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Trapping of trace gases by atmospheric aerosols
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A theory of trapping gaseous reactants by aerosol particles is developed for arbitrary
regimes of reactant transport. The dependence of the trapping efficiency on the particle
size is found as a function of sticking probability of the reactant molecules to the particle
surface. The key point of this consideration is the solution of the transport equation in the
free-molecule zone (where the collisions between the reactant molecules and the molecules
of the carrier gas can be ignored) and further matching the reactant concentration profiles
at the interface separating the free-molecule and diffusion zones. The flux conservation
allows for the formulation of the boundary condition that determines the reactant surface
concentration. The latter depends on the total flux of the reactant and thus the trapping
efficiency of the reactant molecules occurs to be dependent on the nature of in-particle
chemical processes. The first-order chemical reaction serves as a good example of such
dependence, where all characteristics of the trapping efficiency can be found analytically.
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1 Introduction

Trace gases are commonly recognized to react actively
with the aerosol component of the Earth atmosphere. Sub-
stantial changes to the atmospheric chemical cycles due to
the presence of aerosol particles in the atmosphere make us
to look more attentively at the nature of the processes de-
pending on the activity of the atmospheric aerosols (see e.g.,
[Seinfeld and Pandis, 1998] and extensive citation therein).

The processes of gas-particle interactions are usually the
first-order chemical reactions going along the pathway:

𝐴+ 𝑃 −→ (𝐴𝑃 ), (1)

where 𝐴, 𝑃 , and (𝐴𝑃 ) stand respectively for a reactant
molecule, an aerosol particle, and the final product resulting
from the reaction Eq. (1).

As an example we refer to ozone, a key substance for the
Earth atmosphere protecting living systems on our planet
against the Sun UV radiation. Since the discovery of the
ozone hole in the mid-seventies [Farman et al., 1985], it
has been well established that ozone is subject to periodical
large depletion events at the Poles and to continuous decay
in the global stratosphere. The amplitudes of ozone level
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variations are partly driven by heterogeneous chemical reac-
tions occurring on the surfaces of polar stratospheric clouds
which transform the stable reservoir molecules into radical
precursors (see [Lohman and Feichter, 2005] and references
therein). The processes like Eq. (1) are also of importance
in the aerosol catalysis [Feng et al., 2001; Weber et al., 1999].

The interconnections between uptake and mass accom-
modation efficiencies were studied in refs [Davidovits et al.,
1991, 1995; Finlayson-Pitts and Pitts, 2000; Kulmala and
Wagner, 2001; Laaksonen et al., 2005]. The condensational
aspects of the problem were considered earlier in [Wagner,
1982]. The attempts of theoretical interpretations were pre-
sented in [Clement et al., 1996; Li and Davis, 1995; Qu and
Davis, 2001; Widmann and Davis, 1997]. Models of the up-
take process were proposed in [Smith et al., 2003; Widmann
and Davis, 1997; Worsnop, 2002]. Experimental measure-
ments of the mass accommodation efficiencies of the aerosol
particles are reported in [Li et al., 2001; Winkler et al.,
2004, 2006]. Two recent papers [Ammann and Pöschl, 2007;
Pöschl et al., 2007] summarize the present state of art in this
problem and try to unify existing very diverse terminologies
applied by different authors working in this direction.

As showed the review article [Clement, 2007] and just
cited paper [Pöschl et al., 2007] since the very end of the
last century the discrepancies in approaches to the kinetics of
uptake process almost disappeared. The commonly accepted
schemes now assume the sequential transports of the gaseous
reactant through the gas phase, then through the interface,
then in the bulk of the particle including possible chemical
reactions inside accompanying the transport process.
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This paper considers only a part of the uptake process:
the reactant transport through the gas phase. The transport
in the gas phase is normally assumed to be described by
semi-empirical theories that connect the total flux of the
reactant with its concentration far away from the particle.

The main idea of this paper is to replace the semi-empirical
approaches by a theory that applies the Boltzmann kinetic
equation with Maxwell’s boundary conditions corresponding
to non-complete sticking of the reactant molecule to the par-
ticle surface and to derive analytically the expression for the
efficiency of trapping the reactant molecule. It is possible to
do for not very huge cost. The final formula is even simpler
than those proposed by the semi-empirical approaches. The
theory itself is also simple and transparent.

Let a particle of the radius 𝑎 initially containing 𝑁𝐵

molecules of a substance 𝐵 be embedded to the atmosphere
containing a reactant 𝐴. The reactant 𝐴 is assumed to be
able to dissolve in the host particle material and to react
with 𝐵. The particle will begin to consume 𝐴 and will do
this until the pressure of 𝐴 over the particle surface will be
enough for blocking the diffusion process. Our task is to
find the consumption rate of the reactant 𝐴 as a function
of time. Next, we focus on sufficiently small particles whose
size is comparable to or less than the mean free path of the
reactant molecules in the carrier gas. The mass transfer to
such particles is known to depend strongly on the dynamics
of the interaction between incident molecules and the par-
ticle surface. In particular, the value of the probability 𝑆𝑝

for a molecule to stick to the particle surface is suspected to
strongly affect the uptake kinetics.

The first simplest theories of mass transfer from gas to
particles applied the continuous models (the particle radius
𝑎 much exceeds the condensing molecule mean free path 𝑙).
Such models were not able to describe very small particles
with sizes less than 𝑙. It was quite natural therefore to
try to attack the problem starting with the free-molecule
limit, i.e., to consider a collisionless motion of condensing
molecules Respective expressions for the condensational effi-
ciencies. had been derived and can be found in [Davis, 1983;
Fuchs and Sutugin, 1971; Li and Davis, 1995; Seinfeld and
Pandis, 1998; Williams and Loyalka, 1991]. The important
step directed to reconciliation of these two limiting cases was
done by Fuchs [Fuchs, 1964] who invented the flux-matching
theory.

The flux-matching theories are well adapted for study-
ing the mass transfer to aerosol particles in the transition
regime. Although these theories mostly had not a firm the-
oretical basis, they successfully served for systematizing nu-
merous experiments on growth of aerosol particles, and until
now these theories remain rather effective and very practical
tools for studying kinetics of aerosol particles in the transi-
tion regime (see [Fuchs, 1964; Seinfeld and Pandis, 1998;
Williams and Loyalka, 1991]. On the other hand, these the-
ories are always semi-empirical ones, i.e., they contain a pa-
rameter that should be taken from somewhere else, not from
the theory itself.

We introduce the readers to the ideology of the flux-
matching theories by considering the condensation of a non-
volatile vapor onto the surface of an aerosol particle. The
central idea of the flux-matching procedure is a hybridiza-

tion of the diffusion and the free-molecule approaches. The
concentration profile of a condensing vapor far away from
the particle is described by the diffusion equation. This pro-
file coincides with the real one down to the distances of or-
der the vapor molecule mean free path. A limiting sphere
is then introduced wherein the free-molecule kinetics gov-
erns the vapor transport. The equality of the fluxes in the
both zones and the continuity of the concentration profile
at the surface of the limiting sphere define the flux and the
condensing vapor concentration at the particle surface. The
third parameter, the radius of the limiting sphere, cannot be
found from such a consideration.

We apply a more sophisticated approach of [Lushnikov
and Kulmala, 2004] (LK, in what follows). This approach
starts with an exact expression for the trapping efficiency.
This step, however, does not solve the whole problem. The
point is that this exact expression contains two unknown
functions that should be found on solving the respective
transport equation. Still this formal step is of great use,
because some ideas come up how to introduce efficient ap-
proximations. We also introduce a limiting sphere outside
of which the density profile of condensing vapor can be de-
scribed by the diffusion equation. Inside the limiting sphere
we solve the collisionless Boltzmann equation subject to a
given boundary condition at the particle surface and put an
additional condition: the vapor concentration at the surface
of the limiting sphere coincides with that found from the
solution of the diffusion equation. This condition has also
been applied in older theories. The next step forward was
done in LK, where the authors noticed that even in absence
of any potential created by the particle the vapor profile in
the free-molecule zone depends on the radial coordinate. We
thus gain the possibility to call for the continuity of the first
derivatives of the profile on both sides of the limiting sphere.
This additional condition defines the radius of the limiting
sphere. This very ideology applies here for determining the
efficiency of trapping the reactant molecules by an aerosol
particle as a function of the mass accommodation coefficient.

The remainder of this paper is divided as follows. We first
formulate an exact flux-matching theory of particle trapping.
This is just a formal step allowing one to express the reactant
flux toward a particle of radius 𝑎 in terms of a generalized
trapping efficiency 𝛼(𝑎,𝑅) depending on the radius 𝑅 of a
limiting sphere. At the distances exceeding 𝑅 the reactant
profile is described by the diffusion equation. The require-
ment of the continuity of the profile at 𝑟 = 𝑅 gives an ex-
pression for the ion flux 𝐽(𝑎). At this step we specify neither
the radius of the limiting sphere nor the form of the gener-
alized efficiency. The details of this exact formulation are
given in the next Section where the approximations are also
formulated. These approximations are i. The generalized
efficiency 𝛼(𝑎,𝑅) is approximated by its free-molecule value
found from the solution of the collisionless kinetic equation
at 𝑎 < 𝑟 < 𝑅., ii. At 𝑅 < 𝑟 < ∞ the reactant profile is de-
scribed by the solution to the steady-state diffusion equation
corresponding to a given ion flux 𝐽 ., iii. The conditions of
matching the profiles and their first derivatives allow us to
determine 𝑅. Section “Results” lists the final results with-
out the derivations. All necessary mathematical details are
collected in four Appendices. Section “Discussion” contains
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the discussion of the present approach. Here the results on
the trapping efficiency are compared with earlier ones. It is
shown that although the size dependence of the trapping effi-
ciency differs drastically of those given by the semi-empirical
theories, the numerical differences are small. Concluding
Section “Conclusion” summarizes the results of the paper.

2 Basic Equations

Below an exact (formal) expression for the condensational
efficiency is derived. This expression eventually contains
some parameters that can be defined only on solving the
full transport problem. However, it is possible to introduce
simple approximations and to restore these parameters ap-
proximately. This program will be performed in this Section.

2.1 Trapping Efficiency

Let us assume that the reactant molecules (𝐴-molecules)
move toward the particle which captures them (see Eq. (1)).
The further fate of reactant molecules depends on the results
of chemical processes that proceed inside the particle. Let
us denote 𝑛± the concentration of 𝐴 right above (𝑛+) or
right underneath (𝑛−) the particle surface. Already here we
emphasize that the surface concentrations 𝑛± depend on the
nature of physicochemical processes on the surface and inside
the particle. Let then 𝑛∞ be the number concentration of
𝐴 molecules far away from the particle. It is commonly
accepted that the concentration difference 𝑛∞ − 𝑛+ drives
a flux of 𝐴 toward the particle surface. The particle begins
to grow and to change its chemical composition. The rate
of change in the number of 𝐴-molecules inside the particle
is equal to the total molecule flux 𝐽 – the total number
of molecules deposited per unit time at the particle surface
minus the rate of consumption of 𝐴 by chemical processes
inside the particle. The 𝐴-molecules are assumed to escape
from the particles. In steady-state conditions the flux 𝐽 can
be written as

𝐽 = 𝛼(𝑎)(𝑛∞ − 𝑛+). (2)

Here 𝛼(𝑎) is the capture efficiency and 𝑎 is the particle ra-
dius. Of course, 𝛼 depends on the mass accommodation
coefficient 𝑆𝑝. The latter is defined as the probability for an
𝐴 molecule to stick to the particle. For completely sticking
particles 𝑆𝑝 = 1.

The interface and in-particle processes fix the value of 𝑛+.
In the simplest case of the first-order chemical reactions 𝑛+

is a linear function of 𝐽 , 𝑛+ = 𝐽𝜓(𝑎) and thus

𝐽 =
𝛼(𝑎)𝑛∞

1 + 𝛼(𝑎)𝜓(𝑎)
. (3)

Here 𝜓(𝑎) is a function depending on the nature of the chem-
ical process and independent of 𝐽 . An example of such func-
tion will be given below. If the chemical process inside the
particle is nonlinear, then the function 𝜓(𝑎) depends on 𝐽
and 𝐽 is then a solution to the transcendent equation Eq.
(3).

The central problem is thus to find 𝛼(𝑎). Equations (2)
and (3) allow also for the consideration of normal condensa-
tion/evaporation. In this case 𝐴-molecules are the same as
the molecules of the host particle and 𝛼(𝑎) is referred to as
the condensational efficiency.

2.2 Flux-Matching Exactly

Below we extend the flux-matching LK theory to the case
of condensation of neutral molecules onto the particle surface
with 𝑛+ ̸= 0 and 𝑆𝑝 ≤ 1.

To this end we generalize Eq. (2) as follows:

𝐽 = 𝛼(𝑎,𝑅)(𝑛𝑅 − 𝑛+), (4)

where 𝑛𝑅 is the vapor concentration at a distance 𝑅 from the
particle center. Indeed, the total flux 𝐽 is independent of 𝑅,
and we have the right to consider the condensation from any
finite distance. It is important to emphasize that 𝑛𝑅 is (still)
an arbitrary value introduced as a boundary condition at
the distance 𝑅 (also arbitrary) to a kinetic equation which is
necessary to solve for defining the generalized condensational
efficiency 𝛼(𝑎,𝑅). The value of 𝛼(𝑎,𝑅) does not depend on
𝑛𝑅 − 𝑛+ because of linearity of the problem.

Assuming that we know the exact vapor concentration
profile 𝑛𝑒𝑥𝑎𝑐𝑡(𝑟) corresponding to the given flux 𝐽 from in-
finity we can express 𝐽 in terms of 𝑛𝑒𝑥𝑎𝑐𝑡 as follows:

𝐽 = 𝛼(𝑎,𝑅)(𝑛𝑒𝑥𝑎𝑐𝑡(𝑅)− 𝑛+). (5)

If we choose 𝑅 sufficiently large then the diffusion approxi-
mation reproduces the exact vapor concentration profile,

𝑛𝑒𝑥𝑎𝑐𝑡(𝑅) = 𝑛𝑐(𝑅) = − 𝐽

4𝜋𝐷𝑅
+ 𝑛∞, (6)

with 𝑛𝑐(𝑟) being the steady-state vapor concentration profile
corresponding to a given total molecular flux 𝐽 .

On combining Eqs (4), (5) and (6) gives,

𝐽 = 𝛼(𝑎,𝑅)

(︂
𝑛∞ − 𝑛+ − 𝐽

4𝜋𝐷𝑅

)︂
.

We solve this equation with respect to 𝐽 and obtain the
expression for 𝛼(𝑎),

𝛼(𝑎) =
𝛼(𝑎,𝑅)

1 +
𝛼(𝑎,𝑅)

4𝜋𝐷𝑅

. (7)

Equation (7) is exact if 𝑅 ≫ 𝑙, where 𝑙 is the mean free path
of condensing molecules in the carrier gas. In order to find
𝛼(𝑎,𝑅) and 𝑅 we must call on approximations.

2.3 Approximations

Three rather natural approximations were introduced in
LK:
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∙ The free-molecule expression approximates 𝛼(𝑎,𝑅).

𝛼(𝑎,𝑅) ≈ 𝛼𝑓𝑚(𝑎,𝑅),

where 𝛼𝑓𝑚(𝑎,𝑅) is the trapping efficiency in the free
molecule zone.

∙ The radius 𝑅 of the limiting sphere is found from the
condition: “the diffusion flux from the diffusion zone
is equal to the diffusion flux from the free molecule
zone”. The diffusion flux is defined from Fick’s law.
Hence,

𝑑𝑛𝑓𝑚(𝑟)

𝑑𝑟

⃒⃒⃒⃒
𝑟=𝑅

=
𝑑𝑛𝑐(𝑟)

𝑑𝑟

⃒⃒⃒⃒
𝑟=𝑅

, (8)

where 𝑛𝑓𝑚(𝑟) is the vapor concentration profile found
in the free-molecule zone for 𝑎 < 𝑟 < 𝑅 and 𝑛𝑐(𝑟) is
the concentration profile in the diffusion zone. The
distance 𝑅 separates the zones of the free-molecule
and the continuous regimes.

∙ The total flux of 𝐴 in the free-molecule zone is equal
to the total flux in the diffusion zone.

3 Results

Here we list the results of the present consideration. The
details of derivations are given in Appendices A–F.

∙ The total flux 𝐽 is given by Eq. (3),

𝐽 =
𝛼(𝑎)𝑛∞

1 + 𝛼(𝑎)𝜓(𝑎)
.

This result is exact and does not thus depend on the
approximations done in calculating the trapping effi-
ciency 𝛼(𝑎). The function 𝜓(𝑎) is independent of 𝐽 in
the case of the first-order physicochemical processes
at the surface and inside the particle.

∙ The total flux of 𝐴 toward the particle is given by Eq.
(2) with

𝛼(𝑎) =
𝑆𝑝𝜋𝑎

2𝑣𝑇

1 +
𝑆𝑝

2

[︃√︂
1 +

(︁𝑎𝑣𝑇
2𝐷

)︁2
− 1

]︃ (9)

∙ The derivation of this equation is given in Appendix C
(Eq. (C2)) The radius of the limiting sphere is (see
Eq. (C1)),

𝑅 =

√︃
𝑎2 +

(︂
2𝐷

𝑣𝑇

)︂2

. (10)

It is independent of 𝑆𝑝.

∙ The trapping efficiency in the free molecule zone (see
Eq. (B5)),

𝛼𝑓𝑚(𝑎,𝑅) =
𝛼𝑓𝑚

𝑏+(𝑅)
,

where
𝛼𝑓𝑚 = 𝑆𝑝𝜋𝑎

2𝑣𝑇 , (11)

is the free-molecule condensational efficiency,

𝑣𝑇 =
√︀

8𝑘𝑇/𝜋𝑚𝑎

is the thermal velocity of condensing molecules, 𝑚𝑎 is
the molecular mass, and

𝑏−(𝑟) =
𝑆𝑝

2

(︃
1−

√︂
1− 𝑎2

𝑟2

)︃
(12)

𝑏+(𝑟) = 1− 𝑏−(𝑟) = 1− 𝑆𝑝

2

(︃
1−

√︂
1− 𝑎2

𝑟2

)︃

∙ The reactant concentration profile 𝑛(𝑟) is,

𝑛(𝑟) =
𝑛𝑅 − 𝑛+

𝑏+(𝑅)
𝑏+(𝑟) + 𝑛+ (13)

inside the limiting sphere (at 𝑟 < 𝑅) (see Eq. (B8))
and

𝑛(𝑟) = 𝑛∞ − 𝑅

𝑟
(𝑛∞ − 𝑛𝑅) (14)

outside the limiting sphere (at 𝑟 ≥ 𝑅). Here

𝑛𝑅 = 𝑛(𝑅) = 𝑛∞ − 𝛼(𝑎)(𝑛∞ − 𝑛+)

4𝜋𝐷𝑅
. (15)

The function 𝑛(𝑟) is continuous at 𝑟 = 𝑅 together
with its first derivative. On excluding 𝑛𝑅 from Eqs
(14) and (15) yields the profile in the form:

𝑛𝑟 − 𝑛+

𝑛∞ − 𝑛+
=

(︂
1− 𝛼(𝑎)

4𝜋𝐷𝑅

)︂
𝑏+(𝑟)

𝑏+(𝑅)

at 𝑟 < 𝑅 and

𝑛𝑟 − 𝑛+

𝑛∞ − 𝑛+
= 1− 𝛼(𝑎)

4𝜋𝐷𝑟

at 𝑟 ≥ 𝑅. Figure 1 displays the profile at three differ-
ent dimensionless particle sizes.

Figure 1. The concentration profiles of 𝐴 at different par-
ticle sizes 𝑎𝑣𝑇 /𝐷 = 1, 5, 20. Here Δ(𝑟) = 𝑛(𝑟) − 𝑛+ and
Δ = 𝑛∞ − 𝑛+.
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4 Discussion

4.1 Trapping Efficiency

Although Eq. (2) is widely used in the aerosol literature,
we never saw its derivation for the transition regime. This
equation is known to hold in the continuous limit, where
it is readily derived on solving the diffusion equation or in
the free-molecule regime, where it is a consequence of the
balance of in- and out-fluxes 𝐽 = 𝐽𝑖𝑛 − 𝐽𝑜𝑢𝑡. Here 𝐽𝑖𝑛 =
𝜋𝑎2𝑣𝑇𝑛∞ and 𝐽𝑜𝑢𝑡 = 𝜋𝑎2𝑣𝑇𝑛+.

In order to derive Eq. (2) in the transition regime let us
split the distribution function into two terms, 𝑓 = 𝑓0 + 𝐽𝑓𝐽 ,
where 𝑓0 is the part of the distribution independent of the
reactant flux 𝐽 and the second term is linear in 𝐽 because
of the linearity of the transport equation (A1) with respect
to 𝑓 . Now we rewrite Eq. (A1) in the integral form,

𝑓 = 𝑓𝑓𝑚 +𝐷−1𝑅[𝑓 ], (16)

where 𝐷−1 is the inversion of the differential operator stand-
ing on the left-hand side of Eq. (A1) and 𝑓𝑓𝑚 is the solution
to Eq. (B1) with the boundary condition Eq. (A5). Let then
the triangle brackets < · > stand for the operation that pro-
duces the flux from 𝑓 , < 𝑓 >= 𝐽 . Let us apply this operator
to both sides of Eq. (16). On introducing 𝐵 =< 𝐷−1𝑅𝑓𝐽 >
gives,

𝐽 = 𝜋𝑎2𝑣𝑇 (𝑛∞ − 𝑛+) +𝐵𝐽

or

𝐽 =
𝜋𝑎2𝑣𝑇 (𝑛∞ − 𝑛+)

1−𝐵
.

This is exactly Eq. (2).
Very simple dimension considerations allow us to estab-

lish a general form of the condensational efficiency. There
are three parameters that govern the condensation kinetics.
They are: the particle radius 𝑎, the thermal velocity of the
condensable gas molecules 𝑣𝑇 =

√︀
8𝑘𝑇/𝜋𝑚, and their diffu-

sivity 𝐷. Their dimensions are: 𝑎 = [cm], 𝑣𝑇 = [cm/s], and
𝐷 = [cm2/s]. Because 𝛼(𝑎) = [cm3/s], we can write

𝛼(𝑎) = 𝑆𝑝𝜋𝑎
2𝑣𝑇𝜑(𝑎𝑣𝑇 /𝐷). (17)

The multiplier 𝜋 normalizes 𝜑(0) to unity, 𝜑(0) = 1 (see
Eq. (11)). The function 𝜑(𝑥) is not yet known. In order
to find this function one should solve the Boltzmann kinetic
equation that describes the time evolution of the coordinate-
velocity distribution of the condensing molecules, then find
the flux of the condensing molecules toward the particle,
and then extract 𝛼(𝑎). This is not easy to do in general
form. However, the limiting situations are well analyzable
[Fuchs, 1964; Hidy and Brock, 1971; Seinfeld and Pandis,
1998; Williams and Loyalka, 1991]: 𝜑(𝑥) = 1 at small 𝑥 and
𝜑(𝑥) = 4/𝑥 as 𝑥 −→ ∞.

It is remarkable that all existing approaches give similar
dependence on the sticking probability,

𝜑(𝑥) =
1

1 + 𝑆𝑝𝐹 (𝑥)
(18)

Figure 2. The universal function 𝐹 entering the expression
for the trapping efficiency (see Eqs (17) and (18). It is seen
that three different approximations give very close results.

Three approximate expressions for 𝐹 (𝑥) are considered be-
low.

1. The LK approximation (see Eq. (9),

𝐹𝐿𝐾(𝑥) =
1

2

(︃√︂
1 +

𝑥2

4
− 1

)︃
.

The ideas on the derivation of this equation are given
in Appendices (A–C).

2. The Fuchs-Sutugin approximation [Fuchs and Sutu-
gin, 1971]. In deriving this equation these authors
divided the space into two parts: free-molecule zone
and the diffusion zone. Then they used the principle
of constancy of the total flux. The radius of the lim-
iting sphere (the spherical surface dividing the space
into free molecular and diffusion zones) is found from
the numerical solution of the Bhattnagar-Gross-Krook
kinetic equation by [Sahni, 1966]. In addition, they
replaced 𝛼(𝑎,𝑅) by 𝛼𝑓𝑚. Their final result is widely
known,

𝐹𝐹𝑆(𝑥) =
𝑥(𝑥+ 1.13)

4(𝑥+ 3)
.

3. Dahnecke’s approximation [Dahnecke, 1983],

𝑓𝐷(𝑥) =
𝑥2

4(𝑥+ 2)
.

The last two approximations are discussed in [Seinfeld and
Pandis, 1998].

Figure 2 compares these three approximation. It is seen
that the difference is not great.
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Figure 3. Reduced concentration jump (Eq. 20) vs reduced
particle size. It drops down to zero as the particle size grows.

4.2 Concentration Profile and Concentration
Jump

Let us write down the concentration profile in the free
molecule regime (Eq. (B4)),

𝑛𝑓𝑚(𝑟) = 𝑛∞ − (𝑛∞ − 𝑛+)𝑏−(𝑟). (19)

This spectrum possesses two remarkable features: i. it de-
pends on the radial coordinate (the function 𝑏+(𝑟) is given
by Eq. (12) and, ii. 𝑛𝑓𝑚(𝑎) ̸= 𝑛+. From Eq. (19) one finds,

𝑛𝑓𝑚(𝑎) =
𝑆𝑝

2
𝑛+ +

(︂
1− 𝑆𝑝

2

)︂
𝑛∞.

If we define the concentration jump as Δ𝑎 = 𝑛(𝑎)−𝑛+ then
in the free molecule regime we find,

Δ𝑓𝑚
𝑎 =

(︂
1− 𝑆𝑝

2

)︂
(𝑛∞ − 𝑛+).

On combining Eqs (13) and (15) yields the concentration
jump in general case.

Δ𝑎 = 𝑛𝑎 − 𝑛+ = (𝑛∞ − 𝑛+)

(︂
1− 𝛼(𝑎)

4𝜋𝐷𝑅

)︂
𝑏+(𝑎)

𝑏+(𝑅)
.

or
Δ𝑎

Δ
=

2− 𝑆𝑝

2 + 𝑆𝑝

[︃√︂
1 +

(︁𝑎𝑣𝑇
2𝐷

)︁2
− 1

]︃ , (20)

where Δ = 𝑛∞ − 𝑛+ Figure 3 shows the dependence of the
reduced concentration jump Δ𝑎/Δ on 𝑎. The concentration
profiles are presented in Figure 1.

5 Conclusion

The main goal of this paper was the extension of the LK
flux-matching theory to a more wide set of boundary condi-
tions to the Boltzmann equation. In addition to the LK con-
sideration here we introduced the non-zero concentrations of

Figure 4. Trapping efficiency vs particle size. Shown are
the experimental results of Ray et al., [1988], the semi-
empirical curves from [Dahnecke, 1983; Fuchs and Sutugin,
1971] and the present paper. The solid line is the result of
a numerical solution of the kinetic equation (see [Williams
and Loyalka, 1991]).

the reactant at the particle interface and the mass accommo-
dation coefficient – the probability for incident molecules to
leave on the particle surface after the first contact. In con-
trast to previous flux-matching theories the LK approxima-
tion starts from the solution of the collisionless Boltzmann
equation and matches exact free-molecule concentration pro-
file with that found from the solution of the steady-state dif-
fusion equation. The matching distance is then found from
the condition of equality of the diffusion fluxes in the diffu-
sion and free-molecule zones. The final result is the expres-
sion for the trapping efficiency has been tested against pre-
vious semi-empirical theories, numerical solution of the full
Boltzmann equation, and the experimental data (see Fig-
ure 4). The disagreement with the experimental data does
not exceed 7%. Figure 5 clearly demonstrates the efficiency
of the LK method. Compared are the reactant concentration
profile found from the numerical solution of the Boltzmann
equation (see [Williams and Loyalka, 1991]) and that ob-
tained within the LK approximation. The main advantage
of the proposed approach is the possibility to apply it to
other kinetic problems like particle charging (see LK), con-
densation and charging in external force fields, energy and
momentum transfer to a single aerosol particle.

Acknowledgment. This research was funded by the Ministry

of Education and Science of RF under Grant No. 14.515.11.0012.

Appendix A. Kinetic Equation

In this Section we discuss the general statement of the
problem of the condensible molecule transport toward a par-
ticle and the approximate approaches. Although this prob-
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Figure 5. Concentration profile vs distance from the parti-
cle center. Solid curve results from the numerical solution of
the Boltzmann equation (see [Williams and Loyalka, 1991]).
The second curve is the analytical result of this paper (see
Eqs 13 and 14).

lem had been considered many times and by many authors,
we return to it because fairly recently LK proposed a very
progressive replacement of variables in the kinetic equation.
Still we allow ourself to repeat here some key steps.

New Variables

The description of the molecular transport toward a spher-
ical particle in the transition regime requires the solution of
the steady-state Boltzmann kinetic equation,

𝑣𝑖
𝜕𝑓

𝜕𝑥𝑖
− 1

𝑚

𝜕𝑈

𝜕𝑥𝑖
· 𝜕𝑓
𝜕𝑣𝑖

= 𝑅[𝑓 ]. (A1)

Here 𝑓(𝑟,𝑣) is the distribution of the condensible molecules
over coordinates and velocities, 𝑚 is the molecular mass, 𝑈
is the potential of a field created by the particle (it can be
van der Waalse forces or electrostatic interaction of incident
molecules (or ions) with the particle, and 𝑅[𝑓 ] is the collision
term (a linear functional of 𝑓). The convention on the sum-
mation over repeating indexes is adopted. We also assume
that the concentration of the condensible species is low, and
the condensation process does not perturb the equilibrium
state of the carrier gas.

In what follows only spherical particles are considered.
The potential 𝑈 is then a function of 𝑟 = |𝑟| and the molecu-
lar distribution depends only on three variables, the molecule

radial coordinate 𝑟, absolute molecular velocity 𝑣 = |𝑣|, and
𝜇 = cos 𝜃, with 𝜃 being the angle between 𝑟 and 𝑣 directions.

In spherically symmetric systems another set of variables
is more convenient. Namely, instead of 𝑟, 𝑣, 𝜇 we introduce
𝑟, 𝐸, 𝐿, with

𝐸 = 𝑚𝑣2/2 + 𝑈(𝑟), 𝐿 = 𝑚|[𝑣 × 𝑟]| = 𝑚𝑣𝑟
√︀

1− 𝜇2 (A2)

being the total energy and the angular momentum of the
incident molecule respectively. In these variables the Boltz-
mann equation takes the form:

𝑠𝑣𝑟
𝜕𝑓𝑠
𝜕𝑟

= 𝑅[𝑓 ],

where

𝑣𝑟 =

√︃
2

𝑚

(︂
𝐸 − 𝑈(𝑟)− 𝐿2

2𝑚𝑟2

)︂
=

1

𝑚𝑟

√︀
𝐿2(𝑟)− 𝐿2

is the radial molecular velocity, 𝑠 = ±1 is an auxiliary vari-
able defining the direction of molecular motion along the
radial coordinate (𝑠 = −1 corresponds to the direction to-
ward the particle), and

𝐿(𝑟) =
√︀

2𝑚𝑟2(𝐸 − 𝑈(𝑟)).

The molecular flux toward the particle is expressed in terms
of 𝑓 as follows:

𝐽 = −
∫︁
𝑑3𝑣

∫︁
(𝑣 · 𝑑𝑆)𝑓(𝑟,𝑣).

The integrals on the right-hand side (rhs) of this equation
are taken over all 𝑣 and the surface of a sphere of radius 𝑟.
The sign “−” in the definition of the flux makes 𝐽 positive.
In spherical coordinates the total flux is,

𝐽 = −8𝜋2𝑟2
∞∫︁
0

𝑣3𝑑𝑣

1∫︁
−1

𝑓(𝑟, 𝑣, 𝜇)𝜇𝑑𝜇.

The rule for replacing the variables (𝑟, 𝑣, 𝜇) −→ (𝑟, 𝐸, 𝐿)
readily follows from definition (A2) of the variables 𝐸 and
𝐿,

2𝜋𝑣2𝑑𝑣𝑑𝜇 −→ 𝜋

𝑚2𝑟

∑︁
𝑠

𝑑𝐸𝑑𝐿2√︀
𝐿2(𝑟)− 𝐿2

.

The restrictions on the intervals of integration over 𝐸 and
𝐿2 are defined by two conditions, 𝐿2 ≤ 𝐿2(𝑟) and 𝐿2(𝑟) ≥ 0.
The latter one is equivalent to 𝐸 ≥ 𝑈(𝑟).

The expressions for the flux 𝐽 and the concentration 𝑛(𝑟)
in 𝑟, 𝐸, 𝐿 variables look as follows:

𝐽 = −4𝜋2

𝑚3

∑︁
𝑠

𝑠

∫︁
𝑑𝐸

∫︁
𝑑𝐿2𝑓𝑠(𝑟, 𝐸, 𝐿). (A3)

𝑛(𝑟) =
𝜋

𝑚2𝑟

∑︁
𝑠

∫︁
𝑑𝐸

∫︁
𝑑𝐿2√︀

𝐿2(𝑟)− 𝐿2
𝑓𝑠(𝑟, 𝐸, 𝐿). (A4)
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Boundary Condition

We conclude this Section by formulating the boundary
condition to Eq. (A1). For the following it is convenient to
introduce notation,

𝜃𝑟 = 𝜃(𝐿2
𝑟 − 𝐿2), 𝜃+ =

𝜃(𝐿2 − 𝐿2
𝑎) 𝜃− = 1− 𝜃+ = 𝜃(𝐿2

𝑎 − 𝐿2).

Here 𝜃(𝑥) is the Heaviside step function (𝜃(𝑥) = 1 at 𝑥 ≥ 1
and 0 otherwise). The factor 𝜃− cuts off the molecules flying
past by the target particle.

In what follows we will use the Maxwell boundary condi-
tion in the form:

𝑓1(𝑎,𝐸, 𝐿) =

[︂
(1− 𝑆𝑝)𝑓−1 +

1

2
𝑆𝑝𝑛+

]︂
𝜃−. (A5)

Here 𝑆𝑝 is referred to as the mass accommodation coeffi-
cient. The left-hand side of this equation gives the distri-
bution function of the molecules moving outward from the
particle surface. The part 1−𝑆𝑝 of inward moving molecules
specularly rebounds from the particle surface (the first term
on the right-hand side). The second term describes the emis-
sion of the reactant molecules from the particle.

In the particular case when the reactant molecules do
not experience chemical transformations inside the particles,
𝑛+ = 𝑛𝑒 (equilibrium number concentration over the parti-
cle surface), which means that all guest molecules trapped
by the particle thermalize and escape from it having the
Maxwell distribution over energies.

Appendix B. Free-Molecule Limit

Here we solve the kinetic equation without the collision
term,

𝑠𝑣𝑟
𝜕𝑓𝑠
𝜕𝑟

= 0 (B1)

with the boundary condition (A5).
Let us write down the solution to (B1). It is,

𝑓𝑠 =
1

2
𝑀(𝐸)𝜃𝑟[𝑛̃∞𝜃+(𝛿𝑠,1 + 𝛿𝑠,−1)+

𝑛̃∞𝜃−𝛿𝑠,−1 + 𝑆𝑝𝑛+𝜃−𝛿𝑠,1]. (B2)

The first term describes all molecules flying past by the par-
ticles. They fly in both radial directions, 𝑠 = +1 and 𝑠 = −1.
The second term describes the molecules flying from infin-
ity and hitting the particle. The third term describes the
motion of the molecules that flew from infinity and recoiled
from the particle surface and the molecules evaporated from
the particle. Here we introduced 𝑛̃∞. The point is that
free-molecule concentration 𝑛̃∞ does not correspond to that
of the reactant in the diffusion zone and serves as a fitting
parameter allowing us to make the concentration 𝑛𝑓𝑚(𝑅)
equal to 𝑛𝑐(𝑅) (see the derivation of Eq. (B7)).

Equation (B2) can be cast into the form:

𝑓𝑠 =
1

2
𝑀(𝐸)𝜃𝑟[𝑛̃∞ + 𝜃−𝑆𝑝𝜃−(𝑛̃∞ − 𝑛+)]𝛿𝑠,1], (B3)

where 𝛿𝑞,𝑠 stands for the Kroneker delta and

𝑀(𝐸) = 2𝜋(𝜋𝑘𝑇 )−3/2
√
𝐸𝑒−𝐸/𝑘𝑇

is the Maxwellian. In deriving Eq. (B3) the evident identi-
ties

𝛿𝑠,1 + 𝛿𝑠,−1 = 1 and 𝜃+ + 𝜃− = 1

were used.
Equations (A5) and (A4) yield,

𝑛𝑓𝑚(𝑟) = 𝑛̃∞ − 1

2
𝑆𝑝(𝑛̃∞ − 𝑛+)

(︃
1−

√︂
1− 𝑎2

𝑟2

)︃
=

𝑛̃∞ − (𝑛̃∞ − 𝑛+)𝑏−(𝑟). (B4)

The following chain of equalities gives 𝛼(𝑎,𝑅).

𝐽 = 𝛼𝑓𝑚(𝑛̃∞ − 𝑛+) = 𝛼𝑓𝑚(𝑎,𝑅)(𝑛𝑅 − 𝑛+) =

𝛼𝑓𝑚(𝑎,𝑅)[𝑛̃∞ − (𝑛̃∞ − 𝑛+)𝑏−(𝑅)− 𝑛+]

= 𝛼𝑓𝑚(𝑎,𝑅)(𝑛̃∞ − 𝑛+)[1− 𝑏−(𝑅)]

or
𝛼𝑓𝑚(𝑎,𝑅) =

𝛼𝑓𝑚

𝑏+(𝑅)
. (B5)

From Eqs (A3) and (B3) we find,

𝛼𝑓𝑚 = 𝑆𝑝𝜋𝑎
2𝑣𝑇 .

Now we must express 𝑛(𝑟) via 𝑛𝑅 instead of 𝑛̃∞. We
have,

𝑛𝑓𝑚(𝑟) = 𝑛̃∞𝑏+(𝑟) + 𝑛+𝑏−(𝑟). (B6)

From Eq. (B6) we have

𝑛𝑓𝑚(𝑅) = 𝑛̃∞𝑏+(𝑅) + 𝑛𝑎𝑏−(𝑅).

We solve this equation with respect to 𝑛̃∞ and find

𝑛̃∞ =
𝑛𝑅 − 𝑛𝑎𝑏−(𝑅)

𝑏+(𝑅)
. (B7)

Now

𝑛(𝑟) =
𝑛𝑅 − 𝑛+𝑏−(𝑅)

𝑏+(𝑅)
𝑏+(𝑟) + 𝑛+𝑏−(𝑟).

Next,

𝑛𝑅 − 𝑛+𝑏−(𝑅)

𝑏+(𝑅)
=
𝑛𝑅 − 𝑛+ + 𝑛+ − 𝑛𝑎𝑏−(𝑅)

𝑏+(𝑅)
=

𝑛𝑅 − 𝑛+

𝑏+(𝑅)
+ 𝑛+.

And finally,

𝑛(𝑟) =
𝑛𝑅 − 𝑛+

𝑏+(𝑅)
𝑏+(𝑟) + 𝑛+. (B8)

In deriving this equation we used the identity
𝑏+(𝑟) + 𝑏−(𝑟) = 1.
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Appendix C. Flux Matching for 𝑆𝑝 ̸= 1

Now we find 𝑅 from the condition Eq. (8)

𝑑𝑛𝑓𝑚

𝑑𝑟
=
𝑛𝑎 − 𝑆𝑝𝑛𝑅

1− 𝑆𝑝𝑏(𝑅)

𝑑𝑏

𝑑𝑟

𝑑𝑏

𝑑𝑟

⃒⃒⃒⃒
𝑅

=
𝑎2

𝑅3
√︀

1− 𝑎2/𝑅2
.

Equation for 𝑅,

𝛼𝑓𝑚

2𝜋𝐷𝑅
=

𝑎2

𝑅
√
𝑅2 − 𝑎2

or

𝑣𝑇
2𝐷

=
1√

𝑅2 − 𝑎2
.

From here we have

𝑅 =
√︀
𝑎2 + 𝜁2 (C1)

with

𝜁 =
2𝐷

𝑣𝑇
.

We had already

𝛼 =
𝛼(𝑎,𝑅)

1 +
𝑆𝑝𝛼(𝑎,𝑅)

4𝜋𝐷𝑅

.

On collecting all above we find

𝛼 =
𝛼𝑓𝑚

1− 𝑆𝑝𝑏(𝑅) +
𝑆𝑝𝛼𝑓𝑚

4𝜋𝐷𝑅

.

After some transformation one finally has,

𝛼(𝑎) =
𝛼𝑓𝑚

1 +
𝑆𝑝

2

(︃√︃
1 +

𝑎2

𝜁2
− 1

)︃ . (C2)

Appendix D. First-Order Chemical
Reaction Inside the Particle

Here we give an example of the function 𝜓(𝑎) appearing
in Eq. (3). To this end we consider a steady-state diffusion-
reaction kinetics inside the particle. The respective equation
has the form:

𝐷𝐿Δ𝑛𝐿(𝑟)− 𝜅𝑛𝐿(𝑟) = 0. (D1)

Here 𝐷𝐿 is the diffusivity of the reactant inside the particle,
𝑛𝐿(𝑟) is the reac.tant radial profile inside the particle, and
𝜅 is the reaction constant. We use

𝐽 = −𝐷𝐿
𝜕𝑛𝐿

𝜕𝑟

⃒⃒⃒⃒
𝑟=𝑎

as the boundary condition to Eq. (D1). This condition
provides the independence of 𝑛𝐿 of time. The solution to
this equation can be found elsewhere. The result is,

𝑛(𝑎) = 𝑛− =
𝐽

4𝜋𝐷𝐿𝑎(𝜆𝑎 coth𝜆𝑎− 1).

Next, 𝑛− = 𝐻𝑛+ (the Henri law) with 𝐻 being the dimen-
sionless Henri constant. Finally we find

𝜓(𝑎) =
1

4𝜋𝐷𝐿𝑎𝐻(𝜆𝑎 coth𝜆𝑎− 1)
.

Here 𝜆 =
√︀
𝜅/𝐷𝐿.

Appendix E. Second-Order Chemical
Reaction

Let there be two gaseous reactants 𝐴 and 𝐵. Their con-
centrations far away from the particles are 𝑛𝐴

∞ and 𝑛𝐵
∞. The

reactants molecules are assumed to react inside the particles.
The reaction product is immediately dissolved from the par-
ticle. We also assume that the steady-state expressions for
the total fluxes can be used. The balance equations inside
the particle look as follows:

𝜕[𝐴]

𝜕𝑡
= 𝐷𝐴Δ[𝐴]− 𝜅[𝐴][𝐵].

𝜕[𝐵]

𝜕𝑡
= 𝐷𝐵Δ[𝐵]− 𝜅[𝐴][𝐵].

On integrating these equations over the particle volume and
applying the Gauss theorem yield,

𝜕𝑁𝐴

𝜕𝑡
= 𝐽𝐴 − 𝜅

∫︁
[𝐴][𝐵]𝑑3𝑟

𝜕𝑁𝐵

𝜕𝑡
= 𝐽𝐵 − 𝜅

∫︁
[𝐴][𝐵]𝑑3𝑟.

The integration on the RHS of above equations goes over the
particle volume. Here 𝑁𝑋 =

∫︀
[𝑋]𝑑3𝑟 is the total number of

𝑋 molecules (𝑋 = 𝐴,𝐵) in the particle. Next, we introduce
the spatial profiles of the reactants, [𝑋] = 𝑁𝑋(𝑡)𝑓𝑋(𝑟, 𝑡). It
is easy to see that the combinations

𝐽± =
1

2
(𝐽𝐴 ± 𝐽𝐵) and 𝑁± =

1

2
(𝑁𝐴 ±𝑁𝐵)

meet the equations,

𝜕𝑁−

𝜕𝑡
= 𝐽−

and
𝜕𝑁+

𝜕𝑡
= 𝐽+ + 𝜅̃𝐽2

−𝑡
2 − 𝜅̃𝑁2

+. (E1)

Here we introduced 𝜅̃ = 𝜅
∫︀
𝑓𝐴𝑓𝐵𝑑

3𝑟. In what follows we
assume that 𝜅̃ is independent of time. This approximation
is not bad because the functions 𝑓𝑋 are normalized to unity,
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Equation (E1) in the dimensionless form looks as follows:

𝜕𝑦

𝜕𝜏
= 1 + 𝜎2𝜏2 − 𝑦2, (E2)

where 𝑦(𝜏) = 𝑁+

√︀
𝜅̃/𝐽+, 𝜏 = 𝑡

√
𝐽+𝜅̃, and 𝜎 = 𝐽−/𝐽+. It

is remarkable that 𝜅̃ does not enter Eq. (E2).
The general solution to Eq. (E2) can be expressed in

terms of the confluent hypergeometric functions. But in two
particular cases the solution can be found in a more analyz-
able form. At 𝜎 = 0 we have,

𝑦(𝜏) = tanh 𝜏.

At 𝜎 = 1/3 the solution is more complex,

𝑦(𝜏) =
𝜏

3
+

1

𝜏

[︃
1− 𝑒−𝜏2/3

1 +𝑅(𝜏)

]︃
,

where

𝑅(𝜏) = 𝜏

𝜏∫︁
0

1− 𝑒−𝑠2/3

𝑠2
𝑑𝑠.

In principle, it is not a problem to solve Eq. (E2) numerically
at arbitrary value of the governing parameter 𝜎.

Appendix F. Dimensionality Analysis

The diffusion-reaction equation describes the spatial re-
actant profile inside the particle,

𝐷Δ𝑐− 𝜅𝑐𝑛+1 = 0.

We introduce the scales,

𝑐 = 𝑐0𝑐, 𝑟 = 𝑎𝜌0𝑟.

Then

𝐷

𝑎2𝜌20𝜅𝑐
𝑛
0

Δ̃𝑐− 𝑐𝑛+1 = 0.

The boundary condition to this equation is,

𝐽 = −𝐷𝑑𝑟𝑐 or
𝐽𝜌0𝑎

𝑐0𝐷
= − 𝑑𝑐

𝑑𝑟

⃒⃒⃒⃒
𝑟=𝜌0

We define the scale 𝜌0 from the condition,

𝜌0 =

√︃
𝐷

𝑎2𝜅𝑐𝑛0
.

We find also

𝑐
1+𝑛/2
0 =

𝐽√
𝐷𝜅

1

𝑐′(1/𝜌0)
. (F1)

From last two equations we can find the scales 𝜌0 and 𝑐0.
The function 𝑐 meets the equation

Δ̃𝑐− 𝑐𝑛+1 = 0. (F2)

The boundary conditions to this equation are

𝑐(0) <∞, 𝑐(1/𝜌0) = 1.

It is not very difficult to estimate 𝜌0 numerically. For a
binary reaction and a particle of 0.1𝜇𝑚 one finds 𝜌0 ∝ 105.
Hence, Eq. (F1) can be rewritten as

𝑐
1+𝑛/2
0 =

𝐽√
𝐷𝜅

1

𝑐′(0)
.

From Eq. (F2) we find

𝑐′(1/𝜌0) ≈ 𝑐′′(0)𝜌0

and

𝑐′′(0) =
𝑐𝑛(0)

3
.

Finally we have

𝑐
1+𝑛/2
0 =

𝐽√
𝐷𝜅

1

𝑐′(0)
.

From Eq. (F2) we find

𝑐0 =

(︂
3𝐽

𝑐𝑛(0)𝜅𝑎

)︂ 1
1+𝑛

.
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