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[1] An asymptotically numerical description of tsunami waves propagation in a basin with
non-uniform depth in a neighborhood of wavefronts that can have caustics is proposed. The
piston model and the long wave approximation are used. It is assumed that the size of the
area of the initial disturbance is small in comparison both with the characteristic length of
interval of the varying of the bottom depth and the distance from the observation point.
The description is based on a generalization of asymptotic approach known as the Maslov
canonical operator. We find formulas that are relatively simple and can be transformed in
a computer program for fast calculating wave profiles. Some features of the tsunami waves
propagation in basins of non-uniform depth are illustrated by graphics. INDEX TERMS: 4564
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1. Introduction

[2] The traditional modelling of the tsunami waves prop-
agation in the open ocean is done by solving the linear hy-
drodynamical equation in 2-D long wave approximation and
in the framework of the so called “piston model”, which as-
sumes that the source of the tsunami is given by an instan-
taneous vertical velocity of a certain region of the bottom of
the ocean which generates an uplift of the ocean surface

∂2η

∂t2
= 〈∇, C2(x)∇〉η, C(x) =

p
gH(x),

x = (x1, x2) ∈ R2
x, (1)

η|t=0 = V (
x

l
), ηt|t=0 = 0. (2)

Here η(x, t) is the elevation of the ocean surface, H(x) is the
depth of the basin, g is the gravity acceleration, and V (x/l)
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is the uplift of the ocean surface localized in the area of a
characteristic size l. It is assumed that l is small in com-
parison both with the characteristic length of the interval
of change of the bottom depth and the distance from the
observation point. This means in particular also that the
function V (y) decays fast as |y| → ∞. Usually the problem
(1, 2) is solved numerically with finite difference methods.
However analytical formulas of solutions are useful from dif-
ferent points of view. The main reason is that it is not so
easy to use direct numerical methods for real time tsunami
warning, because they take too much time and require too
much information on the tsunami sea bottom source.

[3] Problem (1, 2) seems like a classical one for mathemat-
ical physics and asymptotical analysis. Nevertheless the ex-
plicit formula for its solution (which can be transformed in a
computer program for fast calculation of wave profiles) were
obtained quite recently, although some asymptotic represen-
tation was given in [Dobrokhotov et al., 1991]. The main
mathematical difficulties here are related with the metamor-
phosis of the solution: it is localized in the neighborhood
of the point x = 0 (the origin) at t = 0, but after some
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time it changes its structure taking the form of a function
localized in the neighborhood of a closed curve (the wave
front), which in turn can have sometimes self-intersection
and singular (focal) points. This phenomena was described
in asymptotic theories for fast oscillating and non smooth
solutions of a wide range of partial differential equations.
The global representation for fast oscillating solutions (with
effects of focalization taken into account) is given by the
Maslov canonical operator [Maslov, 1965; Dobrokhotov and
Zhevandrov, 2003]. However, one cannot apply this theory
to problem (1, 2) directly because the solutions in this case
have a different structure. Nevertheless two simple ideas
allow one to modify the Maslov approach and obtain ex-
plicit asymptotic formulas for the solutions of (1, 2): 1) the
problem about localized solutions can be transformed to the
one about fast oscillating solutions with a Fourier-type inte-
gral transform, 2) the final formulas can be simplified if one
takes into account the ideas from boundary layer expansions
near the wave fronts. We combine these ideas together with
the Maslov theory [Maslov, 1965; Maslov and Fedoiuk, 1981;
Dobrokhotov and Zhevandrov, 2003] and results from [Do-
brokhotov et al., 1991; Maslov and Fedoiuk, 1989]. Finally we
propose an asymptotic-numerical description of tsunami in
a basin with non-uniform depth in a neighborhood of wave-
fronts that can have caustics. This approach takes into ac-
count in a simple and direct way physical effects (like the
metamorphosis of the tsunami front mentioned above) com-
ing from the singularities related with the Hamiltonian sys-
tem i.e. focal points and caustics. The presented formulas
can be transformed in a computer program by means of the
software of the type of Mathematica or Maple for calculat-
ing wave profiles and so they can be used for a reliable early
warning system. Here we explain the meaning of the final
formulas announced by Dobrokhotov et al., [2006a] (some
more details can be found in [Dobrokhotov et al., 2006b]).
In the graphics we show that many features of the tsunami
wave propagation in such basins can be explained by means
of straightforward formulas without any additional compli-
cations.

2. General Equations and Asymptotic
Formula for Wave Profile in the Uniform
Depth Basin

2.1. The General Equations

[4] Let us give first very rough arguments showing the
possibility to use (1, 2) for a description of tsunami waves in
a frame of the piston model over slow varying bottom. The
equations (1) are obtained from the following linear equa-
tions of the piston model without the assumption of long
wave approximation for the velocity potential Φ(x, z, t) and
the elevation of the free surface η(x, t) (see e.g. [Whitmore
and Sokolowski, 1996; Pelinovski, 1996; Kowalik and Murty,
1993; Lewis and Adams, 1983; Shokin et al., 1989; Tinti,
1993])

∆Φ = 0, x = (x1, x2) ∈ R2, −H(x) < z < 0,

η t − Φz |z=0= 0, Φt |z=0 +gη = 0, (3)h
Φz+ < ∇H,∇Φ >

i
|z=−H(x)= V (

x

l
)δ(t)

where δ is the delta function, and it is assumed that Φ ≡ 0,
η ≡ 0 when t <0.

[5] The task is to evaluate η(x, t) at large distances |x| >>
l from the source, near the wavefronts (where |η| has its
maximum values), assuming that l >> H(x) and that the
depth H(x) has a small variation at distances of the order l.

2.2. Asymptotic Formula

[6] In the case of the basin of a uniform depth H0, the
wavefronts are the circles |x| = C0t, where C0 =

√
gH0 is

the velocity of the long waves. We seek the solution for the
problem (3) in the form of the Fourier transform with respect
to x = (x1, x2) and with Fourier parameter p = (p1, p2).
Using in the integrand polar coordinates (ρ, φ) defined by
the formulas p1 = ρ/l cosφ, p2 = ρ/l sinφ we obtain

η(x, t) =

1
2π

R ∞
0

ρ

cosh H0 ρ
l

cos
“ρ C0t

l

s
l

H0 ρ
tanh

H0 ρ

l

”
dρ ×R 2π

0
eV (ρ, φ) exp

ˆ
i |x|
l
ρ cos(φ− ψ)

˜
dφ, (4)

where

eV (ρ, φ) =
1

2π

Z
R2

y

V (y)e−iρ n ydy,

n(φ) = (cosφ, sinφ)T, y =
x

l
(5)

and the angle ψ is defined by the equations

x1 = |x| cosψ, x2 = |x| sinψ.

Below, we consider in detail the case, when the initial verti-
cal displacement of the bottom is like a ridge (or a valley),
though the approach developed here is applicable for any
other localized disturbance.

[7] To make final formulas more explicit let us model the
initial displacement using the function of the type of the
Gaussian exponent with oscillations:

V (y) = V0 cos (a1Y1 + a2Y2 + χ)e−b1Y
2
1 −b2Y

2
2 ,

Y = Θ(θ)y, Θ(θ) =

„
cos θ sin θ
− sin θ cos θ

«
, (6)

where a1, a2, 1 < b1, b2 < 3, θ, χ are dimensionless parame-
ters and V0 is the parameter of the dimension of length.

[8] Substituting for V (y) from (6) in (5) we obtain

eV (ρ, φ) =
V0

2
√
b1b2

e−σ−βρ
2
cosh(γρ+ iχ), (7)

where

σ =
1

4b1b2
(b1a

2
2 + b2a

2
1),

β =
1

4b1b2

ˆ
b1sin

2(φ− θ) + b2 cos2(φ− θ)
˜
, (8)

γ =
1

2b1b2

ˆ
b1a2 sin(φ− θ) + b2a1 cos(φ− θ)

˜
.
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Now we derive the equation (9) under the main assumption
|x| >> 1. We estimate the integral with respect to θ by the
stationary phase method. After some calculations we have
the following asymptotic formula for η(x, t) (see [Borovikov
and Kelbert, 1996; Dobrokhotov et al., 1993; Berry, 2005]):

η(x, t) ≈ 1√
2π

s
l

|x| ∗

Re
h
e−iπ/4

Z ∞

0

eV (ρ, ψ)
√
ρ

cosh( ρH0
l

)
exp

ˆ
i ρ

“ |x|
l
−

C0t

l

s
l

ρH0
tanh(

ρH0

l
)
”˜
dρ

i
. (9)

[9] From (7) and (8) one can conclude, reminding the
above assumption on the values of the parameter b, that the
main contribution to the integral (9) corresponds to the val-

ues of ρ in the interval 0 < ρ < 3. Moreover, since |x|
l
>> 1

integral (9) is not small only in the case when the expres-
sion in the big parentheses in the exponent of the integrand

is small. Further, since
H0

l
<< 1, the functions

1

cosh(ρH0
l

)

and

s
l

ρH0
tanh(

ρH0

l
) in the integrand can be expanded in

Taylor series in the powers of
ρH0

l
:

1

cosh(ρ
H0

l
)

= 1− (
ρH0

l
)2 + O

`ρH0

l

´4
,

s
l

ρH0
tanh(

ρH0

l
) = 1− 1

6
(
ρH0

l
)2 + O

`ρH0

l

´4
. (10)

One can see that the integral (9) gets its largest values near
the circle |x| = C0t, i.e. in a neighborhood of the wave-
front. Then, if we take in series (10) the first terms only, we
obtain from (9) the formulae for η(x, t) in the long waves ap-
proximation. From (9) and (10) we can derive roughly the
following requirement for the correctness of the long wave
approximation

|x| << l3

H2
0

. (11)

Taking H0 = 4 km, l = 50 km we find from (11) that for
the typical conditions of the ocean, equation (1) can be used
instead of the general equations (3) in the piston model in
the case of a basin of uniform depth. We note that the
same conclusion can be done for initial disturbances of more
general types than those described by (6) as well as in the
case of a basin with a non-uniform slowly varying depth.
According to this reason we will consider here the problem
in the long wave approximation (1, 2) instead of the general
equations (3).

[10] Thus, from (9) an asymptotic formula for η(x, t) at
any instant t and observation point x located near wavefront
and satisfying requirement |x| >> l and (11) becomes

η(x, t) ≈

s
l

|x| Re F
“Φ(x, t)

l
, ψ(x)

”
,

Φ(x, t) = |x| − C0t, (12)

where ψ is the angle between the vector x and the axis Ox1,

F (z, ψ) =
e−iπ/4√

2π

Z ∞

0

f(ρ, ψ)eizρdρ,

f(ρ, ψ) =
√
ρeV (ρ, ψ). (13)

In (13) the function eV (ρ, ψ) is given by (5) for an initial
disturbance of a general type and by (7) for the disturbance
(6) considered here. In the last case the integral in (13) is
evaluated analytically and F (z, ψ) becomes

F (z, ψ) =
V0√

32πb1b2
[(Q+ +Q−)],

Q±(z, ψ) =

e−[ σ+i( π
4 ∓ χ)]

8 β 5/4

“
−

p
β Γ(−1

4
) 1F1(

3

4
,

1

2
,
w2
±

4β
) +

w± Γ(
1

4
) 1F1(

5

4
,

3

2
,
w2
±

4β
)
”
, (14)

where

w± = ±γ + iz

and 1F1(...) are the Kummer’s confluent hypergeometric
functions. The function F can be expressed also in terms
of parabolic cylinder functions Dν (see [Dobrokhotov et al.,
1991]), we use here the form given by Mathematica.

[11] One can see from (12) that the function F (z, ψ) de-
fines the structure of wave profiles near the wave front (i.e.
for values of z that are small or are of the order of several
units). In turn, the function F (z, ψ) depends on the form of

the initial bottom disturbance (through function eV in (13))
and the variable z. The dependence ReF (z, ψ) on z is pre-
sented in Figures 1 and 2 for different values of the angle ψ.

[12] Figure 1 shows that in the case b1 6= b2 (non axially
symmetric initial bottom disturbance) the wave profile has
different forms at different values of the angle ψ, while Figure
2 shows that the difference becomes very strong if a1 6= a2.
So the wave profile crucially depend on the form of initial
disturbance determined by (6).

[13] In the case of the initial disturbance of general type,
the function F (z, ψ) can be calculated from (13) and (5)
numerically. The calculation is simplified by the fact that
the important part of the integral (13) corresponds to the
values of the variable of integration ρ of the order of several
units.

[14] Keeping in mind that the structures of the asymptotic
formulae for η(x, t) are similar in the cases of the basins of
uniform and non uniform depth (see Sec 3), we give the
following comments on the formulae (12) using terminology
of the WKB theory.

[15] The function Φ(x, t) in (12) can be called the phase
because of two facts. First, from (12) and (13) it is clear that
|η(x, t)| has a maximum when Φ(x, t) = 0 and decays rapidly
with increasing |Φ(x, t)|. Second, outside of the neighbor-
hood of origin x = 0 the function Φ(x, t) is the action or a
solution of 2-D Hamilton-Jacobi equation

∂S

∂t
+ C0|∇S| = 0 (15)
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Figure 1. Function ReF (z, ψ) for V (y) determined by (6) where V0 = 1m, a1 = a2 = 0, b1 = 1, b2 = 2,
χ = 0.

corresponding to (1) in the case of the basin of the uniform
depth H0.

[16] The integration of the last equation is connected
with the Hamiltonian system (see e.g. [Maslov and Fedoiuk,
1981]); for (15) it is determined by the following 2-D Hamil-
tonian H = C0|p|, where p = (p1, p2) is a momentum. Thus
the corresponding Hamiltonian system has the form

ẋ =
p

|p|C0, ṗ = 0. (16)

Consider the one-parametric family of trajectories of this
system satisfying the following initial conditions

x|t=0 = 0, p|t=0 = n(ψ), (17)

where
n(ψ) = (cosψ, sinψ)T (18)

and the angle ψ ∈ [0, 2π] is a parameter. These trajecto-
ries are (vector-columns) X(t, ψ) = (C0t cosψ,C0t sinψ)T ,
P (t, ψ) = n(ψ). The family of trajectories X(t, ψ), P (t, ψ)
go out from the point x = 0 with a unit momentum p =
n(ψ). The projection of the trajectory x = X(t, ψ) on the
plane R2

x is called “ray”. Here the rays are the straight
lines starting from the point x = 0 and arriving at the in-
stant t to the point x1 = C0t cosψ, x2 = C0t sinψ. At every
instant t > 0 the curve formed by the end of the rays is
called the “wavefront”. Here the wavefronts are the circles
|x| = C0t. One can see from (12) that at the wavefronts

the phase Φ = 0. It should be noted also that the points
on the front are parameterized by the parameter ψ ∈ (0, 2π]
which was introduced in (17) as the initial condition for the
impulse p(t). So, ψ in (12) can be considered with the same
point of view.

[17] In the case of a basin with a non-uniform depth,
asymptotic formulas for η(x, t) have a structure similar to
that in (12). But the rays are no more straight lines, the

Hamiltonian is more complicated, the factor

s
l

|x| has to

be replaced by other one and sometimes the power in the
exponent e−iπ/4 has to be multiplied by an integer number
m which has a deep topological meaning since it is possible,
under certain condition, to evaluate m as the Morse index
of the trajectory.

[18] Anyway, it is clear that the algorithm for calculat-
ing η(x, t) from the (12) is faster than the finite difference
method since for finding the value of the amplitude of the
tsunami front passing in the point x at time t it is not nec-
essary to integrate over all the space but one need just to
identify the trajectory starting from the point where the ini-
tial perturbation has taken place and arriving to the point
x at time t. In other words this method of integration is
“local” in the sense that it is concentrated on the trajecto-
ries of an Hamiltonian system. This Hamiltonian system is
not difficult to solve numerically in the case of a basin of
non-uniform depth.
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Figure 2. Function ReF (z, ψ) for V (y) determined by (6) where V0 = 1m, a1 = 0, a2 = 2, b1 = 1,
b2 = 2, χ = 0.

3. Asymptotic Formulas for the Wave
Profile in the Non-Uniform Depth Basin

3.1. Relationship Between Fast Oscillating and
Localized Solutions

[19] In this section we begin an asymptotic analysis of
Cauchy problem (1, 2). We use here well known objects and
their characteristics which one can find in books connected
with the semiclassical asymptotic and ray method, geomet-
rical optics and wave fronts, Hamiltonian mechanics, catas-
trophe theory etc. We try to collect here all necessary con-
cepts and give their description in elementary form. A more
complete presentation and details can be found in [Maslov,
1965; Maslov and Fedoiuk, 1981; Arnold, 2001; Babich and
Buldyrev, 1991; Kravtsov and Orlov, 1990].

[20] We introduce a parameter

µ =
l

L
(19)

expressing the relationship between the characteristic size of
the source l and the characteristic length L of the interval of
slow varying depth. Our asymptotic expansions are derived
under the assumption that parameter µ � 1 and C(x) =p
gH(x) is a slowly varying function.
[21] The problem now is to find asymptotic solutions

η(x, t) to the wave equation with variable coefficient. They

can be expressed by means of the wavefront formed by rays
(an accurate definition is given in the next subsection). One
has to introduce curved rays and characteristics given by
1-D family of trajectories P (t, ψ), X(t, ψ) of an appropriate
Hamiltonian system. This Hamiltonian system can be found
using a WKB expression for η = A(x, t) exp(iS(x, t)/h)
(with some small artificial parameter h) inserting it in the
equation and considering the equations of zero and first or-
ders. The first order equation is the Hamilton-Jacobi equa-
tion similar to (15) but with coefficient C(x) instead of C0.

[22] The solutions of the corresponding Hamiltonian sys-
tem define trajectories which are not straight lines as in the
case with the constant coefficient C0, but are curves. We
mentioned before that WKB solutions do not describe the
localized solutions. In order to pass from oscillating solutions
to localized ones we introduce a new variable ρ, put h = l/ρ,
multiply WKB solutions by some decaying (as ρ→∞) func-
tion g(ρ, ψ) and integrate this product over ρ from 0 to ∞.
We obtain a function localized in the neighborhood of the
points S = 0 which determine the front. The variable ρ and
the angle ψ are similar to that ones appeared in the case of
the basin with an uniform depth. The problem is to define
the phase S(x, t) and the function g(ρ, ψ) in such a way to
obtain the solution of (1, 2). The difficulty is that for t = 0
the phase S corresponding to (1, 2) is not a smooth func-
tion, and the point x = 0 is a (strong) focal point. Thus it
is necessary to use the asymptotic representation different
from WKB-solutions and we use the Maslov canonical oper-
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ator [Maslov, 1965; Maslov and Fedoiuk, 1981; Dobrokhotov
and Zhevandrov, 2003]. The realization of these ideas to-
gether with boundary layer expansions [Maslov, 1973; Vishik
qnd Lusternik, 1962] near the wave fronts gives not only the

phase S and function g(ρ, ψ) =
√
ρeV (ρ, ψ) (eV is the same

as in (5)), but also global asymptotic solutions to problem
(1, 2) which satisfies the initial conditions at t = 0 and is
correct in the cases with focal and self intersection points on
the front etc (see [Dobrokhotov et al., 2006b]). Let us note
that to construct the solutions with localized initial data one
can try to use the asymptotics of the Green function (see e.g.
[Brekhovskikh and Godin, 2006; Kiselev, 1980]), but during
the realization of this approach one has to calculate quite
complicated integrals (see [Dobrokhotov et al., 1991]). Our
experience show that it is much easier to find explicit for-
mulas applying the ideas mentioned above directly to the
problem (1, 2). We present now the final formulas.

3.2. Rays and Wave Fronts

[23] The Hamiltonian system in the case of a basin with
non-uniform depth H(x) is:

ẋ = p
|p|C(x), ṗ = −|p|∇C(x), C(x) =

p
gH(x),

x|t=0 = 0, p|t=0 = n(ψ), (20)

where n(ψ) is the unit vector (18). Therefore, the family
of trajectories X(t, ψ), P (t, ψ) of (20) starts from the point
x = 0 with unit momentum p = n(ψ) (with fixed ψ). Let us
indicate C(0) = C0. The Hamiltonian corresponding to (20)
is H = C(x)|p|. From the conservation of the Hamiltonian
on the trajectories we have the following equation

|P |C(x) = C0, C0 = C(0). (21)

[24] The projections x = X(ψ, t) of the trajectories on the
plane R2

x are called the “rays”. Recall that the “front” in
the plane R2

x at the time t > 0 is the curve γt = {x ∈ R2|x =
X(t, ψ), ψ ∈ [0, 2π)}, (see e.g. [Arnold, 2001; Maslov, 1965]).
The points on this curve are parameterized by the angle
ψ ∈ [0, 2π). If ∂X/∂ψ 6= 0 in each point x of the wave front
γt, then the wave front is a smooth curve. The points where
∂X/∂ψ = 0 are named “focal points”. In these points the
wave front looses its smoothness. In the situation in which
the focal points appear, (they are very interesting from the
point of view of tsunami), it is reasonable to introduce the
concept of wave front in the phase space R4

p,x at the moment
t > 0, i.e. the curve Γt = {p = P (t, ψ), x = X(t, ψ), ψ ∈
[0, 2π]}. We note that at least one of the component of the
vector Pψ, XΨ is different from zero and also the rays x =
X(t, ψ) are orthogonal to the wave front γt: 〈Ẋ,Xψ〉 = 0.

3.3. The Wave Profiles Before Critical Times.

[25] There exist δ > 0 and t1 > δ such that a wave front
exists but there are no focal points for t ∈ [δ, t1]. The first
instant of time t1 at which focal points are formed is called

“critical” and denoted tcr. First, we assume that δ < t <
tcr. In this case the asymptotic solution is derived in the
following way. We define a neighborhood of the wave front
for sufficiently small coordinate y, where |y| is the distance
between the point x belonging to a neighborhood of the wave
front and the wave front. For this aim we will take y > 0
for the external subset of the wave front and y < 0 and for
the internal subset. Then a point x of the neighborhood of
the wave front is characterized by two coordinates: ψ(t, x)
and y(t, x), where ψ(t, x) is defined by the condition that the
vector y = x − X(t, ψ) is orthogonal to the vector tangent
to the wave front in the point X(t, ψ), so 〈y,Xψ(t, ψ)〉 = 0.

[26] The phase is defined by

S(x, t) = 〈P (t, ψ(x, t)), x−X(t, ψ(x, t))〉 =s
H(0)

H(X(t, ψ(x, t)))
y, (22)

where the second equality is a consequence of the equation
(21).

[27] Now we state the first main proposition of this paper.

Proposition 1. For tcr > t > δ > 0, in some neighborhood
of the wave front γt, not depending on µ, η, the asymptotic
elevation of the free surface, has the form:

η(x, t) =

√
lp

|Xψ(t, ψ)|
4

s
H(0)

H(X(t, ψ))
+

Re
ˆ
F

`S(x, t)

l
,n(ψ)

´˜˛̨
ψ=ψ(x,t)

+O(µ3/2) (23)

Outside this region η = O(µ3/2). The function F (z, ψ) is
defined in (13).

[28] In order to compute the elevation η(x, t) at the point x
and time t, one has to find the trajectory of the Hamiltonian
system starting from x = 0 and arriving at time t in the point
x. Then it is possible to compute the phase S(x, t) using the
approximation written above. The trajectory is defined (see
(20)) by the function H(x) and the angle ψ(x, t) which is
the angle between the x1 axis and the ray arriving at the
point x at the instant t from the origin x = 0, where the ray
was at the instant t = 0. So ψ can be find by the solution of
equation x = X(t, ψ). The solution exists and it is unique
since the vector ∂X/∂ψ 6= 0 before the critical time.

[29] Explicit formula (23) shows that the elevation of the
free surface η(x, t) is defined by the form of the initial distur-
bance through the function F (z, ψ) and by the variation of
the depth of the basin along the trajectories of the system.

[30] It should be noted that despite of the simple and
natural form of (23) its proof is not trivial at all. The main
step is to prove the fact that the formula is the same as
in the case of constant bottom, if the wave rays are found
correctly.

[31] Now we derive some consequences from formula (23).
Since the phase S(x, t) is equal to zero on the wave front and
|S(x, t)|/l increases rapidly going out from it, then maximum
of |η| is attained in a neighborhood of the wave front. More-
over, η(x, t) can exhibit few oscillations depending on the
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Figure 3. Wave fronts, rays and profiles in the case of the basin with non-uniform depth (see text).
V (y) is determined by (6) where V0 = 1m, a1 = 0, a2 = 2, b1 = 1, b2 = 0.25, ψ = 0, χ = 0.

properties of the function F (z, ψ) (which in turn, depend
on the form of the initial disturbance, see Figures 1 and 2).
The second factor in (23) can be interpreted as two dimen-
sional analogue of the Green law, well known in the theory
of tidal waves in the channels: amplitude of η increases as
1/ 4

p
H(x) when the depth H(x) of the basin decreases; the

factor 1/
p
|Xψ| is connected to the divergence of the rays,

in other words if a smaller number of rays goes through a
neighborhood of the point X(t, ψ), the smaller will be the

amplitude of the wave field. The factor
H(0)

H(X(t, ψ))
in the

phase S(x, t) (see (22)) expresses the phenomena known as
the “contraction” of the wave profile and explains the fact
that the wave length of a tsunami decreases when the wave
approaches the coast.

[32] We can imagine the following situation. Let two rays
start from x =0 with two very different angles ψ1 and ψ2, ar-
rive to the wave front in two nearby points due to properties
of the function H(x). Let also assume that the values of the
function F (z, ψ) are very different for the angles ψ1, ψ2 and
equal values of z (due to the form of the initial disturbance).
Then the amplitudes of η(x, t) can be very different at these
nearby points.

[33] These effects are illustrated by Figures 3 and 4, where
the wave field is pictured by the rays (red lines), wavefronts
(blue lines) and wave profiles (green lines). The initial dis-
turbance is shown as a black ellipse located near the ori-

gin. The black lines show the contours of H(x) =const,
where dimensionless depth is H(x) = 1 + 3 tanh(2x1 + x2 −
11)2/ cosh2

p
4(x1 − 7)2 + (x2 + 2)2/25 (3-D graph of H(x)

see in Figure 5). In these figures the variables x1 and x2 are
dimensionless and are equal to the same dimensional vari-
ables used in the text divided by l measured in km. The
wave fronts are shown at the instants t = 50l, 100l, ..., 400l
s, where l is measured in km. The wave profiles are shown
at neighborhoods of the last wave fronts in the directions of
the rays indicated by arrows. The numbers near the wave
profiles show its maximum wave height (in m).

3.4. The Wave Profile After Critical Times.

[34] At the instances t > tcr focal points appear on the
wavefront. Now, the elevation η(x, t) of the wave in a point x
belonging to a neighborhood of this point can be represented
as a sum of the contributions coming from different ψj(x, t),
yj(x, t), and Sj(x, t) with index j, and with the so-called
Maslov index mj = m(ψj(x, t), t).

[35] The Maslov index takes one of the following integer
values: 0,1,2,3. It is defined in many ways and containing
the topological information of the problem under consider-
ations. We have shown in the paper [Dobrokhotov et al.,
2006b] that for the problem (1, 2) one can simplify its calcu-
lation connecting mj = m(ψj(x, t), t) with the Morse index
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Figure 4. A part of Figure 3.

which counts the number of focal point staying on a tra-
jectory. So this is the Proposition generalizing the formula
from Proposition 1:

Proposition 2. In a neighborhood of the front but outside
of some neighborhood of the focal points the wave field is the
sum of the fields

η(x, t) =
X
j

{
√
lq

|Xψj (t, ψ)|
4

s
H(0)

H(X(t, ψ))
×

Re
ˆ
e−

iπmj
2 F (

Sj(x, t)

l
,n(ψ))

˜
}

˛̨
ψ=ψj(x,t)

+O(µ3/2). (24)

Outside this neighborhood of the front γt η(x, t) = O(µ3/2).
Again the function F (z, ψ) is defined in (13).

[36] One can see that the indices mj change the behavior
of the functions determining the wave profile (see Figure 6).

[37] Let us emphasize that the number m has a pure topo-
logical and geometrical character and can be calculated with-
out any relation with the asymptotic formulas for the wave
field. From the Proposition 1, 2 it follows that, in order to
construct the wave field at some time t in a point x, one

has to know only the initial values η|t=0 and ηt|t=0 and has
not to know the wave field η for all previous time between 0
and t. The trajectories and the Maslov (Morse) index take
into account all metamorphosis of the wave field during the
evolution from zero time until time t. In the paper [Do-
brokhotov et al., 2006b] some theorems have been shown for
connecting those two indices and in the computer program
which implements this algorithm there is a simple way for
finding the focal points studying the change of the sign of
the jacobian of the map. Note also that these formulas are
easy to invert for finding the parameters of the shift V from
the measures of the wave heights done at some stations.

3.5. Wave Field Asymptotic in a Neighborhood of
Focal Point

[38] 3.5.1. Wave front singularities and focal
points To give the complete description of the asymptotic
solution to problem (1, 2) one has to describe the asymptotic
of the function η in the neighborhood of the focal points.
These points are the singular ones on the fronts and one
can see them on the Figure 5 on the upper part and on
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Figure 5. 3-D graph of the function H(x) corresponding to Figures 3 and 4.

the Figure 4 near the right upper corner. They are located
over underwater ridge from the Figure 5 and actually con-
nected with the well known trapped waves. The wave field
amplitude increases in the neighborhood of these points and
depends on the degree of their degeneration. It seams that
in real situation only the simplest situation can be realized,
nevertheless we give the formulas in a general situation.

[39] 3.5.2. Focal points and coordinate system
So we consider the situation when for some t the point
(PF , XF ) = (P (t, ψF (t)), X(t, ψF (t))) corresponding to the
angle ψF (t) is a focal one. In this point Xψ=0 and one
has to use another asymptotic representation for the so-
lution. Roughly speaking the neighborhood of the point
X(t, ψF (t)) on the plane R2

x can include several arcs of
γt with the angles ψ different from ψF (t). This means
that one has to take into account the contribution of all
of these arcs in the final formulas for η in the neighborhood
of the point x = X(t, ψF (t)). The influence of nonsingu-
lar points are defined by formula (25) and the influence of
the points from the neighborhood of the focal points are
described by formulas (31) given below. Thus it is nec-
essary to enumerate the focal points with nearby projec-

tions and write P (t, ψFj (t)), X(t, ψFj (t)). These points have
the same position XF = X(t, ψFj (t)), but different momen-
tum PF = P (t, ψFj (t)). To simplify the notation we discuss
here the influence on η of only one focal point omitting the
subindex j but keeping PF .

[40] We present the corresponding formula under the as-
sumption that some derivative

X
(n)F
ψ =

∂nX

∂ψn
(t, ψF (t)) 6= 0, (25)

and the derivatives X
(k)F
ψ = 0 for 1 < k < n. It means

that this focal point is not completely degenerate. For fu-
ture convenience we introduce the “standard” and “mixed”
Jacobian

J̃ = det(Ẋ, Pψ)(t, ψ) =
C2(X) det(P, Pψ)

C0
(t, ψ) (26)
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Figure 6. The profile metamorphosis implied by the Maslov (Morse) index: function

Re[e
− iπmj

2 F (z, ψ)] for V (y) determined by (6) where V0 = 1 m, a1 = a2 = 0, b1 = 1, b2 = 2, χ = 0
corresponding to the Maslov (Morse) indices m = 0, 1, 2, 3.

and some characteristic quantities of the focal point (PF , XF ):

CF = C(XF ), ẊF = Ẋ(t, ψF (t)) =
PFC2

F

C0
,

PFψ = Pψ(t, ψF (t)),

J̃F = det(ẊF , PFψ ) =
C2
F det(P, Pψ)

C0
,

J
(n)
F = det(ẊF , X

(n)F
ψ ). (27)

[41] Again the topological characteristic appears, i.e. the
Maslov index of this focal point or its neighborhood (it is the
same), but now it depends on the choice of the coordinates
in the neighborhood of (PF , XF ). It is natural to choose the
new coordinates (x′1, x

′
2) associated with the nonzero vector

ẊF = Ẋ(t, ψF (t)); namely we assume that the direction of
the new vertical axis x′2 coincides with the vector ẊF . We
put k2 = (k21, k22)

T = ẊF /|ẊF |=ẊF /CF = PFCF /C0,
k1 = (k11, k12)

T = (k22,−k21)
T and introduce the new co-

ordinates p′, x′ in the neighborhood of (PF , XF ) in the phase

space R4
p,x by the formulas:

x′1 = 〈k1, x−XF 〉 = −det(ẊF , x−XF )

CF
=

−CF
C0

det(PF , x−XF ),

x′2 = 〈k2, x−XF 〉 =
〈ẊF , x−XF 〉

CF
=

CF
C0
〈PF , x−XF 〉,

p′1 = 〈k1, p〉, p′2 = 〈k2, p〉.

[42] It is easy to see that

det

„
Ṗ ′1 P ′1ψ
Ẋ ′

2 X ′
2ψ

«
= J̃F . (28)

[43] 3.5.3. The Maslov index of a focal point.
The determinant J̃F 6= 0 in the focal point (PF , XF ), hence
the same inequality takes place in some of its neighborhood,
thus J̃ has a constant sign. On the contrary the Jaco-
bian J changes sign in this neighborhood. We define the
Maslov index m(PF , XF ) of the non (completely) degen-
erate focal point (PF , XF ) = (P,X)(t, ψF (t)) as the index
m(P̃ , X̃)(t, ψ) of a regular point (P̃ , X̃) = (P,X)(t̃, ψ̃) in the
neighborhood of (PF , XF ) such that the signs of the deter-
minants J(t̃, ψ̃) and J̃(t̃, ψ̃) coincide. For instance one can
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choose ψ̃ = ψF (t), t̃ = t± δ, where δ is small enough. This
means that we compare the sign of J with the sign of J̃ on
the trajectory (P,X) crossing the curve Γt in the focal point
(PF , XF ) before and after this crossing.

[44] 3.5.4. The model functions and the wave
profile in a neighborhood of the focal point. Now we
present the formulas for the wave field in the neighborhood
of a focal point x = XF . Let us put σ = sign(J̃FJ

(n)
F ) and

introduce the function (or more precisely the linear operator
acting on the source function V (y1, y2))

gσn(z1, z2, ψ) =

Z ∞

−∞
d ξ

Z ∞

0

ρdρṼ (ρn(ψ))×

exp{iρ
`
z2 − ξz1 − σ

ξn+1

(n+ 1)!

´
} =Z ∞

−∞
d ξ

Z ∞

0

√
ρdρf̃(ρn(ψ)) exp{iρ

`
z2 − ξz1 − σ

ξn+1

(n+ 1)!

´
}.

We put

zF1 =
x′1

l
n

n+1

J̃F

|J̃FJ(n)
F |

1
n+1C

n
n−1
F

≡

−det(PF , x−XF )

C0C
1

n−1
F l

n
n+1

J̃F

|J̃FJ(n)
F |

1
n+1

,

zF2 =
x′2
l

C0

CF
≡ 〈PF , x−XF 〉

l
.

Proposition 3. In a neighborhood of the front γt each fo-
cal point (PF , XF ) gives the following contribution to the
asymptotic values of the solution η

ηF (x, t) = l
1

n+1

q
C0|J̃F |

n−1
n+1

|J(n)
F |

1
n+1CF

×

Re[e−i
π
2 m(PF ,XF )gσn(zF1 , z

F
2 , ψ

F )] +O(µ). (29)

If several arcs of γt belong to the neighborhood of the point x,
then one needs to sum over all the corresponding functions
(32) and (25).

4. Conclusion

[45] In this paper we present the quite explicit formulas
for full asymptotical description of solutions of the Cauchy
problem with a general localized initial disturbance (source)
for the wave equation with slow varying wave velocity. In
the case of the Gaussian type disturbance the answer is
expressed via the special (hypergeometric) functions. The
given description includes: the special trajectories of the
simple Hamiltonian system, their first derivatives and the
function, implied by the initial disturbance, and the integer
numbers (the Maslov or Morse indices) when focal points
appear. All objects are well know in geometrical optics and

semiclassical approximation, and our main pragmatic result
is that only they are needed to construct the final quite ex-
plicit formulas for solution to the problem (1, 2) presented in
Propositions 1–3. Let us emphasize again that the derivation
and proof of these formulas is not simple and use fundamen-
tal mathematical theories.

[46] One of the basic conclusions, demonstrated for the
source of the Gaussian type (when the answer is expressed
via the hypergeometric functions) is that the wave profile
crucially depend on the form of initial disturbance of the
bottom. As in the real conditions it is very problematic to
obtain any detailed information of this disturbance not only
at the instant when it happens but and at later times, we
propose to develop a more active the researches for appli-
cation to tsunami warning systems, which used simplified
seismic sources. The ones considered in this paper source
of the Gaussian type, could be the first ones. We hope also
that the given asymptotic formulas can be useful in this ap-
plication because the visualization of these formulas on a PC
is easy and takes not too much time.
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