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Thermomechanics of phase transitions of the first order
in solids

V. I. Kondaurov

Moscow Institute of Physics and Technology, Moscow, Russia

Abstract. Methods of nonequilibrium thermodynamics and continuum mechanics are
used for studying phase transitions of the first order in deformable solids with elastic and
viscoelastic rheology. A phase transition of the first order is treated as the transition
from one branch of the response functional to another as soon as state parameters reach
certain threshold values determined by thermodynamic phase potentials and boundary
conditions of the problem. Notions of kinematic and rheological characteristics of a
phase transition associated with the change of the symmetry group due to the structural
transformation and with the difference between thermodynamic potentials in undistorted
phase configurations are introduced. In a quasi-thermostatic approximation, when inertia
forces and temperature gradients are small, a close system of equations on the interface
between deformable solid phases is formulated using laws of conservation. The system of
the latter includes, in addition to the traditional balance equations of mass, momentum and
energy, the divergence equation ensuring the compatibility of finite strains and velocities.
As distinct from the classical case of the liquid (gas) phase equilibrium, the phase transition
in solids is supposed to be irreversible due to the presence of singular sources of entropy of
the delta function type whose carrier concentrates on the interface between the phases. The
relations on the interface including the continuity conditions of the displacement vector,
temperature, mass flux and the stress vector, as well as a certain restraint imposed on the
jump of the normal component of the chemical potential tensor, are discussed. The latter
restraint makes the resulting relations basically distinct from the classical conditions of the
phase equilibrium.

A generalized Clapeyron–Clausius equation governing the differential dependence of the
phase transition temperature on the initial phase deformation is formulated. The paper
presents a new relation of the phase transformation theory, namely, the equation describing
the differential dependence of the phase transition temperature on the interface orientation
relative to the anisotropy axes and the principal axes of the initial phase strain tensor.
Based on the relations derived in this study, the phase transformation temperature of an
initially isotropic material is shown to assume extreme values if the normal to the interface
coincides with the direction of a principal axis of the initial phase strain tensor. The phase
transition of the first order in a linear thermoelastic material with small strain values and
small deviations of the temperature from its initial value is discussed in detail. A class of
materials is distinguished in which an increase in the initial phase strain necessarily changes
the character of the phase transformation (a normal phase transition becomes an anomalous
one and vice versa). The equilibrium of a compressed viscoelastic layer admitting melting
and the effect of stress relaxation in the solid phase on the fluid boundary motion are
examined.
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1. Introduction

As is experimentally shown, nearly all materials experi-
ence phase transitions under sufficiently intense thermal and
mechanical loads. Two cases can be distinguished depending
on properties of the phase material. In the first case, new

85



86 kondaurov: thermomechanics of phase transitions of the first order in solids

phase nuclei unboundedly grow and coalesce, finally forming
large regions each consisting of only one phase. The contact
surface of such a region, below referred to as an interface, is a
surface at which some thermodynamic parameters and their
first derivatives are discontinuous. One of the main problems
of the phenomenological theory of such transitions is to spec-
ify the relations between various quantities at the interface.
In the second case, energy factors and kinetic properties re-
strict the growth of new phase nuclei by medium-scale sizes
that are small compared to the characteristic size of a body.
The accumulation of nuclei that do not coalesce gives rise to
a mixture of two phases and a composite structure consist-
ing of an initial phase matrix “reinforced” by inclusions of
the new phase disseminated throughout its volume. In this
case, in addition to the problem of determining the effective
properties of this type of materials, which is traditional in
the mechanics of composites, one often encounters the prob-
lem the phenomenological description of the concentration,
spatial distribution and shape of the new phase inclusions
as a function of varying stress (strain) and thermal state. In
this study I restrict myself to the first case (below referred
to as the phase transition of the first order in accordance
with the generally accepted terminology).

The majority of natural processes are associated with or
even due to phase transformations of materials [Turcott and
Schubert, 1982], and many of these processes are critically
dependent on not only the temperature and pressure but
also tangential stresses. Examples are tectonic processes,
metamorphism phenomena, stratification in the crust and
recrystallization of geomaterials. The formation of deep-
seated sources of earthquakes is associated with the relax-
ation of deviatoric stresses in the vicinity of a moving front of
phase transformations. The orientation and shape of magma
chambers essentially depend on the presence of shear stresses
and thermoelastic properties of the surrounding rocks. The
list of geophysical examples alone can be continued. How-
ever, even the aforesaid clearly indicates the relevance of the
correct description of the problem of solid phase transforma-
tions.

Mechanics and thermodynamics of phase transformations
of deformable solids have been developed over more than a
century [Gibbs, 1906]. The theory of liquid and gas phase
equilibrium reducing to the equality of pressures, temper-
atures and chemical potentials has become a constituent of
the classical thermodynamics and statistical mechanics [Lan-
dau and Lifshits, 1964] and a working tool in solving many
scientific, engineering and technological problems [Christian,
1978; Khachaturyan, 1974; Roitburd, 1974]. On the other
hand, the Gibbs approach to the description of the phase
equilibrium conditions brought about many studies intended
to extend this approach to deformable solids in a nonhy-
drostatic stress state and to the construction of the scalar
chemical potential in media characterized by more than two
scalar parameters of state. Such studies are reviewed, for
example, in [Grinfeld, 1990; Ostapenko, 1977], where these
problems are also discussed in detail. Investigations in this
direction continue presently as well [Knyazeva, 1999].

The first question arising in phenomenological simulation
of phase transformations is the following: How can the first-
order phase transition be defined in terms of the continuum

mechanics? In the existing literature, this question is either
ignored or the phase transition is treated as a change in the
aggregate state of a solid, which is simply a paraphrase re-
ducing to the replacement of one term by another, equally
indefinite term. Some authors invoke to the structure of the
medium and to the size and other characteristics of the solid
lattice, i.e. to the notions beyond the system of concepts
of continuum mechanics and thermodynamics. Phases are,
at best, defined as states of the matter coexisting as macro-
scopic regions that are at equilibrium with each other and are
separated by surfaces at which some thermodynamic poten-
tials are discontinuous [Landau and Lifshits, 1964]. Setting
aside insignificant, in my opinion, limitations inherent in a
purely static case, this definition implicitly refers to the main
problem related to the loss of uniqueness of the response of
the medium to a given thermodynamic state. In what fol-
lows, remaining within the framework of thermodynamics
of irreversible processes, phase transitions of the first order
in a continuum will be understood as processes associated
with the transition of a material element from one branch
of the response functional or function to another. The main
problem in the theory of first-order phase transitions is the
thermodynamic conditions consistent with such a transition;
the latter can be either slow or rapid (dynamic) transition.
As distinct from the traditional approach based on varia-
tional principles, this work describes the first-order phase
transitions in deformable solids within the framework of the
theory of strong discontinuities in the solution of partial dif-
ferential equations describing the behavior of the continuum
studied. The necessary condition for constructing a closed
system of equations involving strong discontinuities is the
possibility of representing the equations as a system of con-
servation laws, which means that these equations can be
written in a divergent form. Hence, the first-order phase
transition in materials of the Prandtl–Reuss elastic-plastic
type of the medium [Sedov, 1970], equations of which are
basically irreducible to a divergent form in the case of a
multidimensional strain state, cannot be described in terms
of the conventional approach and require the application of
the general theory of strong discontinuities [Sadovskii, 1997].

From the standpoint of the approach adopted in this
study, the phase transition can be realized not only in mate-
rials described by a general equation of state of the Van der
Waals type whose nonconvexity ensures the nonuniqueness
of the material response to a given state. As is shown below,
phase transformations can be experienced by materials the
responses of which are described by different, completely in-
dependent equations of state of each of the phases present.
Moreover, each of these constitutive equations can satisfy the
convexity condition and other classical restraints imposed on
thermodynamic potentials.

Note also that, in constructing the so-called wide-range
equations of state with high densities of energy, the plane
of state variables is often subdivided into fields of different
states of phases [Bushman et al., 1992; Melosh, 1989]. Such a
subdivision is an approximate approach because the localiza-
tion of various phase fields ignores the solid-state properties
of the material, the loading rate dependence of the phase
equilibrium conditions and the possible overlapping of the
areas of phase existence. Such an approximation cannot be
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substantiated by a local thermodynamic equilibrium of the
material element. A characteristic example is the distinction
of the Hugoniot adiabat describing the behavior of a mate-
rial under a shock load from the isotherm corresponding to
a slowly varying mechanical and thermal load.

The quasi-thermostatic approximation is often applied to
the modeling of first-order phase transitions caused by slowly
varying mechanical and thermal loads. This approximation
implies that the state of a material element is supposed to
be close to a thermomechanical equilibrium characterized
by a temperature gradient ∇θ � θ0/l0 and an Euler number
ρ0v

2
0/σ0 � 1, where θ0, l0, ρ0, v0 and σ0 are the characteristic

temperature, linear size of the body, density, velocity and
pressure, respectively. It is additionally assumed that the
velocity of the interface is small compared to the velocity of
sound, and no singular sources of mass, momentum, energy
and entropy are present on the interface.

The assumption of the smallness of temperature gradients
means that the model used precludes temperature disconti-
nuities, because otherwise the temperature gradient between
two points on opposite sides of the discontinuity surface will
be infinitely large. The quasi-static approach implies that
the inertia forces and kinetic energy are neglected in the
equations of motion and energy balance, respectively. The
absence of a singular source of entropy means that the phase
transition in such a material is a reversible process for which
the Clausius–Duhem inequality becomes an equality. Hence,
dissipation vanishes not only in smooth flow areas but also
as a particle crosses the interface. The phase transition re-
versibility assumption is less evident and is often used implic-
itly, particularly if phase transitions are described in terms of
variational principles of the continuum mechanics [Grinfeld,
1990].

2. Basic Relations of a Thermoelastic
Medium

Before deriving relations on a strong discontinuity surface
separating different solid phases, I remind the reader of the
basic definitions and formulas of the theory thermoelastic
solids. The state of a material point X of a thermoelastic
medium at a time moment t is specified by the set of quan-
tities

λ(X, t) ≡ {F(X, t), θ(X, t),∇θ(X, t)} ,
where F is the gradient of the mapping κ → χ(t) of the
reference configuration of the body κ into the current con-
figuration χ(t). The nonsymmetric second-rank tensor F
connects the radius-vectors differentials of two neighboring
material points:

dx = dX ·
(

0

∇⊗ x (X, t)
)

=
(

0

∇⊗ x
)T

· dX = F · dX ,

where
0

∇ is the gradient in the Lagrangian (substantial) vari-
ables X ∈ κ. The following polar decomposition holds for
the nonsingular tensor F :

F = R ·U = V ·R , (2.1)

where R is an orthogonal tensor characterizing a rigid rota-
tion of the material element as a whole, and U and V are
symmetrical, positively definite tensors describing the defor-
mation of this element.

The current response of the material point X of a ther-
moelastic material at the time moment t is characterized by
the set of quantities

Σ(X, t) ≡ {T(X, t), ψ(X, t), η(X, t),q(X, t)} ,

where T is the symmetrical Cauchy tensor of stresses, q
is the heat flux vector, η is the entropy density and ψ is
the free energy density connected with the internal energy
density through the relation ψ = u− θη. The scalar θ is the
absolute temperature, γ ≡ ∇θ is the temperature gradient
and∇ is the gradient in Eulerian (spatial) variables x ∈ χ(t).
In a thermoelastic material, the current response Σ(X, t) is
supposedly a function of the current state λ(X, t), i.e.

Σ(X, t) = Σ+
κ {λ(X, t),X} , (2.2)

where Σ+
κ ≡ {T+, ψ+, η+,q+} is a set of functions that effect

the mapping λ(X, t) → Σ(X, t) and specify mechanical and
thermal properties of the material. Below, these functions
are referred to as constitutive functions or relations. The in-
dex κ indicates the dependence of the constitutive mappings
on the choice of the reference configuration of the body.

The thermoelastic materials under consideration include
both liquids and solids. In the particular case θ = const,
corresponding to the isothermal approximation, the consti-
tutive relations are transformed into the model of a hyper-
elastic material; if undeformable heat-conductive solids are
considered (F is an orthogonal tensor in any motion), the
thermoelastic model reduces to the traditional theory of heat
conduction.

A necessary and sufficient condition for the validity of the
second law of thermodynamics (Clausius-Duhem inequality)

ρη̇ −∇ · (θ−1q)− ρθ−1r ≥ 0

in any smooth process of state variation is given by the fol-
lowing restraints on the constitutive relations of the ther-
moelastic medium [Truesdell, 1972]:

ψ = ψ+(F, θ) , (2.3)

T = ρ
∂ψ+(F, θ)

∂F
· FT , η = −∂ψ

+(F, θ)

∂θ
, (2.4)

δT =
1

ρθ
∇θ · q+(F, θ,∇θ) ≥ 0 . (2.5)

Relations (2.3) and (2.4) mean that, first, the free energy
density of the thermoelastic medium is independent of the
temperature gradient; this is not an assumption but a state-
ment proven on the basis of general assumptions of the con-
tinuum mechanics. Second, the stress tensor and entropy
density of the thermoelastic material are fully determined
by the partial derivatives of a function of the free energy.
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Equation (2.5) implies that, in any state of the thermoelas-
tic solid, the heat flux vector q cannot make an obtuse angle
with the temperature gradient ∇θ.

The internal dissipation δM ≡ θη̇ − (ρr +∇ · q)/ρ in the
thermoelastic material is written as

δM = (ρ−1T · F−1T − ∂ψ/∂F) : Ḟ −

− (η + ∂ψ/∂θ)θ̇ − (∂ψ/∂γ) · γ .

Henceforward a colon in formulas means a double scalar
product such that A : B = AijB

ij . On the strength of
(2.3) and (2.4), this yields, i.e. the thermoelastic medium
is a perfect material in the sense that any smooth defor-
mation process is not accompanied by internal dissipation.
This only true of smooth flows. If a particle crosses a strong
discontinuity surface, its entropy can undergo a jump at the
shock wave due to the action of singular sources of entropy
on the wave surface [Landau and Lifshits, 1988].

The requirement of the material independence of the ref-
erence system choice (the objectivity principle) leads to the
following restraints on the constitutive equations of a ther-
moelastic material:

ψ = ψ+(U, θ),

T = R ·T+(U, θ) ·RT = ρ
∂ψ+(U, θ)

∂F
· FT ,

η = η+(U, θ) = −∂ψ
+(U, θ)

∂θ
,

q = R · q+
(
U, θ,RT · ∇θ

)
,

(2.6)

where R and U are the tensors in polar decomposition (2.1).
I emphasize that relations (2.6) hold in a medium of an ar-
bitrary type of symmetry.

A solid, initially isotropic thermoelastic material is par-
ticularly important in applications. The constitutive rela-
tions of such a material, written through kinematic quan-
tities measured from the undistorted configuration of the
body κ0, are invariant under the group of proper orthogo-
nal transformations of this configuration. The free energy
ψ+(U, θ) and the heat flux vector q+(U, θ,RT ·∇θ) in such
a material are isotropic functions obeying the identities

ψ+
(
KT ·U ·K, θ

)
= ψ+

(
U, θ

)
,

q+
(
KT ·U ·K, θ,KT ·RT · ∇θ

)
= KT · q+

(
U, θ,RT · ∇θ

)
,

where K is any orthogonal tensor with a positive determi-
nant. Then, the constitutive equations of a solid, initially
isotropic thermoelastic material can be written in the form

ψ = ψ(Ik(B), θ), η = −∂ψ(Ik(B), θ)

∂θ
,

q = q(B, θ,∇θ) ,

T = ρ
∂ψ(Ik(B), θ)

∂F
· F = β0I + β1B + β2B

2 ,

(2.7)

where B = F · FT = V2 is the symmetrical, positively defi-
nite tensor of finite strain, and Ik(B), k = 1, 2, 3, are princi-
pal invariants of B determined by the formulas

I1(B) = B : I,

I2(B) =
1

2

{
(B : I)2 −B2 : I

}
,

I3(B) = detB .

(2.8)

The scalar coefficients βi = βi(Ik, θ), i = 0, 1, 2; k = 1, 2, 3
in the polynomial representation of the Cauchy stress tensor
T are functions of temperature and invariants of the strain
tensor B. These coefficients are completely determined by
the thermodynamic potential:

ρ−1β0(Ik, θ) =

= ∂ψ/∂I1 + I1∂ψ/∂I2 + (I2 − 2I3)∂ψ/∂I3 ,

ρ−1β1(Ik, θ) =

= −2∂ψ/∂I1 − (1 + 2I1)∂ψ/∂I2 − I1∂ψ/∂I3 ,

ρ−1β3(Ik, θ) = 2∂ψ/∂I2 + ∂ψ/∂I3 .

(2.9)

The complete system of equations of the thermoelastic
material in regions of the smooth solution in the Eulerian
variables (x, t) can be written as a system of divergent dif-
ferential equations (local conservation laws):

∂ρ

∂t

∣∣∣
x

+∇ · (ρv) = 0 (2.10)

∂(ρv)

∂t

∣∣∣∣
x

+∇ · (ρv ⊗ v −T) = ρb (2.11)

∂(ρe)

∂t

∣∣∣∣
x

+∇ · (ρev −T · v − q) = ρ(b · v + r),

e = u+
1

2
v · v

(2.12)

∂(J−1FT )

∂t

∣∣∣∣
x

+∇ ·
{
J−1(v ⊗ FT − F⊗ v)

}
= 0 . (2.13)

Henceforward, J = detF, the symbol ⊗ means the tensor
product, u is the internal energy density, e = u+1/2v·v is the
total energy of unit mass, b is the density of body forces and
r is the heat source distribution density. Relations (2.10),
(2.11) and (2.12) are, respectively, equations of the local
mass balance, motion and local energy balance. Equation
(2.13) is a kinematic relation ensuring the compatibility of
deformations and velocities of a material particle. System
(2.10)–(2.13) is complemented by constitutive relations (2.6)
specifying the properties of the thermoelastic material.

I should also note that the representation of a complete
system of equations of a thermoelastic body through local
conservation laws (2.10)–(2.13) is possible because the kine-
matic compatibility equation (2.13) connecting the variation
rate of the tensor F with the velocity gradient of a material
particle was used in conjunction with the traditional con-
servation laws. This equation for a nonsymmetric tensor F
characterizing both the extension of a material element and
its rigid rotation as a whole has a divergent form in the case
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of arbitrary deformations. Contrary to (2.13), kinematic re-
lations of the type

Ė + E · (∇⊗ v)T + (∇⊗ v) ·E =
1

2

(
∇⊗ v +∇⊗ vT

)
that connect the total derivative of the Almansi finite strain
tensor E = 1

2
(I− F−1T · F−1) (or another symmetric strain

tensor) with the velocity gradient are basically irreducible
to the divergent form. A more detailed discussion of this
problem can be found in [Kondaurov, 1981; Kondaurov and
Nikitin, 1990].

The requirement of correctness of boundary problems in-
volving system (2.10)–(2.13), (2.6) imposes additional re-
straints on the free energy density ψ(F, θ). In the isother-
mal approximation, the necessary condition related to the
solvability of equilibrium problems for a thermoelastic body
has the form

(k⊗m) :
∂2ψ(B, θ)

∂F⊗ ∂F
: (k⊗m) > 0 (2.14)

for arbitrary vectors k 6= 0,m 6= 0. This inequality is
called the strong ellipticity condition [Lurye, 1980; Trues-
dell, 1972].

In the Lagrangian (substantial) variables (X, t) the sys-
tem of differential equations for a thermoelastic material can
be written as

ḞT −
0

∇ · (I⊗ v) = 0, ρkv̇ −
0

∇ ·TT
κ = ρκb,

ρκ
∂e

∂t
−

0

∇ ·
(
TT

κ · v + qκ

)
= ρκ(b · v + r) ,

(2.15)

where ρκ is the mass density in the reference configuration
κ connected with the density ρ in the actual configuration
through the relation

ρJ = ρκ, J ≡ detF (2.16)

qκ = JF−1 ·q is the heat flux vector in the Lagrangian vari-
ables X, and

Tκ = JT · F−1T , Tκ 6= TT
κ (2.17)

is the nonsymmetric Piola-Kirchhoff stress tensor of first
kind.

3. Relations at the Interface

Here, based on the assumption that the process under
study is close to the mechanical and thermal equilibrium,
I discuss the conditions on the moving surface of a strong
discontinuity separating two phases of a thermoelastic body
experiencing finite deformations and arbitrary heating. In
the general case the phases are assumed to be anisotropic
solids with various types of anisotropy. Then, for each phase
there exists an undistorted reference κ

(n)
0 , n = 1, 2, such that

the symmetry groups of the phase material g
(n)
0 belong to a

proper orthogonal group [Lurye, 1980; Truesdell, 1972]. In

other words, constitutive equations (2.6) of the phase ma-
terial written in terms of strains measured from the undis-
torted reference configurations are invariant under orthogo-
nal transformations belonging to g

(n)
0 .

The configurations κ
(n)
0 generally differing in the density

of material are interrelated via the nondegenerate transfor-
mation

dX(1) = U0 · dX(2), detU0 6= 0 ,

where a positively definite tensor U0 is the gradient of the
nondegenerate mapping κ

(2)
0 → κ

(1)
0 , and dX(n) are the ra-

dius vectors connecting two infinitely near material particles
in the configurations κ

(n)
0 . The value U0 interrelating undis-

torted reference configurations of an infinitely small material
element in different phase states depends on the temperature
θ
(n)
0 and the stress state T

(n)
0 of the material in the configura-

tion κ
(n)
0 , i.e. U0 = U0(T

(n)
0 , θ

(n)
0 ). Natural configurations

in which stresses vanish and the temperature θ0 is constant
are most widespread in applications. The tensor U0 is the
kinematic characteristic of a phase transition in solids. In
the classical theory of phase transitions, an analog of U0 is
the ratio of phase densities.

Various configurations κ
(n)
0 differ not only in the mass

density and anisotropy properties of the material but also
in its free energy and entropy. In the case of a single-phase
medium, these thermodynamic potentials in the reference
state are usually set equal to constants of minor importance
(most often to zero). In phase transformations the differ-
ence between the free energies of phases in the configurations
κ

(n)
0 , n = 1, 2, is a fundamental value, and it is natural to

call it the rheological characteristic of the first-order phase
transition in solids. The same is true of the entropy density.
Rheological characteristics, as well as the kinematic quantity
U0, depend on the initial temperature and initial stresses in
the configurations κ

(n)
0 .

Now I formulate the relations on the moving surface of a
strong discontinuity (in crossing this surface, particles expe-
rience a phase transformation). Two of these relations are
obvious, namely, the temperature continuity condition

[[θ]] = 0 (3.1)

and the continuity condition of the radius vector x determin-
ing the spatial position of the material particle under study
at the current time moment

[[x]] = 0 (3.2)

Actually, a discontinuity of the temperature θ or the vector x
at the moving interface necessarily leads to infinite gradients
of the temperature and velocity vector arising when a parti-
cle crosses a strong discontinuity surface. This is at variance
with the assumption that the conditions of the phase trans-
formation are close to the equilibrium state.

Condition (3.2) is sometimes regarded as the definition of
coherent (or martensite) phase transitions. Examples of such
transitions are provided by twinning processes in crystals
[Coe, 1970; Robin, 1974] and some phase transformations
in iron. Some authors [Grinfeld, 1990; Truskinovskii, 1983]
also discuss models of incoherent phase transformations or
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transitions with slip in which the normal component alone
of the vector x is continuous. Incoherent transitions can-
not be realized within the framework of a consistent quasi-
thermostatic model with a moving phase boundary, because
such a transition should be associated with an infinite values
of the tangential component of the velocity vector, implying
an appreciable inertia effect. Slip motions are only possible
on a stationary surface which is a contact discontinuity sur-
face not crossed by particles. Attempts at the variational
description of incoherent phase transitions [Grinfeld, 1990;
Truskinovskii, 1983] employ the assumption on a class of ad-
missible variations, which is unacceptable for moving phase
boundaries.

In order to derive relations for other quantities at a
strong discontinuity surface, I use the material variables
X ≡ X(1) ∈ κ(1)

0 ≡ κ of the undistorted reference configura-
tion of the body in the first phase state with the temperature
θ0. This means that the deformations of the second phase
are also described in terms of the initial configuration κ. If
the phases have the same type of symmetry, the configura-
tion κ is an undisturbed configuration for the second phase.
If the phases have different types of symmetry, the mate-
rial of the second phase in the configuration κ should have
a symmetry group defined by Noll’s rule [Truesdell, 1972].
The integral balance equation in these variables has the form

d

dt

∫
κ

ϕκdVκ =

=

∮
∂κ

nκ ·ΦκdSκ +

∫
κ

ρκfdVκ +

∫
S0

ρκcκξdS0

(3.3)

and includes relations (2.15) written in the integral form,
the strain–velocity compatibility equation, the equilibrium
equation obtained from equations of motion (2.15) by ig-
noring its inertia term, and the entropy balance equation
corresponding to the Clausius–Duhem inequality. Integral
equation (3.3) accounts for the presence of a strong discon-
tinuity surface S0(t) moving at a velocity cκ in the direction
of the normal nκ, because this surface can contribute to the
balance relation. The vectors in (3.3) are defined by the
expressions

ϕκ =


0
ρκu
FT

ρκη

 , Φκ =


TT

κ

TT
κ · v + qκ

I⊗ v
qκ/θ

 ,

f =


b

b · v + r
0
r/θ

 , ξ =


0
0
0
δ∗

 ,

(3.4)

where ξ is the vector of singular sources of the δ function
type, with its carrier concentrated on the surface S0(t).

Like in the classical theory of shock waves, I assume
that no singular sources of mass, momentum and energy
are present on moving surfaces of strong discontinuities sep-
arating two phases. As shown below, the absence of strain
incompatibility sources is ensured by continuity condition

(3.2) imposed on the displacement vector. As regards a sin-
gular source of entropy δ∗, the case δ∗ = 0 corresponds, by
definition, to a reversible phase transformation and the case
δ∗ > 0, to an irreversible phase transformation. The set
of assumptions on amplitudes of these sources within the
framework of the system of conservation laws is an indepen-
dent part of any continuum model admitting discontinuous
solutions [Kulikovskii and Sveshnikova, 1998; Sedov, 1970].
As is demonstrated by the solution of the problem on the
shock wave structure in an ideal gas [Ovsyannikov, 1981;
Rozhdestvenskii and Yanenko, 1978], the correctness of as-
sumptions on the amplitudes and types of sources function-
ing on strong discontinuities can sometimes be demonstrated
by invoking more general models in which a strong disconti-
nuity is modeled by a region of large gradients of the solution
and by passing to the model with a discontinuous solution
as a limit. Apparently, such a substantiation of first-order
phase transition models in solids has not been given.

System (3.3) yields the relations for discontinuities at the
phase boundary:

ρκcκ[[ϕκ]] + nκ · [[Φκ]] + ρκcκξ = 0 ,

where [[a]] = a+−a− is the jump of a quantity a at the strong
discontinuity surface, and its element under consideration is
characterized by the normal nκ and by the velocity along
this normal cκ. Using expressions (3.4), these relations are
written as,

[[Tκ]] · nκ = 0 , (3.5)

ρκcκ[[u]] + [[v ·Tκ]] · nκ + [[qκ]] · nκ = 0 , (3.6)

cκ[[F]] + [[v]]⊗ nκ = 0 , (3.7)

ρκcκ[[θη]] + [[qκ]] · nκ + ρκcκδ∗ = 0 . (3.8)

Relation (3.5) is the continuity condition of the stress vector
at the phase boundary and is an analogue of the pressure
continuity condition at the contact surface of liquid or gas
phases. Relation (3.7) results from the continuity of the vec-
tor x(X, t) at the phase boundary and, apart from a dyadic
structure of the tensor [[F]], indicates the absence of a sin-
gular source of incompatible strains and velocities. Actu-
ally, condition (3.2) ensures the continuity of the vector dx,
which is an image of the substantial vector dX ∈ S0, i.e.
[[dx]] = [[F]] · dX = 0. Since dX is arbitrary, this yields

[[F]] = hκ ⊗ nκ . (3.9)

On the other hand, let ξ be a point of a strong discontinu-
ity surface moving at a velocity cκ in the direction of the
normal nκ. Then, ∂X/∂t

∣∣
ξ
= cκnκ and the continuity of

x = x(X(ξ, t), t) yields

[[∂x/∂t
∣∣
ξ
]] = [[∂x/∂t

∣∣
X

+F · ∂X/∂t
∣∣
ξ
]] =

= [[v]] + cκ[[F]] · nκ = 0 .
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Using (3.9), I obtain

[[v]] = −cκhκ . (3.10)

As seen from (3.9), the tensor [[F]] is a dyad, and the equal-
ity (3.7) follows from (3.9) and (3.10). Using (3.10) and the
relation [[ab]] = 〈a〉[[b]] + [[a]]〈b〉, where 〈a〉 = 1

2

(
a+ + a−

)
,

energy equation (3.6) can be written in the form

ρκcκ[[u]]+ 〈v〉 · [[Tκ]] ·nκ− cκhκ · 〈Tκ ·nκ〉+[[qκ]] ·nκ = 0 .

Based on the continuity of the stress vector, this expression
is transformed into the following:

ρκ[[u]] + c−1
κ [[qκ]] · nκ = hκ ·Tκ · nκ . (3.11)

Equation (3.8) yields the normal component of the heat flux
vector

[[qκ]] · nκ = −ρκcκ
(
δ∗ + [[θη]]

)
;

substituting this expression into (3.11) and using the formula
ψ = u− θη and the temperature continuity condition at the
interface, I obtain

[[ψ]] = ρ−1
κ hκ ·Tκ · nκ + δ∗ . (3.12)

Equation (3.12) shows that the free energy density jump as-
sociated with the phase transformation of a thermoelastic
material is equal to the sum of the dissipation δ∗ and the
work of the stress vector ρ−1

κ hκ ·Tκ · nκ on the strong dis-
continuity considered. Scalar equality (3.12) is an analogue
of the equality condition of chemical potentials in the classi-
cal theory of the phase equilibrium of a perfect liquid (gas)
[Gibbs, 1906; Landau and Lifshits, 1964]; however, they ba-
sically differ from each other because (3.12) is a continuity
condition imposed on the normal components of the chemi-
cal potential tensor:

nκ · [[χκ]] · nκ = 0,

χκ = ρκ(ψ − δ∗)I−
1

2
(FT ·Tκ + TT

κ · F) .
(3.13)

The equivalence of (3.12) and (3.13) can easily be shown tak-
ing into account the formula

hκ ·Tκ · nκ =
(
[[F]] · nκ

)
·Tκ · nκ = nκ · [[FT ]] ·Tκ · nκ

resulting from the definition of the hκ value and the relation

nκ ·
(
FT ·Tκ

)
· nκ =

1

2
nκ ·

(
FT ·Tκ + TT

κ · F
)
· nκ .

In relation to reversible phase transformations (δ∗ = 0),
the tensor χκ was considered in works [Bowen, 1964; Grin-
feld, 1990; Kondaurov and Nikitin, 1983; Mukhamediev,
1990; Truskinovskii, 1983] and is called the Lagrangian ten-
sor of the chemical potential. The integral mass balance
relation in the Eulerian variables has the form

d

dt

∫
χ(t)

ϕdV =

∮
∂χ(t)

n · ΦdS +

∫
χ(t)

ρfdV +

∫
S(t)

ρcξdS

ϕ =


ρ
0
ρu
FT

ρη

 , Φ =


−ρv
T

T · v + q
F⊗ v
q/θ

 ,

f =


0
b

b · v + r
0
r/θ

 , ξ =


0
0
0
0
δ∗

 ,

(3.14)

and includes integral continuity equation (2.10), the equilib-
rium equation ensuing from equation of motion (2.11), en-
ergy conservation law (2.12) in which the kinetic energy is
ignored, strain-velocity compatibility equation (2.13), and
the entropy rate equation. Here S(t) is the interface moving
at the velocity c = D − v · n relative to material particles,
D is the velocity of S(t) relative to the reference system and
n is the normal to the moving interface in a current config-
uration. Equation (3.14) yields the system of relations for
jumps at a strong discontinuity surface

ρc[[ϕ]] + n · [[Φ]] + ρcξ = 0 .

In the developed form, this system is written as

[[ρc]] = 0 , (3.15)

[[T]] · n = 0 , (3.16)

ρc[[u]] + [[v ·T + q]] · n = 0 , (3.17)

ρc[[FT ]] + n · [[ρF⊗ v]] = 0 , (3.18)

ρc[[θη]] + [[q]] · n + ρcδ∗ = 0 . (3.19)

Relation (3.15) is a consequence of the continuity equation
and represents the continuity condition of the mass flux.
Equality (3.16), resulting from the equilibrium equation, is
the continuity condition imposed on the stress vector and
written in terms of the symmetrical Cauchy stress tensor.

The Piola identity [Lurye, 1980] yields

∇ · (J−1F) = 0, J = detF ,

providing

[[J−1FT ]] · n = 0 (3.20)

on the strong discontinuity surface. Equation (3.18) can be
written in the form
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[[F]] = h⊗ J−1FT · n, h ≡ −ρκ[[v]]/(ρc) . (3.21)

Taking into account the continuity of the stress vector and
expression (3.21) for the strain gradient jump, equality (3.17)
is reduced to the form

ρc[[u]]− (ρc/ρκ)h ·T · n + [[q]] · n = 0 . (3.22)

Expressing with the help of (3.19) the jump in the normal
component of the heat flux vector through the entropy jump
and the dissipation density δ∗ and substituting the result
into (3.22), one obtains equation the equality equivalent to
(3.12)

[[ψ]] = ρ−1
κ h ·T · n + δ∗ . (3.23)

Equation (3.23) can also be written in terms of the con-
volution of a second-rank tensor with the normals n. To
demonstrate this, I multiply (3.23) by the scalar

(ρFT ·n)·(ρFT ·n) = ρ2n·F·FT ·n = ρ2n·B·n, B = F·FT ,

which is, due to (3.20), continuous at the strong discontinu-
ity surface. As a result, I obtain

[[(ρFT · n) · (ρFT · n)ρκψ]] =

= (ρFT · n) · (ρFT · n)h ·T · n + (ρFT · n) · (ρFT · n)ρκδ∗ .

Taking into account the definition of the vector h in (3.21)
implying that

h = ρκ[[F]] · (ρFT · n)/(ρ2n ·B · n) ,

the equality

n · [[χ]] · n = 0 ,

χ = (ψ − δ∗)J
−2B− 1

2ρκJ
(B ·T + T ·B)

(3.24)

is obtained for normal components of the tensor χ, which
may be called the tensor of Eulerian chemical potential. Us-
ing formula (2.17) it is easy to obtain the relation between
the tensors χ and χκ

χ = J−2F · χκ · FT

demonstrating the equivalence of the spatial (Eulerian) and
substantial (Lagrangian) descriptions of phase transitions in
nonlinear elastic media.

Note that the dissipation δ∗ entering in conditions (3.12)
and (3.23) and accounting for the effect of a singular en-
tropy source on the interface provides a means for a natu-
ral description of the hysteresis phenomenon associated with
the difference between thermodynamic conditions at which
direct and reverse phase transitions of the first order take
place in solids. Relation (3.12) yields

ψ(2)(θd)− ψ(1)(θd) = δ∗, ψ
(1)(θr)− ψ(2)(θr) = δ∗ ,

where θd and θr are the temperatures of direct and reverse
phase transitions, and ψ(1) and ψ(2) are free energies of the

first and second phases. Adding these two equalities shows
that θd > θr if ψ(2)(θ) in the temperature interval considered
increases more rapidly than ψ(1)(θ).

A recrystallization process plays a particular role among
phase transitions in solids. This phenomenon relates to
anisotropic solids and is a particular case of a phase transi-
tion when the initial and newly formed phases consist of the
same material whose particles, when crossing the interface,
undergo a finite deformation and a finite rotation changing
the spatial orientation of anisotropy axes. Some authors
[Grinfeld, 1990] define recrystallization as “a process chang-
ing all of the nearest neighbors of material particles,” im-
plying that the mapping of the reference configuration onto
the actual configuration is no longer a one-to-one mapping.
As before, in this case attempts to analyze incoherent phase
transitions in terms of the quasi-thermostatic model of a
thermodynamic body encounter the problem of high tan-
gential accelerations of a material particle arising when it
crosses a moving interface on which slip motions changing
neighbors take place. In my opinion. such a definition is
hardly suitable for the formulation and analysis of problems
involving movable phase boundaries.

I should note that the requirement of a finite deformation
accompanying a finite rotation of particles is essential for the
recrystallization definition used here. Actually, let rotations
of particles be finite and let deformations be small, i.e. the
tensor F has the form

F = R ·U = R · (I + eκ) ,

where eκ is a tensor of small strain of the order of O(δ) with
a small parameter δ � 1, and R is an orthogonal tensor of
finite rotation. Then, accurate to the terms O(δ2), the value
B is determined by the expression

B = F · FT = R · (I + 2eκ) ·RT = I + 2e ,

where e = R · eκ ·RT is the strain tensor of the order O(δ).
Using relation (3.21) for the strain gradient jump and the
formula [[ab]] = a[[b]] + [[a]]b+ [[a]][[b]], I obtain

2[[e]] = [[F]] · FT + F · [[FT]] + [[F]] · [[FT]] =

= J−1h⊗n ·F ·FT +J−1F ·FT ·n+J−2(h⊗h)n ·F ·FT ·n .

Taking into account that J = detF = 1 + I1(e) + O(δ2),
F · FT = I + 2e this relation can be reduced to the form

2[[e]] = −2{h⊗ e · n + e · n⊗ h + (n · e · n)h⊗ h} −

− I1(h⊗ n + n⊗ h + 2h⊗ h) +

+ (h⊗ n + n⊗ h + h⊗ h) +O(δ2) .

Since the left-hand side and two terms on the right of this
equation are of the order O(δ), the third term on the right
must have the same order:

h⊗ n + n⊗ h + h⊗ h = O(δ) .

This gives the relations

h + (h · n)n + (h · n)h = O(δ),
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2(h · n) + (h · n)2 = O(δ) .

The second equation has the solutions (h · n) = O(δ) and
(h · n) = −2 +O(δ). Substituting the solution h · n = O(δ)
into the first equation gives the value h = O(δ) correspond-
ing to a small jump in the rotation of a material element
at the phase boundary. The solution (h · n) = −2 + O(δ)
describes a finite rotation jump, but this solution is unac-
ceptable because formula (3.20), which is a consequence of
the Piola identity, yields [[FT ]] · n = O(δ) if the relation
F = R · U = R · (I + eκ) is taken into account. Hence, I
obtain

(h · n)FT · n = O(δ) .

The vector FT ·n is not identically zero, because otherwise a
nontrivial solution of the homogeneous nondegenerate linear
system FT · n = 0, detF 6= 0, should exist, implying that
(h · n) = O(δ); i.e. the theory of recrystallization is neces-
sarily a finite strain theory.

4. Clapeyron-Clausius Equations

I consider the system of equations consisting of the con-
dition of stress vector continuity (3.5) and free energy jump
condition (3.12):

T(2)
κ

(
F(2), θ

)
· nκ −Tκ(F, θ) · nκ = 0,

ψ(2)
(
F(2), θ

)
− ψ(F, θ) = ρ−1

κ hκ ·Tκ · nκ + δ∗ .

The superscript “2” indicates here values characterizing the
second phase, and the first phase is not indexed for brevity.
With regard for dyadic form (3.9) of the jump [[F]] and tem-
perature (θ) continuity condition (3.1), this system can be
written in the form

Φ0(θ,hκ,F,nκ) ≡ ψ(2)(θ,hκ,F,nκ) −
− ψ(θ,F)− ρ−1

κ hκ ·Tκ · nκ − δ∗ = 0 ,

Φ(θ,hκ,F,nκ) ≡ T
(2)
κ (θ,hκ,F,nκ) · nκ −

− Tκ(θ,F) · nκ = 0 .

(4.1)

With given values of F and nκ, relation (4.1) can be regarded
as a system of scalar and vector equations determining the
temperature θ and the vector hκ. Using relation (2.6), which
connects the stress tensor and entropy density with the free
energy function, and the formula ∂F

(2)
ij /∂hκa = δianκj re-

sulting from (3.9), the necessary condition of the solvability
of such a system can be written as

∂(Φ0,Φ)

∂(θ,hκ)
= Mdet

(
nκ ·

∂2ψ(2)

∂F(2) ⊗ ∂F(2)
· nκ

)
6= 0,

M = ρκ[[η]] + hκ ·
∂Tκ

∂θ
· nκ .

This condition holds true if strong ellipticity condition (2.14)
is valid for the newly formed phase and if M 6= 0. System
(4.1) implies that the temperature θ of a quasi-static phase
transition in a thermoelastic material is a function of the

deformation of the initial phase and orientation of the inter-
face:

θ = θ(F,nκ) .

This circumstance determines the basic distinction of phase
transitions in a solid from those in an ideal liquid, in which
the melting (evaporation) temperature depends on the pres-
sure alone and is determined by the Clapeyron-Clausius
equation [Landau and Lifshits, 1964]:

dθ/dp = θ[[V ]]/Q , (4.2)

where Q = θ[[η]] is the phase transition heat and [[V ]] the
jump of the specific volume V = 1/ρ. An analogue of (4.2)
in a thermoelastic body is the equation{

ρκ[[η]] + hκ ·
∂Tκ

∂θ
· nκ

}
∂θ

∂F
=

= [[Tκ]]− hκ ·
∂Tκ

∂F
· nκ

(4.3)

describing the differential dependence of the phase transition
temperature on the initial phase strain F with a fixed normal
nκ to the interface.

To derive this equation, I differentiate the first equation in
(4.1) with respect to F at nκ = const. Since hκ = hκ(F,nκ),
θ = θ(F,nκ), I obtain

∂ψ(2)

∂F
(2)
ij

∂F
(2)
ij

∂Fab
+
∂ψ(2)

∂θ

∂θ

∂Fab
− ∂ψ

∂Fab
− ∂ψ

∂θ

∂θ

∂Fab
=

= ρ−1
κ
∂hκi

∂Fab
Tκijnκj +

+ ρ−1
κ hκi

(
∂Tκij

∂Fab
+
∂Tκij

∂θ

∂θ

∂Fab

)
nκj .

Formulas (2.6) and (2.17), stress vector continuity condition
(3.5) and the formula

∂F
(2)
ij /∂Fab = δiaδjb + nκj∂hκi/∂Fab

resulting from (3.9) provide the sought-for equation (4.3).
Another equation, representing a new relation in the the-

ory of phase transformations in continua and determining
the differential dependence of the phase transition temper-
ature on the interface orientation at a fixed strain of the
initial phase F, has the form{

ρκ[[η]] + hκ ·
∂Tκ

∂θ
· nκ

}
∂θ

∂nκ
= hκ · [[Tκ]] . (4.4)

Relation (4.4) is obtained by differentiating the first equa-
tion in system (4.1) with respect to the vector nκ at a fixed
value of the tensor F. Taking into account (2.6) and (2.17),
this yields

T
(2)
κij

∂F
(2)
ij

∂nκa
+ ρκ[[η]]

∂θ

∂nκa
=

=
∂hκi

∂nκa
Tκijnκj + hκi

∂Tκij

∂θ

∂θ

∂nκa
nκj + hκiTκia .



94 kondaurov: thermomechanics of phase transitions of the first order in solids

Using condition (3.5) and the equality ∂F
(2)
ij /∂nκa =

hκiδaj + nκa∂hκi/∂nκa resulting from (3.9). The equation
in question is obtained.

Equations (4.3) and (4.4) hold in a thermoelastic mate-
rial with an arbitrary type of symmetry. Now I address
a thermoelastic material both phases of which are initially
isotropic. The kinematic characteristic of a phase transi-
tion U0 in such a material is an isotropic tensor determined
by the ratio of phase densities in natural configurations at
a temperature θ0. In this case, symmetry groups of the
initial and newly formed phases in the natural initial state
coincide with the proper orthogonal group. The reference
configurations κ are undistorted for both phases; these are
the natural configuration for the first phase and a configu-
ration characterized by an initial isotropic stress tensor for
the second phase. The constitutive equations can be written
as relations (2.7).

Equation (4.3) containing nine independent components
∂θ/∂F is reduced in the medium under consideration to a
symmetrical tensor equation for the derivative ∂θ/∂B, and
relation (4.4) is transformed into an equation for the deriva-
tive ∂θ/∂n. This statement becomes evident if one considers,
rather than system (4.1), stress vector continuity condition
(3.16) and energy jump relation (3.23) in the Eulerian vari-
ables:

T(2)
(
B(2), θ

)
· n = T(B, θ) · n,

ψ(2)
(
B(2), θ

)
− ψ(B, θ) = ρ−1

κ h ·T(B, θ) · n + δ∗ .

This immediately implies that the phase transition temper-
ature is θ = θ(B,n).

In order to write equations (4.3) and (4.4) in the Eule-
rian variables, the following relations resulting from formulas
(3.9) and (3.21) are utilized:

F(2) = F + h⊗ J−1FT · n,
hκ = (ρc/ρκcκ)h,

nκ = (ρκcκ/ρc)J
−1FT · n .

(4.5)

Using (4.5) and relations (2.17) between the Cauchy and
Piola-Kirchhoff stress tensors, equation (4.4) can be written
in the form

J
{
ρκ[[η]] + h · ∂T

∂θ
· n

}
∂θ

∂n
= h · [[JT · F−1T ]] · FT .

Taking into account formula (3.21) for a jump in the tensor
F and the continuity of the stress vector, the right-hand side
of this equation can be transformed as follows:

[[JT · F−1T ]] · FT = (JT · F−1T )(2) · (FT )(2) −
− (JT · F−1T )(2) · (J−1FT · n)(2) ⊗ h −
− JT · F−1T · FT = [[JT]]−T · n⊗ h ,

(4.6)

which finally yields

J
{
ρκ[[η]] + h · ∂T

∂θ
· n

}
∂θ

∂n
=

= [[JT]] · h− (h ·T · n)h .

(4.7)

In the classical case of the phase equilibrium of an ideal
liquid with the stress tensor T = −p(V, θ)I, V = J/ρκ =
1/ρ, the derivative ∂θ/∂n is identically zero. Actually, due
to the continuity of pressure at the interface, the right-hand
side of equation (4.7) is written in this case as p(h · n −
[[J ]])h. This value vanishes because condition of the mass
flux continuity (3.15) implies that

[[V ]] = [[1/ρ]] = [[c]]/(ρc) = −[[v]] · n/(ρc) .

Taking into account the second formula in (3.21), I obtain

h · n = ρκ[[V ]] = [[J ]] . (4.8)

This immediately proves the above statement.
If both phases of an initially isotropic thermoelastic mate-

rial are solid, an interface orientation providing an extremum
of the phase transformation temperature exists at a fixed
strain state of the initial phase. This extreme value is at-
tained if one of the principal axes of the finite strain tensor
B (or any other tensor coaxial with B) coincides with the
normal n to the interface. Actually, let

B = B0n⊗ n +Bαβeα ⊗ eβ , α, β = 1, 2 , (4.9)

where eα are unit vectors of the principal axes of the ten-
sor B that lie in the plane tangent to the interface. On
the strength of polynomial representation (2.7), the Cauchy
stress tensor of an initially isotropic medium has the same
structure:

T = Tnnn⊗ n + Tαβeα ⊗ eβ , α, β = 1, 2 . (4.10)

As follows from the continuity of the stress vector [[T]] ·
n = 0, the Cauchy stress tensor has the same structure in
the second phase as well:

T(2) = Tnnn⊗ n + T
(2)
αβ eα ⊗ eβ .

In materials with a one-to-one correspondence between the
tensors T(2) and B(2), this yields

B(2) = B(2)
nnn⊗ n +B

(2)
αβeα ⊗ eβ .

Hence,

[[B]] = [[Bnn]]n⊗ n + [[Bαβ ]]eα ⊗ eβ . (4.11)

For the strain state under consideration, the first relation
in (4.5) yields

[[B]] = b(n⊗ h + h⊗ n + J−1h⊗ h),

b = J−1B · n = bn, b = J−1B0 .

Representing the vector h as the sum of normal and tangen-
tial components,

h = hnn + hαeα, hn = h · n, hα = h · eα, α = 1, 2 ,

and substituting it into the preceding relation, I find

[[B]] = bhn

(
2 + J−1hn

)
n⊗ n +
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+ b
(
1 + J−1hn

)
hα (n⊗ eα + eα ⊗ n) +

+ J−1hαhβeα ⊗ eβ .

Comparison of this formula with (4.11) shows that h = hn,
where h = ρκ[[V ]] = [[J ]] due to (4.8). This also yields
[[Bαβ ]] = 0, i.e. all components of the tensor B, except for
the normal component Bnn, are continuous at the interface.
I emphasize that the continuity of the components Bαβ is
valid for the state (4.9) considered, but they are discontinu-
ous in the general case.

The substitution of the vector h = hn into (4.7) makes
the derivative ∂θ/∂n equal to zero, which corresponds to a
phase transition temperature extremum in deformed state
(4.9).

If the phase is a thermoelastic liquid, its constitutive equa-
tions are invariant under unimodular (not changing the den-
sity) transformations of the reference configuration. I.e. in
considering a solid-liquid phase transition, one may always
assume, without loss of generality, that h = hn, which makes
the derivative ∂θ/∂n equal to zero. In other words, if one of
the phases of an initially isotropic nonlinear elastic material
is a liquid, the phase transition temperature does not depend
on the orientation of the interface. This statement justifies,
to an extent, the applicability of the classical theory to the
description of melting in solids and shows that solid effects
affect only slightly the pattern of this process.

The equation determining the phase transformation tem-
perature as a function of the extension of the initial phase
has the form

2
{
ρκ[[η]] + h · ∂T

∂θ
· n

}
∂θ

∂B
·B =

= (n⊗ h ·T−T · n⊗ h) +

+ (I + n⊗ J−1h) · ([[JT]]− (h ·T · n)I) −
− 2(n⊗ h) : L ·B ,

(4.12)

where L = ∂T/∂B is the fourth-rank tensor of elastic mod-
uli.

Equation (4.12) is derived as follows. Using (4.5) and
substituting the relation Tκ = JT ·F−1T between the stress
tensors into (4.3), I obtain{

ρκ[[η]] + h · ∂T
∂θ

· n
}
∂θ

∂F

∣∣∣
nκ

=

− [[JT · F−1T ]]− (h⊗ J−1FT · n) :
∂

(
JT · F−1T

)
∂F

.

The derivative of the phase transition temperature with re-
spect to the tensor F at nκ = const is

∂θ
(
B,n(F,nκ)

)
∂Fab

∣∣∣∣∣
nκ

=
∂θ

∂Bij

∣∣∣∣
n

∂Bij

∂Fab
+

∂θ

∂ni

∣∣∣
B

∂ni

∂Fab
=

= 2
∂θ

∂Baj

∣∣∣∣
n

Fjb − na
∂θ

∂ni

∣∣∣
B

F−1T
ib .

In deriving this equation, I used the formula ∂F−1T
is /∂Fab =

−F−1T
ib F−1T

as obtained by differentiating the identity

F−1
si Fik = δsk with respect to Fab. Substituting this ex-

pression into the preceding relation gives the equation

2
{
ρκ[[η]] + h · ∂T

∂θ
· n

}
∂θ

∂B

∣∣∣
n
· F =

=
(
I + n⊗ J−1h

)
· [[JT · F−1T ]] −

−
(
h⊗ J−1FT · n

)
:
∂

(
JT · F−1T

)
∂F

.

Writing out the derivative in the last term, taking into ac-
count the formulas

∂J

∂F
= JF−1T ,

∂F−1T
is

∂Fab
= −F−1T

ib F−1T
as ,

∂Tik

∂Fab
= 2

∂Tik

∂Bam
Fmb ,

and scalarly multiplying the equation to the right by the
tensor FT , I obtain

2
{
ρκ[[η]] + h · ∂T

∂θ
· n

}
∂θ

∂B
·B =

=
(
I + n⊗ J−1h

)
· [[JT · F−1T ]] · FT −

− (h ·T · n)I + n⊗ J−1h ·T + 2(h⊗ n) : L ·B .

Using formula (4.6) and collecting similar terms yield the
desired equation (4.12).

In the case of deformed state (4.9) with the shear strain
and stress vanishing on the interface, equation (4.12) is re-
duced to the two simpler relations(

[[η]] + [[V ]]
∂Tnn

∂θ

)
∂θ

∂B0
= −[[V ]]

∂Tnn

∂B0
, (4.13)

(
[[η]] + [[V ]]

∂Tnn

∂θ

)
∂θ

∂Bαβ
=

=
1

2
[[V (Tαγ − Tnnδαγ)]]B−1

γβ −[[V ]]βMNB
M
0 BN

αβ

α, β, γ = 1, 2, M,N = 0, 1, 2 ,

(4.14)

where

βM0 =
(
∂

∂I1
+ I1

∂

∂I2
+ I2

∂

∂I3

)
βM ,

βM1 = −
(
∂

∂I2
+ I1

∂

∂I3

)
βM , βM2 =

∂βM

∂I3
.

In order to demonstrate this, I note that formulas (4.10) and
(4.11) yield

[[JT]] = [[J ]]Tnnn⊗ n + [[JTαβ ]]eα ⊗ eβ ,

eα · n = 0, α, β = 1, 2 .

Since h = [[J ]]n for the strain under consideration, I obtain
h ·T · n = [[J ]]Tnn. Hence, the first term on the right-hand
side of (4.12) is equal to [[J(Tαβ − δαβTnn)]]eα ⊗ eβ , and
the second term vanishes due to (4.9) and collinearity of the
vectors h and n. The last term is equal to

−2[[J ]]
{(
β1 + 2β2B0 + βIJB

I+J
0

)
n⊗ n +
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+ βIJB
I
0B

J
αβeα ⊗ eβ

}
·B , I, J = 0, 1, 2 .

These expressions can be obtained by differentiating poly-
nomial representation (2.7) of the Cauchy stress tensor with
due regard for definition (2.8) of the principal invariants
Ik(B), k = 1, 2, 3, and the Hamilton-Cayley theorem [Lurye,
1980]:

∂Tij

∂Bab
= BM

ij
∂βM

∂Bab
+ β1

∂Bij

∂Bab
+ β2

∂ (BikBkj)

∂Bab
=

= βMNB
M
ij B

N
ab +

1

2
β1 (δiaδjb + δibδia) +

+ β2 (δiaBjb + δibBja + δjbBia + δjaBib)

i, j, a, b = 1, 2, 3; M,N = 0, 1, 2 .

Since in the case of deformation (4.9) the value(
β1 + 2β2B0 + βIJB

I+J
0

)
is equal to ∂Tnn/∂B0, relations

(4.13) and (4.14) are proven.

5. Linear, Initially Isotropic Thermoelastic
Material

As an example, also interesting on its own, I address the
first-order phase transition in an initially isotropic thermoe-
lastic solid with small deformations and small deviations of
temperature from its initial value. Let κ be the undistorted
reference configuration of a material element in the initial
phase state. As a reference configuration of this element in
the other phase state, the same configuration κ, which will
also be undistorted due to the isotropy of the medium, is
used. The temperature of the material in κ is set equal to
θ0 and its mass density is denoted as ρκ. The initial state
of the first phase is regarded as a natural (unstressed) one,
and the second phase in the configuration κ is characterized
by an isotropic initial stress state T0 = −p0I. Deformations
of each phase measured from the configuration κ and tem-
perature variations are set to be small. A constant singular
source of entropy is assumed. The free energy density is
smooth in the vicinity of the initial state of each phase and
can then be written accurate to second-order terms in the
form

ρκψ
(n) = ρκψ

(n)
κ − ρκη

(n)
κ ϑ −

− p
(n)
κ I

(n)
1 +

1

2
λ(n)(I

(n)
1 )2 +

+ µ(n)(e : e)(n) − α(n)I
(n)
1 ϑ− 1

2θ0
c(n)ϑ2 ,

(5.1)

where n = 1, 2, is the number of phase; e is the small strain
tensor; I1 = I : e, ϑ = θ− θ0, ϑ/θ0 � 1; and the coefficients

ψ
(n)
κ , p

(n)
κ , η

(n)
κ , c(n), α(n), λ(n) and µ(n) are functions of the

temperature θ0. The entropy density and stress tensor in
such a material are written in the form of linear relations:

ρκη
(n) = ρκη

(n)
κ + α(n)I

(n)
1 + c(n)ϑ/θ0,

T(n) =
(
λ(n)I

(n)
1 − p

(n)
κ − α(n)ϑ

)
I + 2µ(n)e(n) .

(5.2)

They suggest that λ(n) and µ(n) are the Lame coefficients,

α(n) is the thermal expansion coefficient, c(n) is the heat ca-
pacity, and the values ψ

(n)
κ , η

(n)
κ and p

(n)
κ characterize the free

energy, entropy and pressure in the initial states. I assume
p
(2)
κ = p0, ψ

(2)
κ = ψ0, η

(2)
κ = η0 and p

(1)
κ = ψ

(1)
κ = η

(1)
κ = 0.

Relations (5.2) show that the approximation of small defor-
mations is valid if the initial pressure is small compared to
the elastic moduli.

As follows from second relation in (5.2), the jump in the
stress tensor at the interface has the form

[[T]] =
{
λ(2)(h · n) + Λσ0

}
I +

+ µ(2)(h⊗ n + n⊗ h) + 2µ∗Λe

λ∗ = [[λ]]/Λ, µ∗ = [[µ]]/Λ, p∗ = p0/Λ, α∗ = [[α]]/Λ,

Λ = λ(2) + 2µ(2), σ0 = λ∗I1 − p∗ − α∗ϑ .

(5.3)

Using the stress vector continuity condition [[T]] · n = 0, I
obtain

h = −(σ0 + 2µ∗n · e · n)n− 2µ∗lm ,

l = Λ/µ(2), m = {I− n⊗ n} · e · n, m · n = 0 ,
(5.4)

where m is the component of the vector e ·n tangent to the
interface.

Now I address relation (3.23) determining the jump in
the free energy density; for the subsequent analysis, (3.23)
is convenient to use in the form

[[ψ]] = ρ−1
κ h ·T(2) · n + δ∗ . (5.5)

Taking into account the relations

[[I2
1 ]] = 2I

(2)
1 h · n− (h · n)2 ,

[[e : e]] = 2(h · e · n) +
1

2

(
(h · h) + (h · n)2

)
p0I

(2)
1 = p0I1 + p0(h · n) ,

1

2
[[λI2

1 ]] = λ(2)I
(2)
1 (h · n)− 1

2
λ(2)(h · n)2 +

1

2
[[λ]]I2

1

[[µe : e]] = 2µ(2)(h · e · n) +

+
1

2
µ(2)(h · h) +

1

2
µ(2)(h · n)2 + [[µ]]e : e,

[[αI1]]ϑ = α(2)ϑ(h · n) + [[α]]I1ϑ

and formula (5.4), equality is reduced to the form

ψ∗ − η∗ϑ− p∗I1 +
1

2
λ∗I

2
1 + µ∗e : e− α∗I1ϑ −

− 1

2
c∗ϑ

2
=

1

2
(h · n)2 + 2µ2

∗l(m ·m)

ϑ = ϑ/θ0, ψ∗ = ρκ(ψ0 − δ∗)/Λ,

η∗ = ρκη0θ0/Λ, c∗ = [[c]]θ0/Λ .

(5.6)

Taking into account expression (5.4) for the vector h,
equation (5.6) implies that, if the dimensionless entropy
jump is η∗ = O(1), the phase transition temperature is

ϑ = ψ∗/η∗ +O(δ2) ;
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i.e. it is only determined by the ψ∗ and η∗ values and by
the dissipation δ∗. The incorporation of terms on the order
of O(δ2) is unreasonable in the approximation considered,
because equations (5.2) are written accurate to the terms of
the second order of smallness.

In the case η∗ = O(δ) the phase transition temperature
appreciably depends on the strain tensor of the initial phase
and the orientation of the normal to the interface relative
to the principal axes of the tensor e. Before examining this
dependence, note that the difference between thermoelastic
coefficients of the phases can be, generally speaking, rather
large [Babichev et al., 1991]. Therefore, I consider the fol-
lowing case:

λ∗ = O(1), µ∗ = O(1), α∗ = O(1), c∗ = O(1), p∗ = O(δ) .

In accordance with (5.3) and (5.5), the equation for the
phase transition temperature derivative with respect to the
vector normal is written in this approximation as

M∂ϑ/∂n = −4µ∗ (σ0 + 2µ∗enn)m −

− 4µ2
∗l (e ·m− ennm− (m ·m)n) .

This implies, according to the general theory, that the
phase transition temperature at a fixed strain of the initial
phase assumes an extreme value if the normal to the interface
coincides with a principal axis of the strain tensor,

e = e0n⊗ n + eαβeα ⊗ eβ , (5.7)

because m = 0 at such a strain and therefore ∂ϑ/∂n = 0.
The type of the extremum is determined by the matrix
∂2ϑ/∂n⊗ ∂n at strain (5.7).

The equation for the phase transition temperature deriva-
tive with respect to the strain tensor is written as

M∂ϑ/∂e = (σ0 + λ∗h · n) I +

+ 2µ∗e + µ∗(h⊗ n + n⊗ h) .
(5.8)

Equation (5.8) leads to an important general statement
concerning the phase transition pattern in the material con-
sidered: an increase in the volume strain changes the type of
the phase transformation in a linear thermoelastic solid, i.e.
a normal phase transition changes to an anomalous trans-
formation and vice versa. Of course, this refers to materials
in which the phase transition is accompanied by a change
in the elastic moduli comparable with their values, and the
difference between the initial entropies is on the order of
η∗ = O(δ). The aforementioned effect is solely due to the
solid-state properties of the material (the presence of a stress
deviator and its effect on the equilibrium state energy of the
medium).

Actually, at a fixed normal and a constant intensity of
shear strain, I2 = (e′ : e′)1/2 = const, where e′ = e−1/3I1I
is the strain tensor deviator, the phase transition tempera-
ture derivative with respect to the first invariant is

M∂ϑ/∂I1 = (1−K∗)(K∗I1 − p∗ − α∗ϑ) −

− 2µ∗K∗n · e′ · n, K∗ = λ∗ + 2µ∗/3 .

The right-hand side of this equation vanishes if the strain
tensor component normal to the phase boundary is con-
nected with the two other diagonal components through the
relation

K∗ (e11 + e22 + e33)− p∗ − α∗ϑ(e,n) =

=
2µ∗K∗

1−K∗

(
2

3
e11 −

1

3
(e22 + e33)

)
.

Such a strain tensor provides a phase transition tempera-
ture extremum with respect to I1. If the thermal expansion
coefficients α∗ = O(δ) differ only slightly, this relation can
be written, accurate to the first-order terms, in the explicit
form

e11 =
p∗
K∗

1−K∗

1− Λ∗
− 1− λ∗

1− Λ∗
(e22 + e33) ,

Λ∗ = λ∗ + 2µ∗ .

(5.9)

In the case of uniform extension (compression), when the
deviator e′ vanishes, this relation has a particularly simple
form:

e11 = e22 = e33 = p∗/3K∗ .

In the general case, deformations providing an extremum
of the phase transition temperature are determined by the
solution of the system consisting of equation (5.9) and the
condition e′ : e′ = const (a constant shear intensity).

6. Effects of Stress Relaxation

Now I analyze, following the work [Kondaurov and Nikitin,
1986], some characteristics of phase transformations accom-
panied by stress relaxation in the solid phase. The solid
phase is described in terms of the model of a viscoelastic
medium of the relaxation type. In this case, the state of a
material particle is determined by its deformation, tempera-
ture, temperature gradient and viscous deformation, and the
system of relations governing the material response includes
a viscous law in addition to expressions for the thermody-
namic potential, stress tensor and heat flux. Below I restrict
myself to the simplest case of an initially isotropic viscoelas-
tic material of the solid phase. Moreover, the medium is
supposed to be a perfect, plastically incompressible mate-
rial. Such a model has the following implications. The gra-
dient F of the transformation mapping a neighborhood of a
material element X from the initial configuration κ into the
actual configuration χ(t) can be represented as the compo-
sition [Kondaurov and Nikitin, 1990; Lee, 1969]

F = FE · Fp, detFE 6= 0, detFp 6= 0 (6.1)

of the gradients of the nondegenerate transformations κ →
κp(X, t) and κp(X, t) → χ(t) mapping the reference config-
uration κ into an intermediate (instantly unloaded) config-
uration κp(X, t) which in turn is mapped into χ(t). The
inelastic volume strain is detFp = 1. Rheological relations
constituting a system of equations of state and kinetic equa-
tion of viscous deformations can be written in the form
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ψ = ψ {Be, θ} , T = 2ρ
∂ψ

∂Be
·Be,

η = −∂ψ
∂θ

, q = q {Be, θ,∇θ}
(6.2)

Dp = Ψ {Be, θ} , (6.3)

where ψ {Be, θ} and q {Be, θ,∇θ} are isotropic functions of
the free energy and heat flux vector;

Dp =
1

2
Re ·

(
U̇p ·U−1

p + U−1
p · U̇p

)
·RT

e (6.4)

is the symmetrical tensor of viscous strain rate, Be = V2
e is

the symmetrical, positively definite tensor of elastic strain;
Ik(Be), k = 1, 2, 3, are the principal invariants of the tensor
Be;

FE = RE ·UE , Fp = Rp ·Up,

F ·U−1
p = Re ·Ue = Ve ·Re

(6.5)

are the polar decompositions into orthogonal and symmet-
rical, positively definite tensors, from which the following
relations are derived using composition (6.1):

Re = RE ·Rp, Ue = RT
p ·UE ·Rp,

Ve = RE ·Ue ·RT
E

(6.6)

Constitutive equations (6.2)–(6.3) are necessary and suffi-
cient in order that (i) the Clausius-Duhem inequality hold
true in all smooth processes of deformation and temperature
variation; (ii) the equations be independent of the choice of
the reference system; (iii) the equations be invariant un-
der orthogonal transformations of the unloaded configura-
tion κp(X, t) of an infinitely small material element X; (iv)
the equations be invariant under arbitrary unimodular trans-
formations of the initial configuration.

Since Up is a symmetrical, positively definite tensor, re-
lations (6.3)–(6.4) can be resolved with respect to U̇p. This
means that the flow law can be written in the form

U̇p = Φ {Be,Re,Up, θ} . (6.7)

Relation (6.7) is the divergent equation describing the elastic
strain variation rate in the Lagrangian (material) variables
X. The divergent form of equation (6.7) in the Eulerian
(spatial) variables is

∂ρUp

∂t
+∇ · (ρv ⊗Up) = ρΦ {Be,Re,Up, θ} (6.8)

This equation is readily obtained by adding relation (6.7)
multiplied by mass density ρ and continuity equation (2.10)
multiplied by the tensor Up. Relation (6.7) or (6.8) implies
that

[[Up]] = w∗ (6.9)

at the interface, which is a strong discontinuity surface; here

w∗ is the intensity of a singular source of inelastic defor-
mations on the interface. This value determines the jump
in the viscous strain of a material particle crossing the in-
terface and is one of the factors controlling the stress drop
associated with the formation of a new phase and the value
of the singular dissipation source in equation (3.12). The
value w∗ is one of rheological characteristics that are preset
in the model of the quasi-static phase transition in solids.

To illustrate the properties inherent in phase transforma-
tions during stress relaxation in the solid phase, I consider
the problem of melting of a viscoelastic solid layer. Let an
unstressed layer of a constant thickness b occupy the region
0 ≤ x ≤ b in the initial state (the axis x = x1 is perpendic-
ular to the layer boundaries, and the axes x2 and x3 lie in
the boundary plane x1 = 0). The temperature of the ma-
terial θ0 is below the melting temperature in the absence of
stresses. The boundary x = 0 is fixed and its temperature
is maintained constant and equal to θ0 at t ≥ 0. A con-
stant normal compressive stress −σ0, σ > 0, is applied to
the boundary x = b at the time t = 0, and the temperature
of the medium increases to a value θ1 = const > 0 at which a
part of the layer adjacent to the boundary x = b melts. The
boundary of the melting region is found from the solution of
the problem. Mass forces and distributed heat sources are
neglected.

The temperature distribution in the solid phase and melt
is assumed to be linear across the layer:

ϑ(x) ≡ θ(x)− θ0 = mx, m = (θ1 − θ0)/b > 0 .

This assumption implies that the heat conductivity of the
material is so high that the characteristic time of the tem-
perature buildup is negligibly small compared to the stress
relaxation time.

I assume that deformations due to compression, heating
and melting are small. The solid phase is modeled by a
homogeneous isotropic perfect viscoelastic material with the
density ρs and temperature θ0 in the natural initial state
κs. The free energy density of the solid phase occupying the
region 0 ≤ x ≤ a(t) can be written as

ρψs =
1

2
λI2

1 + µJ − αsI1ϑ−
1

2
γsϑ

2 , (6.10)

where I1 = e
(e)
kk and J = e

(e)
ij e

(e)
ij are the first and sec-

ond invariants of the elastic strain tensor e(e), ϑ = θ − θ0,
ϑ/θ0 � 1, is the temperature variation, λ(θ0) and µ(θ0) are
elastic moduli, αs(θ0) is the coefficient of thermal expansion,
and γs(θ0) is the heat capacity (accurate to the multiplier
θ0). The difference between the densities in the reference
and actual configurations is ignored due to the smallness of
deformations. As follows from (6.10), the stress tensor and
entropy density in the solid phase have the form

T = (λI1 − αsϑ)I + 2µe(e), ρsη = αsI1 + γsϑ . (6.11)

The complete strain tensor e is the sum of the elastic (e(e))
and viscous (e(p)) strain tensors:
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e = e(e) + e(p) =
1

2

(
∇⊗ u +∇⊗ uT

)
, (6.12)

where u is the vector of displacement from the initial state
to the current state.

The variation rate of the viscous strain e(p) is determined
by viscous flow law (6.3); within the framework of the as-
sumptions adopted, the latter reduces to the relation

ė(p) =
S

2µτ
=

1

τ

(
e(e) − 1

3
I1I

)
, (6.13)

where S = T −1/3(T : I)I is the stress tensor deviator and
τ(θ0) > 0 is the relaxation time.

The natural (unstressed) reference configuration κf of the
body in the liquid state with the temperature θ0 is repre-
sented by a plane layer of the density ρf . The phase density
difference is set to be small: (ρs − ρf )/ρs � 1. Due to
the similarity between ρs and ρf , the melted layer thickness
bf = b(ρs/ρf )1/3 differs only slightly from b. Using the con-
figuration κs of the layer in the solid state as a reference
configuration with initial stresses for the melt, the free en-
ergy density of the liquid occupying the region a(t) ≤ x ≤ b
can be written as

ρψf = ρψ∗ − ρη∗ϑ− p∗I1 +

+
1

2
KfI

2
1 − αfI1ϑ−

1

2
γfϑ

2 ,
(6.14)

where γf , αf and Kf are functions of θ0, and the value
I1 = 1 − ρ/ρs determines the volume strain in the melt
measured from the configuration κs. The value ψ∗ is the
difference between the phase potentials in the configuration
κs, and T∗ = −p∗I is the tensor of “initial” stresses in the
melt occupying the region κs. If the initial density of the
solid phase exceeds the melt density (ρs > ρf ), we have
p∗ > 0, i.e. the melt should be compressed in order to make
the solid and liquid phase densities equal to each other, and
vice versa, p∗ < 0 if ρs < ρf . The dependences of pressure
and entropy density on mass density and temperature of the
melt as determined by (6.14) have the form

p = p∗ + αfϑ−KfI1, ρfη = ρfη
∗ + αfI1 + γfϑ . (6.15)

This implies that Kf is the bulk modulus, αf is the thermal
expansion coefficient and γf is the heat capacity of the liquid
phase (accurate to the multiplier θ0).

Let u(x, t) be the material particle displacement along
the x axis. All other components of the displacement vector
in both phases are set equal to zero. Then, the nonzero
component of the complete strain tensor is

e11(x, t) = ∂u(x, t)/∂x = u′(x, t) .

The equilibrium equation ∂p/∂x = 0 and the boundary
condition p(b, t) = σ0 yield

p(x, t) = σ0 .

Substituting this expression into the first formula in (6.15)
and integrating in x, I obtain

ū′(x, t) = Mf x̄+ p̂− σ̂, (6.16)

ū(x, t) =
1

2
Mf x̄

2 + (p̂− σ̂)x̄+ U(t),

p̂ =
p∗

Kf
, σ̂ =

σ0

Kf
, Mf =

mαfb

Kf
,

(6.17)

where x̄ = x/b and ū = u/b are the dimensionless coordi-
nate and displacement, and U(t) is an unknown function of
time determined from the solution of the problem. The free
energy density of the melt is then reduced to the form

ρψf

Kf
= ψ̂ − η̂x̄− 1

2
Gf x̄

2

ψ̂ =
ρψ∗

Kf
+

1

2

(
σ̂2 − p̂2

)
, η̂ =

ρη∗mb

Kf
+ p̂Mf ,

Gf =
γfm

2b2

Kf
+M2

f .

(6.18)

Now I consider the equations for the solid phase under
conditions of the uniaxial strain

e = u′(x, t)e1 ⊗ e1 ,

where e1 is the basis vector of the Cartesian coordinates xi.
Taking into account the symmetry of the problem about the
x axis and the zero value of the inelastic volume strain, the
viscous strain tensor can be written as

e(p) = π(x, t)
(
2e1 ⊗ e1 − (e2 ⊗ e2 + e3 ⊗ e3)

)
,

2π(x, t) ≡ e
(p)
11 ,

and the elastic strain tensor, as

e(e) =
(
u′ − 2π

)
e1 ⊗ e1 + π (e2 ⊗ e2 + e3 ⊗ e3) ;

this yields I1 = u′ and J = (u′−2π)2+2π2. Given a uniaxial
strain, free energy density (6.10) reduces to the form

ρψs(x, t) =
Λ

2

{(
u′ −Msx̄

)2
+ 3ωπ(3π − 2u′) +Gsx̄

2
}

Λ = λ+ 2µ, ω = 4µ/(3Λ),

Ms = αsmb/Λ, Gs = γsm
2b2/Λ +M2

s .

(6.19)

The stress tensor at a uniaxial strain is T = σ11e1 ⊗ e1 +
σ22 (e2 ⊗ e2 + e3 ⊗ e3), and the system of equilibrium equa-
tions is reduced to the single equation

∂σ11/∂x = 0 .

Hence, the normal stress σ11 in the solid phase is constant:

σ11(x, t) = −σ0 .

In the uniaxial strain case, the first formula in (6.11) re-
lating the elastic strain and temperature to the stress tensor
yields
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u′(x, t) = 3ωπ(x, t) +Msx̄− σ̄, σ̄ = σ0/Λ . (6.20)

The evolutionary equation of plastic strain (6.13) in the uni-
axial case has the form

π̇ + βπ =
1

3τ
(Msx̄− σ̄), β = (1− ω)/τ ,

and its general solution is

3τβπ(x, t) = Msx̄− σ̄ + f(x̄)e−βt , (6.21)

where f(x) is an unknown function of the spatial coordinate
x to be determined.

In order to find f(x), note that “instantaneous” (over a
time t � τ) melting of the part of the layer in the region
a(0) ≤ x ≤ b takes place as soon as the temperature at the
boundary x = b increases to the value ϑ = ϑ1 > ϑ0 at the
time t = 0, and the stress becomes equal to σ11 = −σ0.
The solid phase occupying the region a(0) ≤ x ≤ b at this
time moment remains in the elastic state because the viscous
strain does not change over this time interval. Further de-
velopment of the process is controlled by the accumulation
of viscous strain and can be accompanied by an interface
motion due to the effect of the viscous strain on the stress
state and energy of the solid phase. Therefore, the function
f(x) is determined from the condition that the viscous strain
vanishes at t = 0. Using (6.21), I find

f(x̄) = σ̄ −Msx̄, 0 ≤ x̄ ≤ a(0)/b .

The expression for the plastic strain can then be written as

3π(x, t) = (βτ)−1(Msx̄− σ̄)(1− e−βt),

0 ≤ x ≤ a(0) .
(6.22)

Relation (6.22) specifies, in a comprehensive manner, the vis-
cous strain field, provided that the region occupied by the
melt monotonically increases with time due to the stress re-
laxation, i.e. a(t) ≤ a(0), ȧ(t) ≤ 0. Then, the solid phase
region 0 ≤ x ≤ a(t) decreases with the time t, and the so-
lution is completely determined by the initial data specified
at t = 0 in the interval 0 ≤ x ≤ a(0). In this case, formulas
(6.20) and (6.22) yield

u′(x, t) = ϕ(t)(Msx̄− σ̄), 0 ≤ x ≤ a(t),

ϕ(t) =
1

1− ω
(1− ωe−βt) .

(6.23)

Hence, using the boundary condition u(0, t) = 0, I obtain the
expression for the displacement

ū(x, t) = ϕ(t)
(

1

2
Msx̄

2 − σ̄x̄
)
,

0 ≤ x ≤ a(t) .
(6.24)

The unknown function U(t) in (6.17) and the dimension-
less coordinate of the phase boundary Z(t) = a(t)/b are de-
termined by the coupling conditions at the interface. These
are continuity conditions for the normal component of chem-
ical potential (3.23) and displacement (3.2):

[[ρψ]] = −σ0[[u
′]], [[u]] = 0 . (6.25)

It is supposed here that the dissipation vanishes, δ∗ = 0. The
continuity condition for the temperature and stress σ11 holds
identically, and condition (6.9) for inelastic deformations is
not used because the new phase is an ideal liquid.

Using (6.16), (6.18), (6.19), (6.23) and (6.24), coupling
conditions (6.25) are written in the form

A(t)Z2(t) +B(t)Z(t)− C(t) = 0 , (6.26)

where

A(t) =
1

2

(
ξGf −Gs −

ωM2
s

1− ω

(
1− e−2βt

))
,

B(t) = ξη̂ − σ̄Mf +
σ̄Ms

1− ω

(
1− ωe−2βt

)
,

C(t) = ξ

(
ψ̂ − σ̄2

ξ2

)
+ σ̄p̂+

σ̄2(1− ωe−2βt)

2(1− ω)
,

ξ =
Kf

Λ
,

U(t) = k2(t)Z
2(t) + k1(t)Z(t),

k2(t) =
1

2
(ϕ(t)Ms −Mf ) ,

k1(t) = σ̄/ξ − ϕ(t)σ̄ − p̂ .

In what follows, I assume for simplicity that the differ-
ences of the bulk modulus, thermal expansion coefficient and
heat capacity in the solid phase differ only slightly from the
respective values in the liquid phase, i.e.

Kf = Ks(1 +O(δ)), ξ = 1− ω +O(δ) ,

αf = αs(1 +O(δ)), γf = γs(1 +O(δ)) ,

where |δ| � 1 is a small parameter characterizing the strain
value of the material. Let the rheological characteristics of
the phase transition be ψ̂ = O(δ2) and η̂ = O(δ2) and let
the initial stress in the melt be p̂ = O(δ). In this case, the
following estimates are valid accurate to the terms O(δ2) :

Ms = ξMf , Gs = ξ(Gf − ωM2
f ),

A(t) =
1

2
ωξM2

f e
−2βt, B(t) = ξη̂ − ωσ̄Mfe

−2βt ,

C(t) = ξ

(
ψ̂ − σ̄2

ξ2

)
+ σ̄p̂+

σ̄2

2ξ

(
1− ωe−2βt

)
,

k1(t) = −p̂+ σ̂ωe−βt, k2(t) = −1

2
ωe−βtMf .

At the initial time moment t = 0 the coefficients of system
(6.26) are

A(0) =
1

2
ωξM2

f , B(0) = ξη̂ − ωσ̄Mf ,

C(0) = ξ
(
ψ̂ − σ̄2/ξ2

)
+ σ̄p̂+

1

2
σ̄2 .
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Substituting the resulting expressions into (6.26) and taking
into account definitions (6.18) of the values ψ̂ and η̂, the
following equation is obtained:

1

2
ωξY 2 + (ξ(η0 + p̂)− ωσ̄)Y =

= ξ
(
ψ0 −

1

2
p̂2

)
+ p̂σ̄ +

(
1

2
− ξ +

1

2
ξ−1

)
.

Y = MfZ(0), η0 = ρη∗/αf , ψ0 = ρψ∗/Kf .

(6.27)

Hence, the melting onset corresponding to Z0 ≡ Z(0) = 1
is controlled by the value Mf = M0

f (σ̄, ω, ψ0, η0, p̂) equal
to the minimal positive solution of equation (6.27) and de-
pends on characteristics of the phase transition ψ0, η0 and
p̂, parameter 0 ≤ ω ≡ 1−Ks/Λ ≤ 1 and applied load σ̄.

If the temperature gradient is M0
f < Mf < ∞, a part of

the layer melts. The coordinate 0 < Z0 < 1 is determined
by the expression

Z0 = M−1
f Y (σ̄, ω, ψ0, η0, p̂) ,

where Y is, as before, the minimal positive solution of equa-
tion (6.27). The dependence of the initial position of the
interface on the stress σ̄ applied to the layer is shown in
Figure 1 for the values ω = 0.1, 0.3, 0.6, 0.75 and 0.9 (respec-
tive curves 1–5). Figure 1a shows the dependence Z0(σ̄) for
p̂ = 0.5σ∗, i.e. for the “normal” phase transition, with the
density of the solid phase exceeding the melt density. The
value σ∗ is a characteristic stress such that σ∗/Λ = O(δ).
Figure 1b shows similar curves, with the same values of ω,
for p̂ = −0.5σ∗ (“anomalous” phase transition).

A characteristic feature of these curves is a monotonic
variation (a decrease or increase in the respective cases of
normal or anomalous transition) in the initial thickness of
the melt layer 1−Z0 with increasing compressive σ̄ at small
ω (curves 1 and 2 in Figure 1a). The behavior of curves
1 and 2 is consistent with traditional notions of the clas-
sical theory of phase transitions: the applied pressure in-
creases the temperature during the normal phase transition
and decreases it during the anomalous one. However, as ω
increases, the dependence of the initial melt thickness on
the applied pressure becomes nonmonotonic. The function
Z0(σ̄) (curves 3–5) has a maximum that shifts, with increas-
ing ω, toward smaller applied pressures for both normal and
anomalous phase transitions. This feature is related to the
effect of solid-state properties on the phase transformation
pattern noted in section 5. In the vicinity of stress states,
where dZ0/dσ̄ →∞, this can lead to instability of the phase
boundary and, in particular, to dynamic phenomena with
slowly varying boundary conditions.

Examination of the function Z(t) at t > 0 shows that the
derivative dZ(t)/dt is positive at all of the considered values
of the phase material parameters, applied load and temper-
ature gradient. This contradicts the initial assumption on
sign of the derivative Ż(t).

The problem considered excludes the case of a phase
boundary retreating after a part of the material had in-
stantly melted (Z(t) > Z(0)). Actually, suppose that
Ż(t) > 0. Then the viscous strain of a solid phase particle
forming from the melt at the interface vanishes. Using the
first coupling condition in (6.25) at the interface (the con-

Figure 1. The position of the phase boundary as a
function of the applied stress σ̄ at η0 = ψ0 = σ∗ and
Mf = 2.0. Curves 1–5 are constructed for the values
ω = 0.1, 0.3, 0.6, 0.75 and 0.9. (a) The dependence Z0(σ̄) at
p̂ = 0.5σ∗ (normal phase transition). (b) The dependence
Z0(σ̄) at p̂ = −0.5σ∗ (anomalous phase transition).

tinuity of the normal component of the chemical potential
tensor) and taking into account formulas (6.16) and (6.18)–
(6.20), it is readily seen that this equation gives a constant
value of the interface coordinate, because the values in the
relations considered are time independent. Consequently,
a retreating motion of the phase boundary is impossible
in the problem with boundary conditions considered. This
means that the melt boundary coordinate remains constant
at t > 0, and the surface x̄ = Z(0) is a contact disconti-
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nuity. In accordance with (6.22) and (6.23), the total and
viscous strains change in solid phase material particles ad-
jacent to this surface. Since the viscous strain vanishes in a
melt particle at the contact boundary, the following relation
holds:

[[e
(p)
11 ]] =

2

3(1− ω)
(MsZ(0)− σ̄)(1− e−βt) .

The evolution of the viscous strain at the contact discon-
tinuity under consideration leads at t > 0 to a jump in the
normal component of the chemical potential:

[[χ11]] = [[ρψ]] + σ0[[u
′]] .

In accordance with (6.26), the value of this jump can be
written as

[[χ11]] =
ω

2ξ
(σ̄ − ξY )

(
1− e−2βt

)
.

To sum up, the following features of phase transitions in
solids associated with the presence of stress relaxation are
noteworthy.

An abrupt change in the boundary conditions that occurs
over a time small compared to the characteristic time of
stress relaxation is accompanied by a rapid movement of the
phase boundary and complies with an instantaneous elastic
response of the material.

The evolution of plastic deformations at constant bound-
ary conditions can either increase or decrease the volume of
the new phase, i.e. the interface can retreat [Kondaurov and
Nikitin, 1986]. The interface motion pattern depends on the
geometry of the region, boundary conditions and material
parameters.

As the boundary conditions attain a stationary regime,
the phase boundary can be transformed into a contact dis-
continuity immobile relative to material particles. Jumps in
the tangential component of the displacement vector, vis-
cous strain and normal component of the chemical potential
can arise at this discontinuity surface.

Solid-state properties of the material can result in un-
stable behavior of the phase boundary, including dynamic
phenomena at slowly varying boundary conditions.
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