position of the wave fronts is determined
by the formula 𝑦 = 𝑞𝑖𝜉. The asymptotics of the
wave field near each of the wave fronts have the
form [Bulatov and Vladimirov, 2012, 2015]

𝜂𝑖 ≈
𝐷(𝑧, 𝑧0, 𝜈

0
𝑖 )

3
√
3𝑏𝑖𝜉

𝐴𝑖
𝜉𝑞𝑖 − 𝑦

3
√
3𝑏𝑖𝜉

(6)

Here,

𝐴𝑖(𝜏) =
1

2𝜋

∞∫︁
−∞

cos(𝜏𝑡− 𝑡3/3)𝑑𝑡
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Figure 1. Brunt-Vaisala frequency distribution.

is the Airy function. The total wave field is ob-
tained by summing over all values 𝜈0𝑖 (𝑖 = 1, . . . , 𝐼)

for which 𝜇′′(𝜈0𝑖 ) = 0; 𝜂 =
∑︀𝐼

𝑖=1 𝜂𝑖.

Figure 2. Function 𝜇′(𝜈) at different values 𝑀 : (a) – 𝑀 = 0.4 < 𝑀0, (b) – 𝑀 = 𝑀0,
(c) – 𝑀 = 0.7 > 𝑀0, (d) – 𝑀 = 1.7 > 𝑀0.

3. Numerical Results and Discussions

The numerical computations are based on the
use of the typical distribution of the Brent-Vaisaala
frequency with a single thermocline maximum,
which is shown in Figure 1 [Massel, 2015; Mei et
al., 2017; Morozov, 2018; Pedlosky, 2010 Suther-
land, 2010; Velarde et al., 2018]. All numerical
results are further given for the second wave mode
and the values 𝑧 = 40 m, 𝑧0 = 60 m. We introduce
the notation: 𝑀 = 𝑉/𝐶, where 𝐶 = 𝜕𝜔(𝑘)/𝜕𝑘
is the maximal value of the group velocity of in-
ternal waves of the second mode which is equal to
𝐶 = 0.836 m/s. Figure 2a,b,c,d illustrate the re-
sults of computations of the function 𝜇′(𝜈) for dif-
ferent fixed values of 𝑀 . These results show that,
for this buoyancy frequency distribution, one can
observe the dispersion pattern for which the func-
tion 𝜇′(𝜈) has three extrema (the value of 𝐼 is equal
to 3): two maxima 𝑞1, 𝑞2 (left and right) and a
minimum 𝑞3, and always 𝑞3 < 𝑞1,2.
Numerical computations show that the quali-

tative pattern of dispersion dependence 𝜇′(𝜈) is
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Figure 3. Dependences 𝑞𝑖(𝑀) and its approxi-
mation: line 1 – 𝑞1(𝑀), line 2 – 𝑞2(𝑀), line 3 –
𝑞3(𝑀).

strongly affected by the values of 𝑀 . Indeed, for
𝑀 < 1, the values of the two maxima 𝑞1,2 (left
and right in Figure 2) are of the same order, for
small values of 𝑀 , the left maximum is less than
the right one, as 𝑀 increases, the value of the left
maximum of the function 𝜇′(𝜈) increases, and for
𝑀0 = 0.546 < 1, the values of the left and right
maxima coincide: 𝑞1 = 𝑞2 (this means that the two
wave fronts simultaneously enter the fixed observa-
tion point). Thus, for 𝑀 < 𝑀0, we have 𝑞1 < 𝑞2,
and for 𝑀 > 𝑀0, we have 𝑞1 > 𝑞2. Further, as 𝑀
increases, the values of the left maximum 𝑞1 of the
function 𝜇′(𝜈) increase noticeably, and for 𝑀 > 1,
this maximum is always attained for 𝜈 = 0.
For critical generation modes when the source

velocity 𝑉 is close to the maximal group velocity
of internal wave propagation 𝐶, i.e., as 𝑀 → 1,
the maximal value 𝑞1 of the function 𝜇′(𝜈) asymp-

Figure 4. Dependences 𝜙𝑖(𝑀): line 1 – 𝜙1(𝑀),
line 2 – 𝜙2(𝑀), line 3 – 𝜙3(𝑀).

Figure 5. Elevation 𝜂 at 𝑦 = 0.25 km, 𝑀 = 0.4 <
𝑀0.

totically behaves as 1/
√︀

|𝑀2 − 1| [Bulatov and
Vladimirov, 2012, 2015]. Figure 3 presents the
maximal and minimal values of the function 𝜇′(𝜈)
depending on the parameter 𝑀 : 𝑞𝑖 = 𝑞𝑖(𝑀), 𝑖 =
1, 2, 3. In this figure, the dashed line shows the
function 1/

√︀
|𝑀2 − 1| which, as numerical com-

putations show, well describes the qualitative be-
havior of the dispersion dependence 𝜇′(𝜈) for crit-
ical modes of generation of internal waves for wide
ranges of the perturbation source velocities. Fig-
ure 4 illustrates the dependence of the half-angles
𝜙𝑖(𝑀) = arctan 𝑞𝑖(𝑀), 𝑖 = 1, 2, 3 of the corre-
sponding wave fronts on the parameter 𝑀 . The
half-angles 𝜙2(𝑀), 𝜙3(𝑀) corresponding to the
right maximum and minimum of the function 𝜇′(𝜈)
are monotone decreasing functions of the parame-
ter 𝑀 . The half-angle 𝜙1(𝑀) corresponding to the
left maximum 𝑞1 of the function 𝜇′(𝜈) first increases
to 90 degrees (critical generation mode 𝑀 → 1)
and then monotonically decreases as the parame-
ter 𝑀 > 1 increases.
Figure 5–Figure 11 illustrate the results of nu-

merical computations of the wave fields by formulas
(3); the points on the graphs show the position of
the corresponding wave fronts. The internal waves
far field generated by a moving perturbation source
(for 𝑦, 𝜉 ≥ 𝐻) is a sum of three wave trains. The
times at which they come to a fixed point in the
observation variable are determined by three wave
fronts. For 𝑀 < 1, the far field of a separate mode
within the internal gravity waves located at a far
distance from the moving perturbation source at
the observation point fixed with respect to behaves
as follows. For 𝜉 < 𝑦/𝑄1 (𝑄1 = 𝑞2 for 𝑀 < 𝑀0,
𝑄1 = 𝑞1 for 𝑀 > 𝑀0), the wave field is negligibly
small. For 𝜉 = 𝜉1 = 𝑦/𝑄1, the wave front of the

5 of 9



ES5003 bulatov et al.: far fields of internal gravity waves ES5003

Figure 6. Elevation 𝜂 at 𝑦 = 3 km, 𝑀 = 0.4 <
𝑀0.

first wave train enters the fixed observation point,
and the field in a neighborhood of the wave front
is expressed in terms of the Airy function (𝜂 = 𝜂1,
formula (6)).
For 𝑦/𝑄1 < 𝜉 < 𝑦/𝑄2 (𝑄2 = 𝑞1 for 𝑀 < 𝑀0,

𝑄2 = 𝑞2 for 𝑀 > 𝑀0), the field consists of a
single wave train. For 𝜉 = 𝜉2 = 𝑦/𝑄2, the sec-
ond wave train also enters the observation point,
and the field in a neighborhood of its wave front is
also expressed in terms of the Airy function, for-
mula (6). For 𝑦/𝑄2 < 𝜉 < 𝑦/𝑞3 (𝑞3 is equal to
the minimal value of 𝜇′(𝜈) for the given 𝑀), the
wave field consists of two terms: 𝜂 = 𝜂1 + 𝜂2. For
𝜉 = 𝜉3 = 𝑦/𝑞3, the third wave train also enters the
observation point (formula (6)), and for 𝜉 > 𝑦/𝑞3,
the field consists of three terms: 𝜂 = 𝜂1 + 𝜂2 + 𝜂3.
As numerical computations show, for 𝑀 < 1, the
wave trains that have amplitudes of the same or-
der of magnitude and commensurable wave lengths
make equal contributions to the total wave field,
and therefore, the wave pattern is a complicated

Figure 7. Elevation 𝜂 at 𝑦 = 3 km, 𝑀 = 𝑀0.

Figure 8. Elevation 𝜂 at 𝑦 = 3 km, 𝑀 = 0.7 >
𝑀0.

system of wave beatings (Figure 5, Figure 6). The
contribution of the third term to the total wave
field is noticeable at the distances 𝑦, 𝜉 ≤ 𝐻 and
only for 𝑀 < 𝑀0 (Figure 5). As numerical compu-
tations show, for this distribution of the buoyancy
frequency, the contribution of the term 𝜂3 corre-
sponding to the minimum of the function 𝜇′(𝜈) to
the far fields of generated internal waves (for 𝑦,
𝜉 ≥ 𝐻 and for 𝑀 > 𝑀0) is negligibly small, and it
does not practically make any contribution to the
total field (Figure 8, Figure 9).
Indeed, for 𝑀 > 𝑀0, the typical values of 𝑞3

are small compared to the values of 𝑞1,2, and hence
the term 𝜂3 makes a contribution for large values
of 𝜉 for which the wave field amplitude (decreas-
ing as

√
𝜉 for large 𝜉) is sufficiently small. For

𝑀 = 𝑀0, we have 𝑞1 = 𝑞2, and hence there are
two wave trains simultaneously entering the obser-
vation point fixed with respect to the variable 𝑦
for 𝜉 = 𝜉1 = 𝜉2 = 𝑦/𝑞1 = 𝑦/𝑞2 (Figure 7). Table 1
shows the results of computations of the quantities
𝜉1, 𝜉2, 𝜉3 for the values 𝑦,𝑀 used in the numerical
computations (Figure 5–Figure 9).

Table 1. Wave Fronts Positions Along 𝑥-axis for
the Different Values of 𝑦, 𝑀

𝑦, km 𝑀 𝜉1, km 𝜉2, km 𝜉3, km

0.25 0.4 < 𝑀0 0.65 1.8 3.8
3 0.4 < 𝑀0 7.8 21 45
3 𝑀0 11 11 58
3 0.7 > 𝑀0 5.7 14 73
3 1.7 > 𝑀0 4.1 35 171
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Figure 9. Elevation 𝜂 at 𝑦 = 3 km, 𝑀 = 1.7 >
𝑀0.

For 𝑀 > 1, the wave pattern of generated far
fields is practically completely determined by the
properties of the wave train corresponding to the
left maximum 𝑞1 of the function 𝜇′(𝜈). This wave
train is significantly greater in the amplitude and
has a greater wave length (lower frequency), the
wave trains corresponding to the right maximum
𝑞2 and the minimum 𝑞3 of the function 𝜇′(𝜈) have
lesser wave lengths (higher frequencies) and hence
are significantly less in the amplitude. Therefore,
no complicated wave beating pattern is observed
for 𝑀 > 1, and the wave trains are significantly
spread in the space and propagate independently of
each other; namely, when one of the wave trains ar-
rives, the contribution of another wave train to the
total field becomes negligibly small. For 𝑀 > 1,
the contribution to the wave field of the third term
corresponding to the minimum 𝑞3 of the function
𝜇′(𝜈) is small, and the total field is practically com-
pletely determined only by the behavior of two
terms (Figure 9).

Figure 10. Elevation 𝜂 at 𝜉 = 1 km, 𝑀 = 0.4 <
𝑀0.

Figure 11. Elevation 𝜂 at 𝜉 = 20 km, 𝑀 = 1.7 >
𝑀0.

If the far fields of internal waves are considered
at an observation point fixed with respect to the
variable 𝜉, then the wave pattern varies with the
increasing distance from the traverse of the source
motion as follows (Figure 10, Figure 11). First, the
wave front enters the observation point 𝑦 = 𝑦1 =
𝑞3𝜉, and 𝑦 < 𝑞3𝜉, the field is determined only by
the term 𝜂 = 𝜂3. Further, as the traverse distance
increases, the second wave front arrives for 𝑦 =
𝑦2 = 𝜉𝑄2 (𝑄2 = 𝑞1 for 𝑀 < 𝑀0 and 𝑄2 = 𝑞2
for 𝑀 > 𝑀0). In the interval 𝜉𝑞3 < 𝑦 < 𝜉𝑄2,
the total field is the sum of two terms: 𝜂 = 𝜂2+𝜂3,
and finally, at large distances from the traverse, the
third wave front arrives for 𝑦 = 𝑦3 = 𝜉𝑄1 (𝑄1 = 𝑞2
for 𝑀 < 𝑀0 and 𝑄1 = 𝑞1 for 𝑀 > 𝑀0). In the
interval 𝜉𝑄2 < 𝑦 < 𝜉𝑄1, the wave field is the sum
of three terms: 𝜂 = 𝜂1 + 𝜂2 + 𝜂3. For 𝑦 > 𝑦3,
the far wave field is exponentially small. Table 2
shows the results of computations of the quantities
𝑦1, 𝑦2, 𝑦3 for the values of 𝜉, 𝑀 used in numerical
computations (Figure 10, Figure 11).
An important specific feature of the internal wave

generation by a moving perturbation is that the
characteristic velocity of the typhoon motion is 3–
5 m/s, which is significantly greater than the typ-
ical maximal group velocity of internal waves in

Table 2. Wave Fronts Positions Along 𝑦-axis for
the Different Values of 𝜉, 𝑀

𝜉, km 𝑀 𝑦1, m 𝑦2, m 𝑦3, m

1 0.4 < 𝑀0 65 136 382
20 1.7 > 𝑀0 349 1697 14548
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the ocean. Thus, when studying the formation of
the ocean wave wake behind the moving typhoon,
the most physically realistic case is the motion of a
perturbation source at a velocity greater than the
maximal group velocity of internal waves 𝑀 > 1
[Gill, 1984; Mei et al., 2017; Svirkunov and Kalash-
nik, 2014; Velarde et al., 2018].
One can assume that there is a relationship be-

tween the amplitudes of generated internal waves
(that are large compared to the other generation
modes) and the motion of the source at a nearly
critical velocity (𝑉 = 𝐶). Indeed, as the per-
formed numerical computations show, if the per-
turbation source moves at a nearly critical veloc-
ity, then the amplitudes of generated internal waves
can be significantly greater than the wave ampli-
tudes in other cases. For 𝑀 → 1, the amplitude of
the generated field of internal waves asymptotically
increases as𝐾0(|𝑀2−1|), where𝐾0 is the MacDon-
ald function of order zero [Bulatov and Vladimirov,
2012, 2015]. Thus, a rather noticeable increase in
the amplitude of generated internal waves deep in
the ocean can indicate that the velocity of unsteady
motion of a perturbation source (typhoon, atmo-
spheric cyclone) is nearly critical in its unsteady
motion.

4. Conclusion

The problem of generation of internal gravity
wave far fields by a moving perturbation source
in the ocean with an arbitrary distribution of the
buoyancy frequency is solved. The basic disper-
sion characteristics determining the properties of
generated far wave fields are studied analytically
and numerically. The results of numerical compu-
tations of the internal wave fields are presented for
different generation modes. It is shown that the
far wave fields of separate modes are sums of wave
trains, and the specific characteristics of generation
of these wave trains are studied for different modes
of the source motion. If a source moves at a veloc-
ity less than the maximal group velocity of internal
waves, then the wave field of a separate mode is a
sum of three wave trains equal in the amplitude.
In this case, the wave pattern of the total field is a
complicated system of wave beatings. If the source
velocities are close to the maximal group velocities
of internal waves, then one can observe a notice-

able increase in the amplitudes of generated wave
fields. If the source velocities are greater than the
maximal group velocities of internal fields, then the
main contribution to the field of a separate mode is
made only by one long-wave train. The proposed
approach can be used to model the trace of inter-
nal waves generated by a moving typhoon in the
ocean.
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