Improved Sedimentary Thickness Model for Central-Northern Eurasia Derived from Decompensative Gravity Anomalies
Abstract and keywords
Abstract (English):
This study presents refined models of the sedimentary cover in northern Eurasia, derived using decompensative gravity anomalies (DGA). The DGA-based models enhance the structural resolution of regions with complex geology, accurately delineating denuded mountain-folded zones, thick sedimentary sequences, and basin depocenters that are not well resolved in the initial datasets. In offshore areas, such as the Laptev Sea Basin, South Kara Basin, and Yamal–Taz Basin, the models provide improved estimates of sedimentary thickness and clearer delineation of major faults and rift structures compared to global datasets like GlobSed. For continental basins, the models reveal localized depocenters and subtle variations in thickness, supporting more detailed structural and stratigraphic interpretations. While these models offer substantial improvements, uncertainties increase with depth due to the lower density contrasts between deep sedimentary layers and the crystalline basement. Intermediate Late Paleozoic–Early Mesozoic units and contributions from the upper folded basement can also affect thickness estimates, highlighting the qualitative nature of the models for deep basins. Despite these limitations, the DGA-based models provide a valuable tool in regions with sparse borehole and geophysical data, filling gaps in coverage and enhancing the understanding of basin geometry. These refined sedimentary cover models offer a robust framework for lithospheric and basin modeling, enabling more accurate reconstructions of basin architecture and tectonic evolution across both continental and shelf regions.

Keywords:
Sedimentary cover, gravity field, decompensative gravity anomalies, Northern Eurasia
Text
Text (PDF): Read Download
References

1. Afanasenkov A. P., Nikishin A. M., Unger A. V., et al. The tectonics and stages of the geological history of the Yenisei-Khatanga Basin and the conjugate Taimyr Orogen // Geotectonics. — 2016. — Vol. 50, no. 2. — P. 161–178. — https://doi.org/10.1134/s0016852116020023.

2. Amante C. and Eakins B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. — Boulder, CO, USA : National Geophysical Data Center, NESDIS, NOAA, U.S. Department of Commerce, 2009.

3. Andieva T. A. Tectonic Position and Major Structures of the Laptev Sea // Neftegazovaya Geologiya. Theory and practice. — 2008. — Vol. 3, no. 1. — (In Russian).

4. Bortnikov N. S., Lobanov K. V., Volkov A. V., et al. Strategic metal deposits of the Arctic Zone // Geology of Ore Deposits. — 2015. — Vol. 57, no. 6. — P. 433–453. — https://doi.org/10.1134/s1075701515060021.

5. Chanysheva A. and Ilinova A. The Future of Russian Arctic Oil and Gas Projects: Problems of Assessing the Prospects // Journal of Marine Science and Engineering. — 2021. — Vol. 9, no. 5. — P. 528. — https://doi.org/10.3390/jmse9050528.

6. Daragan-Sushchova L. A., Petrov E. O. and Daragan-Sushchov Yu. I. To the question about the age of the basement in the Barents-Kara region // Regional Geology and Metallogeny. — 2013. — No. 55. — P. 21–27. — (In Russian).

7. Daragan-Sushchova L. A., Petrov O. V., Daragan-Sushchov Yu. I., et al. History of Formation of the Eurasian Basin, the Arctic Ocean, Based on Seismic Data // Regional Geology and Metallogeny. — 2020. — No. 84. — P. 25–44. — (In Russian).

8. Deev E. V., Shemin G. G., Vernikovsky V. A., et al. Northern West Siberian-South Kara Composite Tectono-Sedimentary Element, Siberian Arctic // Geological Society, London, Memoirs. — 2022. — Vol. 57, no. 1. — https://doi.org/10.1144/m57-2021-38.

9. Dobretsov N. L., Kirdyashkin A. A., Kirdyashkin A. G., et al. Modelling of thermochemical plumes and implications for the origin of the Siberian traps // Lithos. — 2008. — Vol. 100, no. 1–4. — P. 66–92. — https://doi.org/10.1016/j.lithos.2007.06.025.

10. Drachev S. S. Fold belts and sedimentary basins of the Eurasian Arctic // Arktos. — 2016. — Vol. 2, no. 1. — P. 21. — https://doi.org/10.1007/s41063-015-0014-8.

11. Förste C., Bruinsma S. L., Abrikosov O., et al. EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. — Potsdam, Germany, 2014. — https://doi.org/10.5880/ICGEM.2015.1.

12. Galushkin Yu. I. Formation of the Sedimentary Cover of the South Kara Basin // Life of the Earth. — 2023. — Vol. 45, no. 3. — P. 324–340. — https://doi.org/10.29003/m3549.0514-7468.2023_45_3/324-340. — (In Russian).

13. Ivanov K. S., Erokhin Yu. V., Puchkov V. N., et al. Folded basement of the Yamal Peninsula and its structural relationships. — Ekaterinburg : IGG UB RAS, 2021. — 285 p. — (In Russian).

14. Ivanova N. M., Sakoulina T. S., Belyaev I. V., et al. Depth model of the Barents and Kara seas according to geophysical surveys results // Arctic Petroleum Geology. Chapter 12. — London, Memoirs : Geological Society, 2011. — P. 209– 221. — https://doi.org/10.1144/m35.12.

15. Kaban M. K. A gravity model of the North Eurasia crust and upper mantle: 1. Mantle and isostatic residual gravity anomalies // Russian Journal of Earth Sciences. — 2001. — Vol. 3, no. 2. — P. 125–144. — https://doi.org/10.2205/2001es000062.

16. Kaban M. K. Gravity Anomalies, Interpretation // Encyclopedia of Solid Earth Geophysics. — Cham, Switzerland : Springer International Publishing, 2019. — P. 1–7. — https://doi.org/10.1007/978-3-030-10475-7_88-1.

17. Kaban M. K., El Khrepy S. and Al-Arifi N. Importance of the Decompensative Correction of the Gravity Field for Study of the Upper Crust: Application to the Arabian Plate and Surroundings // Pure and Applied Geophysics. — 2016. — Vol. 174, no. 1. — P. 349–358. — https://doi.org/10.1007/s00024-016-1382-0.

18. Kaban M. K., Gvishiani A., Sidorov R., et al. Structure and Density of Sedimentary Basins in the Southern Part of the East-European Platform and Surrounding Area // Applied Sciences. — 2021. — Vol. 11, no. 2. — P. 512. — https://doi.org/10.3390/app11020512.

19. Kaban M. K. and Mooney W. D. Density structure of the lithosphere in the southwestern United States and its tectonic significance // Journal of Geophysical Research: Solid Earth. — 2001. — Vol. 106, B1. — P. 721–739. — https://doi.org/10.1029/2000jb900235.

20. Malyshev N. A., Nikishin V. A., Nikishin A. M., et al. A new model of the geological structure and evolution of the North Kara Sedimentary Basin // Doklady Earth Sciences. — 2012. — Vol. 445, no. 1. — P. 791–795. — https://doi.org/10.1134/s1028334x12070057.

21. Mooney W. D. and Kaban M. K. The North American upper mantle: Density, composition, and evolution // Journal of Geophysical Research: Solid Earth. — 2010. — Vol. 115, B12. — https://doi.org/10.1029/2010jb000866.

22. Nikishin V. A., Malyshev N. A., Nikishin A. M., et al. The Late Permian-Triassic system of rifts of the South Kara sedimentary basin // Moscow University Geology Bulletin. — 2011. — Vol. 66, no. 6. — P. 377–384. — https://doi.org/10.3103/s0145875211060093.

23. Petrov O., Morozov A., Shokalsky S., et al. Crustal structure and tectonic model of the Arctic region // Earth-Science Reviews. — 2016. — Vol. 154. — P. 29–71. — https://doi.org/10.1016/j.earscirev.2015.11.013.

24. Podurushin V. F. Basement tectonics and its influence on the formation of the gas potential of the Yamal Peninsula // Problems of resource provision of gas producing regions of Russia up to 2030: Collection of scientific articles. — Gazprom VNIIGAZ, 2010. — P. 329. — (In Russian).

25. Sidorov R. V., Kaban M. K., Soloviev A. A., et al. Sedimentary basins of the eastern Asia Arctic zone: new details on their structure revealed by decompensative gravity anomalies // Solid Earth. — 2021. — Vol. 12, no. 12. — P. 2773–2788. — https://doi.org/10.5194/se-12-2773-2021.

26. Sobolev S. V., Sobolev A. V., Kuzmin D. R., et al. Linking mantle plumes, large igneous provinces and environmental catastrophes // Nature. — 2011. — Vol. 477, no. 7364. — P. 312–316. — https://doi.org/10.1038/nature10385.

27. Soloviev A., Petrunin A., Gvozdik S., et al. A Set of Geophysical Fields for Modeling of the Lithosphere Structure and Dynamics in the Russian Arctic Zone // Data. — 2023. — Vol. 8, no. 5. — P. 91. — https://doi.org/10.3390/data8050091.

28. Startseva K. F., Nikishin A. M., Malyshev N. A., et al. Geological and geodynamic reconstruction of the East Barents megabasin from analysis of the 4-AR regional seismic profile // Geotectonics. — 2017. — Vol. 51, no. 4. — P. 383– 397. — https://doi.org/10.1134/s0016852117030104.

29. Stolk W., Kaban M. K., Beekman F., et al. High resolution regional crustal models from irregularly distributed data: Application to Asia and adjacent areas // Tectonophysics. — 2013. — Vol. 602. — P. 55–68. — https://doi.org/10.1016/j.tecto.2013.01.022.

30. Straume E. O., Gaina C., Medvedev S., et al. GlobSed: Updated Total Sediment Thickness in the World’s Oceans // Geochemistry, Geophysics, Geosystems. — 2019. — Vol. 20, no. 4. — P. 1756–1772. — https://doi.org/10.1029/2018gc008115.

31. Timonin N. I., Yudin V. V. and Belyaev A. A. The Paleogeodynamic of Pay-Khoy. — Ekaterinburg : UB RAS, 2004. — 226 p. — (In Russian).


Login or Create
* Forgot password?