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On the e�ects of the inertia ellipsoid triaxiality in the

theory of nutation

S� M� Molodensky

Joint Institute of the Physics of the Earth� �� Bolshaja Gruzinskaja� Moscow ��	���

Abstract� Modern nutation theories of the Earth and planets use the assumption�
that the planet�s inertia ellipsoid is symmetrical about the axes of rotation�
Below we estimate the e�ects of the inertia ellipsoid triaxiality accurate to ��B �
A���C�A���� where A�B�C are equatorial and polar principal moments of inertia�
respectively�

�� Introduction

As known� the nutational motion of the Earth and
planets in space is fully determined by Euler angles
�E � �E� �E� which describe the position of the body�
�xed �Tesserand�s� axes �x� y� z� with respect to an im�
mobile reference frame� At the same time� dynamic
equations of motion of an actual planet model de�ne
only the components ��x� �y� �z� of the angular veloc�
ity vector � with respect to a moving reference frame�
In the case of an axially symmetrical planet �equatorial
moments of inertia satisfy the condition A 	 B� the Eu�
ler angles are connected with these components through
well�known Poinsot�s formulae �see� for example� 
Lan�
dau and Lifshitz� ��
���� but in the case A �	 B Euler�s
relations between �E� �E � �E and ��x� �y� �z� present a
rather complicated �nonlinear� system of ordinary dif�
ferential equations which has not been investigated in
all details as yet�
As was shown by Zharkov et al� 
���
�� in the case of

small violation of the axial symmetry �if the parameter

� 	 �A �B���C �A�

satis�es the condition j� � �j� Euler�s equations can
be solved by using the perturbation method in powers
of this parameter� in such an approach� �rst�order �in
�� corrections describe only short�period �semidiurnal�
perturbations of the values �E� �E � �E � Nevertheless�
this result cannot be considered as a �nal solution of
the problem under consideration� because second�order
corrections of the order of �� can contain also long�
period terms� which perturb not only instant values of
the nutational amplitudes� but also their mean values�
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Modern VLBI measurements are most sensible just to
these terms� and their analysis is most interesting for
any practical purposes� Below we present a simple ana�
lytical expression that describes these corrections with
the accuracy of the order of ���

�� Statement of the Problem

As mentioned above� modern astrometric measure�
ments determine the motion of �xed points of a plan�
etary surface R with respect to an immobile reference
frame usually connected with extragalactic objects� At
the same time� well�known Liouville�s equation

M� � �M 	 L� ���

�where � is the angular velocity of the Tesserand�s ref�
erence frame �x� y� z�� M is the angular momentum of
the planet� L is the torque of external forces� and the
dot above symbol denotes the time derivative� deter�
mines only the motion of the vector with respect to the
moving system of coordinates �x� y� z�� To express the
components of the vector R in terms of the known val�
ues ��x� �y� �z�� it is convenient to use the well�known
Poinsot�s kinematic relations �see� for example� 
Zharkov
et al�� ���
�� which connect the trajectory of the vector
� with respect to the moving reference frame �x� y� z�
�polhode� and the trajectory of the same vector in space
�herpolhode��
In the case of an axially symmetrical rigid planet

�� 	 	 and the products of inertia Iik vanish�� the
components M and � are connected by the well�known
relation

Mx 	 A�x� My 	 B�y� Mz 	 C�z� ���

and the torque L may be represented in the form

L 	 l�i sin�
t� � j cos�
t��� ���

��
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where i� j are unit vectors oriented along the axes x and
y� respectively�

l 	 �C � A�vt�a
�� ���

vt is the amplitude of the nearly diurnal tidal potential�

Vi 	
vt
a�

�xz cos�
t� � yz sin�
t�� 	

vt
a�

r� sin� cos� cos�
t � ���
���

a is the mean radius of the planet� �r� �� �� are spherical
coordinates� and 
 is tidal frequency�
In the most general case� Liouville equation ��� rep�

resents a system of three nonlinear ordinary di�eren�
tial equations with respect to three unknown functions
�x�t�� �y�t�� �z�t�� In the case � 	 �� it has a very sim�
ple exact solution� In fact� substituting ������� into ����
we obtain

� 	 ��i� cos�
t� � j� sin�
t� � k�� �
�

where k is a unit vector that coincides with the z axis
and

� 	
vt�A � C��A
 � ��A �C��

a� A�
�� � �A� C����
� ���

is the amplitude of nutational motion with respect to
the moving reference frame �x� y� z��
The fact that the amplitudes the x and y components

of vector � in �
� are equivalent is a direct consequence
of the axial symmetry of the problem under considera�
tion� In view of this� the surfaces of polhode and herpol�
hode are exactly conical� in accordance with Poinsot�s
kinematic relations� the ratio of apex angles of these
cones is de�ned by the relation

� 	 arcsin���
��
 � ���� ���

the amplitude of nutational motion of a vector R in the
body��xed reference frame �x� y� z� is equal to � � � in
the case of prograde nutational motion �if the directions
of the � motion and nutation coincide� and to in the
opposite case of retrograde motion�
At � �	 � the solutions of dynamic and kinematic non�

linear equations can be rather complicated� Because
long�period perturbations are most important in prac�
tical applications� below we use the method of its ap�
proximate solution based on the following procedure�

�� Dynamic equations ��� provide expressions for the
components �x�t�� �y�t�� �z�t� of the vector �
with respect to the moving reference frame� in
which the e�ects of the inertia ellipsoid triaxiality
are taken into account�

�� Inverting Euler�s kinematic relations between the
known components �x�t�� �y�t�� �z�t� of the vector
� in the moving reference frame� the components
���t�� ���t�� ���t� of the same vector in space� and
Euler�s angles �E � �E� �E � these angles can be ex�
pressed in terms of �x�t�� �y�t�� �z�t�� Taking into
account� that the kinematic relations are nonlin�
ear� we use the �rst�order method of perturbations
with respect to the small parameter ��

�� To connect short�period �rst�order perturbations
of the functions ���t�� ���t�� ���t� and long�period
second�order perturbations of the same functions�
we use the well�known Poinsot�s theorem stat�
ing that the rotation of an arbitrary triaxial rigid
body may be represented as the rolling of the pol�
hode over the herpolhode without sliding� In ac�
cordance with this theorem� the ratio of trajectory
lengths of the vector � in the moving and �xed
reference frames L� and L� is equal to the ratio
of the corresponding periods� The perturbation of
the trajectory L� in turn consists of ��� the known
terms which describe semidiurnal oscillations and
��� unknown terms of higher orders of smallness
which describe the mean radius of this trajectory�
As is shown below� this permits the mean radius
of the trajectory L� to be found with su�cient
accuracy �of the order of ����

�� Tidal Torque for a Triaxial Body

Using expression ��� for the components of tidal po�
tential in Cartesian coordinates� it is easy to �nd the
tidal torques which act on an axially nonsymmetrical
planet

L 	

Z
�


r�rVtd� 	

	
�t
a�


i�C �B� sin�
t� � j�A� C� cos�
t���

���

where � is the total volume of the Earth� Replacing
the relation between �y and My in equations ��� by the
formulaMy 	 B�y and then substituting ��� and ��� in
Liouville�s equation ���� we obtain

A ��x � �C � B��y�z 	
�t
a�

�C �B� sin�
t�� ���a�

B ��y � �A �C��x�z 	
�t
a�

�A� C� cos�
t�� ���b�

C ��z � �B � A��x�y 	 �� ���c�

Using relations �
� and ���� it is easy to see that the
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ratio of terms C ��z and �B � A��x�y in ���c� is of the
order of �evt��ga�� where e is the �attening of the planet
and g is the gravity on its surface� This ratio is negli�
gibly small for all planets of the solar system� and the
approximation �z 	 � 	 const is valid with a very high
accuracy� In this approximation� the solution of equa�
tions ���a� and ���b� describing forced nutation and
precession is

� 	 ��i�� cos�
t� � j�� sin�
t� � k� ���a�

where

�� 	
vt
a�

�B �C��B
 � ��A �C��

AB
�� � �A� C��B �C���
� ���b�

�� 	
vt
a�

�A �C��A
 � ��B � C��

AB
�� � �A� C��B �C���
� ���c�

Substituting relations ���� in the well�known Eu�
ler relations between Euler angles ��E � �E� �E� and
��x� �y� �z� 
Landau and Lifshitz� ��
��

�x 	 ��E sin�E sin�E � ��E cos�E � ���a�

�y 	 ��E sin�E cos�E � ��E sin�E � ���b�

�z 	 ��E cos�E cos�E � ��E � ���c�

we obtain a system of three nonlinear ordinary di�eren�
tial equations with respect to three unknown functions
�E � �E� �E�
In the case of an axially symmetrical body �A 	 B

and �� 	 �� 	 �� where � is de�ned by ���� these equa�
tions have an elementary �Poinsot� solution in the form

�� 	 arctan

 � �

��
� ���a�

�� 	
�

�
� 
t� ���b�

and

�� 	
��

sin��
t� const� ���c�

which show� that the angular frequency and amplitude
of nutational motion in space are

��� 	
��

sin��
� 
 � �

and

�� � ��


 � �
� ���d�

�if this amplitude satis�es the condition j��j � ��

�� First�order Approximation for a
Slightly Triaxial Body

To estimate the e�ects of triaxiality of the planet in
the �rst approximation� we �rst perform some simple
transformations� Multiplying ���a� and ���b� by cos�E
and sin�E and then subtracting the results� we express
�E in terms of ��� �� as follows�

��E 	 ���� cos�E � �� sin�E�� ���a�

Analogously� multiplying ���a� and ���b� by sin�E
and cos�E and then summing the results� we have

��E sin�E 	 ���� sin�E � �� cos�E� ���b�

To linearize these equations� their solutions are rep�
resented by the superposition

�E 	 �� � ��� �E 	 �� � ��� �E 	 �� � ��� ����

where ��� ��� �� are the solutions of axially symmetrical
problem ���a�����c�� and ��� ��� �� are small corrections
due to the triaxiality e�ects of the inertia ellipsoid�
Substituting ���� and ���a� into ���a�� ���b�� and

���c� and neglecting the terms of the order of ��� we
obtain

��� sin�� � ��� sin�� � �� ��� cos �� 	

��� cos�
t��sin�� � �� cos����

��� sin�
t��cos�� � �� sin����

��
a�

��� � ��� 	 ��� cos�
t��cos�� � �� sin����
��� sin�
t��sin�� � �� cos����

��
b�

��� cos �� � ��� cos �� � �� ��� sin���

� ��� � ��� 	 ��
��
c�

Transforming� in accordance with ���b�� the main
terms in the right�hand sides of these equations�

��� cos�
t� sin�� � ��� sin�
t� cos�� 	

�
�� � ��

�
sin��� � 
t� � �

�� � ��
�

sin��� � 
t� 	

�
�� � ��

�
� �

�� � ��
�

cos��
t��

��� cos�
t� cos�� � ��� sin�
t� sin�� 	
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�
�� � ��

�
cos��� � 
t� � �

�� � ��
�

cos��� � 
t� 	

�
�� � ��

�
sin��
t�

and taking into account� that the zero�order values of
��� ��� �� are connected with �� � and 
 by relations
����� we obtain� after di�erentiation of these relations
with respect to the time�

��� sin�� 	 �� 	 �
�� � ��

�
� ���a�

��� 	 �� ���b�

��� cos�� � ��� 	 �� ���c�

Using these relations� equations ��
� can be rewritten
as follows�

��� sin�� � �� ��� cos �� � ���
�� � ��

�
sin��
t� 	

	 �
�� � ��

�
cos��
t��

���a�

��� � ���
�� � ��

�
	 �

�� � ��
�

sin��
t�� ���b�

��� cos �� � �� ��� sin�� � ���� ���c�

Eliminating �� and ��� from these relations with the
help of ���a� and ���c�� we �nally obtain the system of
three inhomogeneous linear ordinary di�erential equa�
tions

c� ��� � c��� 	 � cos��
t��
��� � c��� 	 � sin��
t��
��� � c� ��� � c��� 	 ��

����

with the coe�cients

c� 	 sin�� 	
��

������ � �
 � �������
�

c� 	 �� cot �� 	 
 � ��

c� 	 ���

c� 	 cos �� 	

 � �

������ � �
 � �������
�

and

� 	 ���� � ������

Since the system of equations ���� is of the third or�
der� it has three linearly independent homogeneous so�
lutions� It is easy to show� however� that these solutions
are not interesting for the problem under consideration�
because they describe the small variations in Euler an�
gles caused by an arbitrary in�nitesimal rotation of the
�xed reference frame�
The inhomogeneous solution of ���� has the form

�� 	 ��� 	 a sin��
t��

�� 	 b cos��
t��
����

where

a 	 � ��� � �����
 � ���
 � ���

���� � �
� � �
��

and

b 	 �a ��


 � �
�

These expressions fully determine �rst�order short�
period perturbations of the nutational and precessional
motion caused by the triaxiality of the planet�s �gure�
To �nd short�period motion perturbations of the vec�

tor �� we introduce a �xed Cartesian reference frame
�e�� e�� e�� in such a way that the axis e� coincides with
the axis of the unperturbed cone of herpolhode� and �E
is equal to the angle between the nodal line and vector
e�� Then the relations between components ���� ��� ���
and Euler angles ��E � �E� �E� are completely analogous
to ���a�����c� after replacement of �E by �E and �E
by �E�

�� 	 ��E sin�E sin�E � ��E cos�E � ���a�

�� 	 ��E sin�E cos�E � ��E sin�E � ���b�

�� 	 ��E cos �E sin�E � ��E� ���c�

In the case of nutational motion of any actual planet�
its spatial amplitude ����
 � �� does not exceed a few
seconds of arc� and we can use� instead of ���a�� a more
simple expression

�� 	
��


 � �
� ����

Substituting ����� ���b�� ���c�� ����� and ���� into
����� we have
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�� 	 ��
 � �a
 cos��
t���
��


 � �
�

�b cos��
t�� sin��
 � ��t � a sin��
t���
��
b sin��
t� cos��
 � ��t � a sin��
t���

���a�

�� 	 ��
 � �a
 cos��
t���
��


 � �
�

�b cos��
t�� cos��
 � ��t � a sin��
t���

��
b sin��
t� cos��
 � ��t � a sin��
t���

���b�

�� 	 �� ���c�

Like the �rst�order corrections to Euler angles �����
these expressions contain only short�period �semidiur�
nal� perturbations�

�� Long�period terms in the
second�order approximation

Now� we will use the well�known Poinsot�s theorem
stating that the rolling of polhode over herpolhode takes
place without sliding� On the strength of this theorem�
a general method for the calculation of long�period her�
polhode perturbations may be formulated as follows�
Let the total length of the vector � trajectory in the
moving reference frame �x� y� z� is de�ned by the ex�
pression

L� 	 L
���
� �� � f��B � A��� ���a�

where L
���
� is the length of the vector in the case of an

axially symmetrical planet �A 	 B� and f��B �A� is a
small correction due to �e�ects of triaxiality� Because
this trajectory coincides with circle �
� if A 	 B and
with ellipse ���a� if A �	 B� the function f� actually
describes the known di�erence between the length of
ellipse ���a� with the semiaxes ���� ��� and the length
���� of circle �
��
Likewise� using relations ����� the total length of the

� trajectory in the �xed reference frame �e�� e�� e�� can
be represented in the form

L� 	 L
���
� �� � f��B � A��� ���b�

where L���
� 	 j
��
 � ��jL���

� is the total length of the
herpolhode in the biaxial case and f��B �A� describes
the di�erence between the lengths in the triaxial and
biaxial cases�
As mentioned before� the absence of exact expres�

sions for the Euler angles in terms of known compo�
nents �x�t�� �y�t� precludes direct determination of this
function� However� expressions ���� readily provide the

part of this function f
�s�
� �B�A� which is connected with

short�period �semidiurnal� perturbations of herpolhode�
Using this value� the total perturbation of herpolhode
length can be represented as a sum of the known short�

period perturbation L
���
� f

�s�
� �B�A� and unknown long�

period perturbation L
���
� f

���
� �B�A� that describes vari�

ation in the �mean� herpolhode radius�

L
���
� f��B � A� 	

	 L
���
� �f

�s�
� �B � A� � f

���
� �B � A���

���a�

In accordance with Poinsot�s theorem� the condition
of the polhode rolling over herpolhode without sliding is
that the trajectories described by the angular velocity
vector during equal time intervals have the same lengths
in moving and �xed reference frames�

L��T� 	 L
���
� �� � f��B � A���T� 	

	 L
���
� �� � f��B � A���T� 	

	 j
��
 � ��jL���
� �� � f

�s�
� �B �A��

�f ���� �B � A���T��

where T� and T� are full revolution periods of the vector
� in the moving and �xed reference frames� respectively�
Since these values are connected through the relation

T� 	 j
��
 � ��jT��
the unknown value f

���
� �B � A� can be expressed in

terms of the known functions f��B�A� and f �s�� �B�A�
in the following� very simple form�

f
���
� �B �A� 	 f��B �A� � f

�s�
� �B � A� ���b�

Then� variation in the mean radius of herpolhode
�which coincides with variation in the nutation ampli�
tude �A multiplied by �� may be represented in the
form

�A 	 A�f
���
� �B � A� 	

	 A��f��B � A�� f
�s�
� �B � A���

��
�

where A� is the unperturbed nutation amplitude corre�
sponding to the axially symmetrical approximation�
In accordance with ����� the complete trajectory

length of the vector � in the moving reference frame
�x� y� z� is

L� 	 �

Z ��

�
���� cos

� � � ��� sin
� �����d� 	

	 �

Z ��

�

�
��� � ���

�
�

��� � ���
�

cos��������d��
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Developing the integrand function as the Taylor�s
series in small parameter � 	 ���� � �������

�
� � ���� with

the help of ���b� and ���c� and neglecting terms of the
order of ��� we have

L� 	 �

Z ��

�

��
��� � ���

�
�����

� ���� � ����
�

�
p
����� � ����

���
cos������d� 	

	 ����� �
��� � ����

��
� ���� � ����

�


���
� 	

	 ����� �
��� � ����

�
�
��

���a�

Comparing this expression and relation ���a� yields

f��A� B� 	
��� � ����

�
��
� ���b�

where the nutation amplitudes ��� �� and � are de�ned
by expressions ���b�� ���c�� and ���� respectively�
Strictly speaking� the de�nition of the complete tra�

jectory length of the vector � in the �xed reference
frame �e�� e�� e� needs some re�nement� because this
trajectory is generally nonclosed� In fact� it is obvi�
ous that� since the period of short�period perturbations
is equal to ��
 and the period of nutational motion
is equal to ���j
 � �j� this trajectory is closed only if

 	 k�
���� where k is any integer number� Of course�
nutation frequencies of actual planets do not satisfy this
condition� and the herpolhode is not a closed curve�
In order to apply Poinsot�s theorem to the case of

nonclosed trajectory of the angular velocity vector in
space� we de�ne the �mean length� of this trajectory as
follows�

L� 	 lim
N��

�

N

Z ��N
���

�
��
���

�t
���

�
���

�t
�� � �

���

�t
������dt�

����

Substituting ���� into ���� and expanding� as before�
the integrand function in Taylor�s series with the accu�
racy of the order of ��� we obtain

L� 	 j �
�

 � �

j�

� lim
N��

�

N

Z ��N
���

�

�� �
�

�
� ��

�
�

��

�

�dt

���a�

where

� 	
�

��
���

� ����

� � � ����
� � � ����

��� �� ���b�

Substituting ���a�c� into ��
a� b�� we have

��� 	 k� cos��� � ��� � k� sin��� � ���� ���a�

��� 	 k� sin��� � ��� � k� cos��� � ���� ���b�

��� 	 �� ���c�

where

k� 	 ��
� � �b
�
 � ����

��a
��
��


 � �
cos��
t��

���ab
��
 � �� � �a�
�
��


 � �
� cos���
t��

���a�

k� 	 ��a
�
��


 � �
� �
b��
 � ��� sin��
t� 	

	 ��a� 
��


 � �
sin��
t��

���b�

Substituting these expressions into ����� ���a�� and
���b� and neglecting the terms of the fourth and higher
orders� we have

� ����� � � ����� � � ����� 	 k�� � k�� 	

	 ���
����� �a
� � 


� � 

cos��
t��

�a�
�� � 
�� � �
�
 � ��

�
 � ���
cos���
t��

��a�
��

�
 � ���
sin���
t���

���a�

j �
�

 � �

j lim
N��

�

N

Z ��N
���

�
�� �

�

�
�dt 	

L
���
� �� � a�

��� � �
� � 
�


��
 � ���
��

���b�

j �
�

 � �

j lim
N��

�

N

Z ��N
���

�

��

�
dt 	

L
���
� �a�

�� � 
��

��
 � ���
��

���c�

Z ��N
���

�

��dt 	 �� ����

Summing these expressions� we �nally obtain

L� 	 j
��
 � ��jL���
� �� � f

�s�
� �B � A��� ���a�



molodensky� effects of the inertia ellipsoid triaxiality ��

where
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Substituting ���b� and ��
b� into ����� we obtain the
�nal value of the correction to the mean nutation am�
plitudes

A 	 A� � �A 	 A��� � f
���
� �B �A�� 	

	 A��� �
��� � ����

���
�
�

�
� ��� � �
 � 
��

�
 � ���
�� 	

	 A��� �
��� � ����

�
��
�
 � ����
 � ���

�
 � ���
��

����

Note that this correction vanishes if 
 	 �� or

 	 ����� The �rst root corresponds to the preces�
sion frequency� Vanishing of this expression for the pre�
cession frequency implies that the precessional constant
depends only on the value � � �A � B��� but not on
the di�erence of equatorial moments of inertia B �A�
The second root� as well as the denominator root


 	 ��� corresponds to the case of high nutation fre�
quencies in space as compared with the period of diur�
nal rotation �these frequencies correspond to the spatial
periods of nutational motion Ts 	 �T��� and Ts 	 T����

respectively� where T� 	 ���� is one sidereal day�� Nu�
tational motion with the period Ts 	 T��� takes place
only in the case of synchronised diurnal and orbital ro�
tation �if at the points of equinoxes the orientation of
the planet�s principal equatorial moments of inertia is
invariable in space��
In this case� the nutation amplitudes are obviously

determined not by the mean values of A� B averaged
over the total period� but by their �e�ective� values
in the vicinity of points at which the tidal torque is
maximum� In this speci�c case� the corrections to the
mean nutation amplitudes are proportional to ��������
rather than ������

����� This qualitative consideration
explains� why second�order correction ���� tends to in�
�nity in the limiting case 
� ��
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