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Ground-penetrating radar profiling on the surface of water bodies is applied in various geological and
engineering studies. Here, we present the results of numerical simulation of the propagation of a video
pulse electromagnetic signal in a freshwater body with gradients of the permittivity and electrical
conductivity in the near-bottom layer. The method of numerical solutions of Maxwell’s equations in the
time domain is applied, in the setting for rapidly changing processes, without restrictions on the
magnitude of the change in the parameters of the medium. The results make it possible to explain the
apparent decrease in water depth according to GPR data in comparison with the true depth and the
appearance of additional reflecting boundaries on radargrams in the bottom layer.
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1 Introduction

Freshwater bodies are resistive and can therefore
be penetrated by ground-penetrating radar (GPR)
where radar can be used for sub-bottom profiling,
to investigate water depth and the thickness and
extent of sediments [Bristow and Jol, 2003]. Lake
deltas have been studied by Jol and Smith [Jol and
Smith, 1991; Smith and Jol, 1992]. In [Bobrov et al.,
2008], a thorough GPR study depicted the halo-
cline – a strong salinity gradient between water
layers at the mouth of a river flowing into the sea.

Estimates of water depth are fundamental for
most studies of water bodies and based on recalcu-
lating the time delays of the registered GPR signals
using the permittivity value ε= 81. Nevertheless,
some loss of accuracy may occur, not only due to
the dependence of permittivity on water mineral-
ization and temperature [Owen et al., 1961; Archer
and Wang, 1990; Somaraju and Trumpf , 2006; Cate-
naccio et al., 2003] but also due to inhomogeneities
in the near-bottom layer, which usually accumu-
late plant material, mud and silt in the natural en-
vironment.
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In this paper, we consider the results of nu-
merical simulation of the propagation of a wide-
band video pulse signal in a water body model
with a near-bottom gradient layer. For the the-
oretical description of video impulse impact on
real media, the approximation of small absorp-
tion and a slow change in the source parameters
is not fulfilled, imposing restrictions on the use of
commonly used separable solutions of Maxwell’s
equations [Schwarzburg, 1998; Gulevich, 2020]. We
consider the interaction of a video pulse with
a real medium based on numerical solutions of
Maxwell’s equations in the time domain, in a gen-
eral setting for rapidly changing processes, with-
out restrictions on the magnitude of the change in
the parameters of the medium.

Apparently, the most popular method for the
numerical integration of Maxwell’s equations in
the time domain is the Finite-Difference Time-
Domain method (FDTD) [Kane, 1966; Paul and
Railton, 2012; Simpson and Taflove, 2007; Simpson,
2009; Yu and Simpson, 2010]. This method became
the basis for the development of numerical mod-
elling in GPR, where the FDTD method was imple-
mented in the open source gprMax software [Gi-
annopoulos, 2005; Warren et al., 2016].
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However, in the FDTD method, there is a lim-
itation on the integration step in time, associated
with the conductivity of the medium, and it con-
sists in the fact that, in order to achieve accept-
able accuracy, the integration step is required to
be small in comparison with the time of field
change due to the conductivity of the medium. On
the other hand, a too-small time step in explicit
schemes, when the Courant number, which deter-
mines the accuracy and convergence of the solu-
tion, is less than 0.05, leads to a rapid accumula-
tion of computational error and significantly de-
grades the accuracy of the numerical solution.

This limitation does not allow using the FDTD
method for interpreting GPR data in environments
with a sufficiently high conductivity or with its
gradient change, which are regularly encountered
in the natural environment. In this study, we use a
scheme for the numerical integration of Maxwell’s
equations, in which there is no restriction on the
integration step over time due to the influence of
conductivity [Mingalev et al., 2019]. It is based on
the explicit monotonic scheme of splitting by spa-
tial directions and physical processes that allows
us to use a significantly larger integration step in
time than in the widely used FDTD method with
the same calculation accuracy.

In this numerical modelling, our goal was to
study the influence of the near-bottom layer with
a gradient in electrical conductivity and permittiv-
ity on the receiving signal for further implication
in GPR studies and data interpretation.

2 Numerical integration method

We use an explicit difference scheme for the
numerical integration of Maxwell’s equations on
a regular spatial grid in Cartesian coordinates
[Mingalev et al., 2019], which is as follows.

Let r = (x,y,z) be the Cartesian coordinates; t –
be the time; E (r, t), D (r, t), H (r, t) and B (r, t) be the
electric and magnetic field strength and induction;
j (r, t) be the current density at t at a point with the
radius vector r. Consider the Faraday and Maxwell
equations in the SI system

∂B
∂t

= −rotE (r, t) ,
∂D
∂t

= rotH (r, t)− j (r, t) . (1)

Let’s supplement these equations with Ohm’s
law:

j (r, t) = σ (r) ·E (r, t) , (2)

where σ (r) is the scalar conductivity of the
medium, and with constitutive equations

D (r, t) = ε0ε (r)E (r, t) , B (r, t) = µ0µ (r)H (r, t) ,
(3)

where ε(r) and µ(r) are dimensionless relative per-
mittivity and permeability of the medium at a low

frequency limit; ε0 and µ0 are electric and mag-
netic permeability of vacuum. Let c0 = 1

/√
ε0µ0 be

the velocity of light in vacuum; c(r) = c0

/√
ε(r)µ(r)

be the velocity of light in medium at a point with
the radius vector r. System (1)–(3) can be writ-
ten as

∂B
∂t

=− rotE ,
∂E
∂t

=
c2

0
ε

rot
(
B
µ

)
− σ
ε0ε

E . (4)

For the numerical integration of (4) we use the
method of splitting by physical processes. The to-
tal integration step breaks down into two substeps.
One of them is a substep of propagation, at which
we the system of equations

∂B
∂t

=− rotE ,
∂E
∂t

=
c2

0
ε

rot
(
B
µ

)
, (5)

is integrated; the second step is a substep of signal
attenuation, at which the system of equations

∂E
∂t

= − σ
ε0ε

E

is analytically integrated from formulas
E (r, t + τ) = E (r, t)exp

(
− σ (r) τ
ε0ε(r)

)
. The correct

sequence of the substeps of splitting provides the
second-order accuracy in time.

In the numerical integration of system (5), quite
a lot of different schemes have been developed,
including schemes of a higher order of accuracy,
which are used for the equations of gas dynamics.

This scheme for integrating Maxwell’s equations
is fully applicable to the problem of simulating the
propagation of a video pulse electromagnetic sig-
nal, as such as used in GROT 12 radars, in real en-
vironments and allows using a significantly larger
time integration step than the widely used FDTD
method with the same calculation accuracy.

In order to avoid the use of model absorbing lay-
ers, we use the following technique: the distance
from the transmitter to the boundaries of the sim-
ulation area was chosen so that the signal reflected
from the heterogeneity arrived at the receiving an-
tenna much earlier than the signal reflected from
the boundaries of the simulation area.

A video pulse with a given shape shown in Fig-
ure 1 is used as a probe pulse. This signal is con-
ventionally divided into parts: the duration of the
leading edge is T1; the front part duration is T2;
the relaxation part duration is T3. The total dura-
tion T2 + T3 = T4 is up to 20 ns.

Figure 2 presents a model of a freshwater body
with a near-bottom layer that has smooth (gradi-
ent) changes in the electrical parameters.

We have chosen the most common electrical pa-
rameters found in the natural environment for the
model of the medium. It should be noted that the
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Figure 1: Dependence of the current in the antenna on time for a probing video pulse.

Figure 2: A model of a freshwater body with
a near-bottom layer: Tr – transmitter, R – receiver.

range of change in permittivity does not exceed an
order of magnitude, while electrical conductivity
can vary by several orders of magnitude. More-
over, the gradients of the permittivity and electri-
cal conductivity at the bottom of freshwater bod-
ies, as a rule, have opposite signs, because the per-
mittivity is higher, and the conductivity of water is
lower than that of the silt sediments.

3 Results and discussion

To study the influence of the permittivity gra-
dient on the shape of the reflected signal, we use
a model of the freshwater body with a gradient
layer of different thicknesses: 1 m, 2 m, and 4
m, where

√
ε2 decreases linearly from 9 to 5 (Fig-

ure 3).
The analysis of the calculations allows us to ex-

plain the effect sometimes observed in studies in

Figure 3: The gradient of the permittivity in the
near-bottom layer at the depths from 18 m to
19 m, 20 m and 22 m;

√
ε2 decreases linearly

from 9 to 5; σ= 0.001 S/m.

water bodies: the apparent decrease in the water
depth according to GPR data when compared with
direct measurements.

In Figure 4, it can be seen that with an increase
in the thickness of the gradient layer, the discrep-
ancy between the true water depth and the one cal-
culated from time delays of the signal increases in-
creases. Taking the permittivity value ε = 81, the
time delay for a depth of 19 m is 1140 ns, for 20
m – 1200 ns, and for 22 m – 1320 ns. The ex-
tremum of the reflected signal noticeably deviates
from the calculated values the stronger, the greater
the depth of the gradient layer. The first arrival
corresponds to the top of the gradient layer, the
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Figure 4: Calculated electric field strength of the reflected signal Ex for media with different thickness
(∆h) of the layer with permittivity gradient.

second indicates the reflection from the bottom.
For 2-meter gradient layer the difference between
time delays assessed with the permittivity value
ε = 81 and numerical modelling reaches 40 ns, and
for 4-meter gradient layer – 70 ns. An error of
40 ns for ε = 81 corresponds to a depth error of
0.67 m.

Thus, with an increase in the thickness of the
gradient near-bottom layer, the error in determin-
ing the water depth using ε = 81 increases, while
the amplitude of the reflected signal decreases,
which leads to a decrease, other things being equal,
of the resolution. Besides, in real GPR data, it
is necessary to take into account the accuracy of
GPR measurements, which is also determined by
the technical characteristics of the equipment, in
particular, by the implemented registration tech-
nique, that provides further reduction in the depth
resolution in case of frequency or time gating with
frequency filtering and nonlinear amplification of
amplitudes [Gulevich et al., 2021].

To study the impact of the electrical conductiv-
ity gradient on the shape of the reflected signal, we
consider the model of the medium shown in Fig-
ure 5, the permittivity is assumed to be constant.

Figure 6 shows the influence of the gradient of
the electrical conductivity on the amplitude and
shape of the reflected signal for the chosen models
of the medium.

Comparison of the results shows that the elec-
trical conductivity gradient in the water body af-
fects the estimate of its water depth but less sig-
nificantly compared to the influence of the permit-
tivity gradient. Having an electrical conductivity
gradient in the near-bottom layer, the two most in-
tense extrema with almost equal amplitudes are
observed: the first and the next one of opposite po-
larity (Figure 6). It is seen that the extrema of the
reflected signals for the gradient of the permittiv-
ity and electrical conductivity have opposite polar-
ity (Figure 4, Figure 6).

Figure 5: The gradient of the electrical
conductivity in the near-bottom layer at the

depths from 18 m to 19 m, 20 m and 22 m; σ
linearly increases from 0.001 S/m to 0.1 S/m;

ε = 81.

Moreover, as can be seen from the simulation re-
sults (Figure 4, Figure 6), in the presence of the
near-bottom gradient layer, an additional first ex-
tremum appears in the amplitude of the reflected
signal, which corresponds to the top of the gradi-
ent layer. The appearance of additional reflecting
boundaries is typical for ground-penetrating radar
surveys.

Based on the presented results of the numerical
modelling, additional reflecting boundaries can be
a sign of the inhomogeneity of the bottom water
layer in terms of permittivity and conductivity.

Changing the thickness of the gradient layer
(Figure 3, Figure 5). has an impact on the ampli-
tude values of reflected signals but the pattern of
the evolution of the amplitudes remains (Figure 4,
Figure 6).
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Figure 6: Calculated electric field strength of the reflected signal Ex for media with different thickness
(∆h) of the layer with electrical conductivity gradient.

Figure 7: Synthetic waveforms (A-scans) and radargrams (B-scans) for a freshwater model with
a near-bottom gradient layer of the thickness 2 m (left) and 4 m (right).

√
ε2 decreases linearly from

9 to 5; σ increases linearly from 0.001 S/m to 0.1 S/m.

Figure 7 shows synthetic waveforms and radar-
grams for a model with a gradient layer with a
thickness of 2 and 4 m, taking into account the
gradient change in both permittivity and electrical
conductivity in the usual representation for GPR.
The pattern of the permittivity gradient is shown
in Figure 3 with the red dotted line and of the elec-
trical conductivity gradient – in Figure 5 with a red
dotted line.

It can be seen that with an increase in the thick-
ness of the gradient layer more additional reflec-
tive boundaries appear on the radargram (Fig-
ure 7).

The total effect of the gradient of electrical pa-
rameters in the near-bottom layer strongly de-
pends on the ratio of the actual values of electri-
cal conductivity and permittivity. Accordingly, the
accuracy of the water depth estimate is also deter-
mined by the spatial distribution of electrical pa-
rameters in the water body.

The calculated evolution of the video pulse sig-
nal shows that the gradient layer can significantly
reduce the depth resolution, complicate interpre-

tation and affect the survey accuracy, that is, mask
useful information in real GPR studies.

It should be noted that the radio pulse signal,
which initially contains more amplitude extrema
than the aperiodic signal, the shape of which was
taken for calculations (Figure 1), is characterized
by the appearance of a number of parasitic bound-
aries on the ground-penetrating radar data, i.e.
“ringing”.

4 Conclusions

The accuracy of determining water depth in
a freshwater body depends on a pattern of electric
conductivity and permittivity distribution in the
near-bottom layer, which is heterogeneous in nat-
ural environments.

Additional reflective boundaries on radargrams
in the bottom layer may indicate gradient changes
in electrical properties in the water body. These
multiple boundaries can mask the reflection from
the bottom of a water body and complicate the in-
terpretation of GPR data.
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In real GPR surveys, it is necessary to take into
account the accuracy of GPR measurements, also
determined by the technical characteristics of the
equipment, in particular, by the implemented reg-
istration technique, which can further reduce the
depth resolution.
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