Reconstruction of the Angular Dependence of the Sea Ice Backscattering Pattern According to the GNSS-R Data
Abstract and keywords
Abstract (English):
This study addresses the challenge of understanding sea ice microwave scattering properties by developing a novel method to retrieve scattering indicatrix and angular dependence of backscattering patterns from Global Navigation Satellite System Reflectometry (GNSS-R) data. Sea ice remote sensing in quasi-specular reflection area requires theoretical models validated using experimental data across different frequency bands. However, only limited observations of quasispecular scattering in the L-band exist. We developed an algorithm to convert Doppler spectra from delay-Doppler maps (DDM) obtained by the TDS-1 satellite into scattering indicatrix and then to angular dependence of the sea ice backscattering patterns, using geometric transformations from bistatic sensing geometry. The method was applied to approximately 100 DDM measurements over the Sea of Okhotsk during February–March 2017, where ice concentration remained at 90–100% with temperatures below 0 °C. Results show that L-band (19 cm wavelength) exhibits broader angular dependence compared to Ka-band (8.45 mm) and Ku-band (2.21 cm) measurements from dual-frequency precipitation radar (DPR), contrary to expectations based solely on surface roughness. This anomalous broadening is attributed to volume scattering effects within sea ice, where L-band signals penetrate up to one meter depth compared to millimeter-scale penetration in Ka- and Kufrequency bands. The findings provide new insights into L-band scattering mechanisms and offer a validated approach for improving theoretical models of sea ice microwave interaction.

Keywords:
bistatic, scattering indicatrix, angular dependence of backscattering, sea ice, remote sensing, L-band, GPS, TDS-1, GNSS-R
Text
Text (PDF): Read Download
References

1. Alonso Arroyo A., Camps A., Aguasca A., et al. Dual-Polarization GNSS-R Interference Pattern Technique for Soil Moisture Mapping // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. — 2014. — Vol. 7, no. 5. — P. 1533–1544. — https://doi.org/10.1109/JSTARS.2014.2320792.

2. Bass F. G. and Fuks I. M. Wave Scattering from Statistically Rough Surfaces. — New York : Elsevier, 1979. — https://doi.org/10.1016/c2013-0-05724-6.

3. Camps A., Park H., Pablos M., et al. Sensitivity of GNSS-R Spaceborne Observations to Soil Moisture and Vegetation // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. — 2016. — Vol. 9, no. 10. — P. 4730–4742. — https://doi.org/10.1109/jstars.2016.2588467.

4. Cardellach E., Fabra F., Nogués-Correig O., et al. GNSS-R ground-based and airborne campaigns for ocean, land, ice, and snow techniques: Application to the GOLD-RTR data sets // Radio Science. — 2011. — Vol. 46, no. 6. — RS0C04. — https://doi.org/10.1029/2011RS004683.

5. Cartwright J., Banks C. J. and Srokosz M. Sea Ice Detection Using GNSS-R Data From TechDemoSat-1 // Journal of Geophysical Research: Oceans. — 2019. — Vol. 124, no. 8. — P. 5801–5810. — https://doi.org/10.1029/2019jc015327.

6. Chernoukhov V. V. and Dobykin V. D. Scattering of electromagnetic waves by the sea surface at two-position location // Radiotehnika i Elektronika. — 1995. — Vol. 40, no. 3. — P. 464–471. — (In Russian).

7. Chew C., Shah R., Zuffada C., et al. Demonstrating soil moisture remote sensing with observations from the UK TechDemoSat-1 satellite mission // Geophysical Research Letters. — 2016. — Vol. 43, no. 7. — P. 3317–3324. — https://doi.org/10.1002/2016GL068189.

8. Clarizia M. P., Gommenginger C. P., Gleason S. T., et al. Analysis of GNSS-R delay-Doppler maps from the UK-DMC satellite over the ocean // Geophysical Research Letters. — 2009. — Vol. 36, no. 2. — P. L02608. — https://doi.org/10.1029/2008GL036292.

9. Clarizia M. P., Ruf C. S., Jales P., et al. Spaceborne GNSS-R Minimum Variance Wind Speed Estimator // IEEE Transactions on Geoscience and Remote Sensing. — 2014. — Vol. 52, no. 11. — P. 6829–6843. — https://doi.org/10.1109/tgrs.2014.2303831.

10. Dadjoo M., Mayvan M. Z. and Isleifson D. Experimental Observations of Forming Sea Ice Using Surface-Based L-, C-, and Ku-Band Polarimetric Scatterometers // IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium. — IEEE, 2024. — P. 76–79. — https://doi.org/10.1109/igarss53475.2024.10640527.

11. Danilychev M. V., Kutuza B. G., Moshkov A. V., et al. The application of L-band in satellite microwave radiometry of the sea surface // Physical Bases of Instrumentation. — 2018. — Vol. 7, no. 1. — P. 46–53. — https://doi.org/10.25210/jfop1801-046053. — (In Russian).

12. Elfouhaily T., Chapron B., Katsaros K., et al. A unified directional spectrum for long and short wind-driven waves // Journal of Geophysical Research: Oceans. — 1997. — Vol. 102, no. C7. — P. 15781–15796. — https://doi.org/10.1029/97jc00467

13. Fil’chuk K. V., Kovalev S. M., Guzenko R. B., et al. Ice research in the expedition "North Pole-41" // Rossijskie polârnye issledovaniâ. — 2023. — 3 (53). — P. 19–28. — EDN: https://elibrary.ru/IGTWSQ ; (in Russian).

14. Freilich M. H. and Vanhoff B. A. The Relationship between Winds, Surface Roughness, and Radar Backscatter at Low Incidence Angles from TRMM Precipitation Radar Measurements // Journal of Atmospheric and Oceanic Technology. — 2003. — Vol. 20, no. 4. — P. 549–562. — https://doi.org/10.1175/1520-0426(2003)20<549:trbwsr>2.0.co;2.

15. Geldsetzer T. and Howell S. E. L. Incidence Angle Dependencies for C-Band Backscatter From Sea Ice During Both the Winter and Melt Season // IEEE Transactions on Geoscience and Remote Sensing. — 2023. — Vol. 61. — P. 1–15. — https://doi.org/10.1109/tgrs.2023.3315056.

16. Gleason S. Remote Sensing of Ocean, Ice and Land Surfaces Using Bistatically Scattered GNSS Signals from Low Earth Orbit. Doctoral Thesis. — Guildford : University of Surrey, 2006.

17. Gleason S. Towards Sea Ice Remote Sensing with Space Detected GPS Signals: Demonstration of Technical Feasibility and Initial Consistency Check Using Low Resolution Sea Ice Information // Remote Sensing. — 2010. — Vol. 2, no. 8. — P. 2017–2039. — https://doi.org/10.3390/rs2082017.

18. Gleason S., Hodgart S., Sun Y., et al. Detection and Processing of bistatically reflected GPS signals from low Earth orbit for the purpose of ocean remote sensing // IEEE Transactions on Geoscience and Remote Sensing. — 2005. — Vol. 43, no. 6. — P. 1229–1241. — https://doi.org/10.1109/tgrs.2005.845643.

19. Gleason S., Lowe S. and Zavorotny V. Remote sensing using bistatic GNSS reflections // GNSS Applications and Methods / ed. by S. Gleason and D. Gebre-Egziabher. — Norwood : Artech House, 2009. — P. 399–436.

20. Golden K. M., Cheney M., Ding K., et al. Forward electromagnetic scattering models for sea ice // IEEE Transactions on Geoscience and Remote Sensing. — 1998. — Vol. 36, no. 5. — P. 1655–1674. — https://doi.org/10.1109/36.718637.

21. Hall C. D. and Cordey R. A. Multistatic Scatterometry // International Geoscience and Remote Sensing Symposium, "Remote Sensing: Moving Toward the 21st Century". — IEEE, 1988. — P. 561–562. — https://doi.org/10.1109/igarss.1988.570200.

22. Hallikainen M. and Winebrenner D. P. The physical basis for sea ice remote sensing // Microwave Remote Sensing of Sea Ice / ed. by F. D. Carsey. — Washington : American Geophysical Union, 1992. — P. 29–46. — https://doi.org/10.1029/gm068p0029.

23. Hauser D., Tison C., Amiot T., et al. SWIM: The First Spaceborne Wave Scatterometer // IEEE Transactions on Geoscience and Remote Sensing. — 2017. — Vol. 55, no. 5. — P. 3000–3014. — https://doi.org/10.1109/tgrs.2017.2658672.

24. Hobiger T., Haas R. and Löfgren J. S. GLONASS-R: GNSS reflectometry with a Frequency Division Multiple Access-based satellite navigation system // Radio Science. — 2014. — Vol. 49, no. 4. — P. 271–282. — https://doi.org/10.1002/2013rs005359.

25. Hwang P. A. and Fois F. Surface roughness and breaking wave properties retrieved from polarimetric microwave radar backscattering // Journal of Geophysical Research: Oceans. — 2015. — Vol. 120, no. 5. — P. 3640–3657. — https://doi.org/10.1002/2015jc010782.

26. JAXA. GPM Data Utilization Handbook. Version 1.0. — Japan Aerospace Exploration Agency, 2014. — 92 p.

27. Karaev V., Panfilova M., Ryabkova M., et al. Remote Sensing of Sea Ice at Small Incidence Angles: Verification of Theoretical Models // 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS. — IEEE, 2021. — P. 5629–5632. — https://doi.org/10.1109/IGARSS47720.2021.9554163.

28. Karaev V., Titchenko Y., Panfilova M., et al. Application of the Doppler Spectrum of the Backscattering Microwave Signal for Monitoring of Ice Cover: A Theoretical View // Remote Sensing. — 2022a. — Vol. 14, no. 10. — P. 2331. — https://doi.org/10.3390/rs14102331.

29. Karaev V., Titchenko Y., Panfilova M., et al. On the Problem of the Sea Ice Detection by Orbital Microwave Doppler Radar at the Nadir Sounding // Remote Sensing. — 2022b. — Vol. 14, no. 19. — P. 4937. — https://doi.org/10.3390/rs14194937.

30. Karaev V., Titchenko Y., Panfilova M., et al. The Doppler Spectrum of the Microwave Radar Signal Backscattered From the Sea Surface in Terms of the Modified Bragg Scattering Model // IEEE Transactions on Geoscience and Remote Sensing. — 2020. — Vol. 58, no. 1. — P. 193–202. — https://doi.org/10.1109/tgrs.2019.2935343.

31. Kintner P. M., Ledvina B. M. and Paula E. R. de. GPS and ionospheric scintillations // Space Weather. — 2007. — Vol. 5, no. 9. — S09003. — https://doi.org/10.1029/2006sw000260.

32. Komarov A. S. and Buehner M. Detection of First-Year and Multi-Year Sea Ice from Dual-Polarization SAR Images Under Cold Conditions // IEEE Transactions on Geoscience and Remote Sensing. — 2019. — Vol. 57, no. 11. — P. 9109–9123. — https://doi.org/10.1109/tgrs.2019.2924868.

33. Komarov A. S., Isleifson D., Barber D. G., et al. Modeling and Measurement of C-Band Radar Backscatter From SnowCovered First-Year Sea Ice // IEEE Transactions on Geoscience and Remote Sensing. — 2015. — Vol. 53, no. 7. — P. 4063–4078. — https://doi.org/10.1109/tgrs.2015.2390192.

34. Kovaldov D., Titchenko Y., Karaev V., et al. Method for Calculating the Dependence of the Backscattering Radar Cross Section for Freshwater Ice on the Incidence Angle Using the Doppler Spectrum // IGARSS 2024 - 2024 IEEE International Geoscience and Remote Sensing Symposium. — IEEE, 2024. — P. 107–110. — https://doi.org/10.1109/igarss53475.2024.10640985.

35. Kudryavtsev V. N., Makin V. K. and Chapron B. Coupled sea surface-atmosphere model: 2. Spectrum of short wind waves // Journal of Geophysical Research: Oceans. — 1999. — Vol. 104, no. C4. — P. 7625–7639. — https://doi.org/10.1029/1999jc900005.

36. Lagerloef G., Colomb F. C., Le Vine D., et al. The Aquarius/SAC-D Mission: Designed to Meet the Salinity Remote-Sensing Challenge // Oceanography. — 2008. — Vol. 21, no. 1. — P. 68–81. — https://doi.org/10.5670/oceanog.2008.68.

37. Larson K. M., Gutmann E. D., Zavorotny V. U., et al. Can we measure snow depth with GPS receivers? // Geophysical Research Letters. — 2009. — Vol. 36, no. 17. — P. L17502. — https://doi.org/10.1029/2009gl039430.

38. Lebedev G. A. and Sukhorukov K. K. Propagation of Electromagnetic and Acoustic Waves in Sea Ice. — Saint Petersburg : Russian State Hydrometeorological University, 2001. — 82 p. — EDN: https://elibrary.ru/RAXRWZ ; (in Russian).

39. Li C. and Huang W. An Algorithm for Sea-Surface Wind Field Retrieval From GNSS-R Delay-Doppler Map // IEEE Geoscience and Remote Sensing Letters. — 2014. — Vol. 11, no. 12. — P. 2110–2114. — https://doi.org/10.1109/lgrs.2014.2320852.

40. Lopatin V. P., Murzabekov M. M. and Bobrov D. S. Results of determining the geoid height profile and vertical line deviation using GNSS signals reflected from water surface // Geodesy and Cartography. — 2024. — Vol. 1004, no. 2. — P. 21–30. — https://doi.org/10.22389/0016-7126-2024-1004-2-21-30.

41. Lopatin Vladislav and Fateev Vyacheslav. Methods of Bistatic GNSS-Radio Altimetry for Determining Height Profile of the Ocean and Their Experimental Verification // 5th Symposium on Terrestrial Gravimetry: Static and Mobile Measurements (TG-SMM 2019). — Cham : Springer International Publishing, 2022. — P. 127–132. — https://doi.org/10.1007/1345_2022_139.

42. Mahmud M. S., Geldsetzer T., Howell S. E. L., et al. Incidence Angle Dependence of HH-Polarized C- and L-Band Wintertime Backscatter Over Arctic Sea Ice // IEEE Transactions on Geoscience and Remote Sensing. — 2018. — Vol. 56, no. 11. — P. 6686–6698. — https://doi.org/10.1109/tgrs.2018.2841343.

43. Martín-Neira M. A Passive Reflectometry and Interferometry System (PARIS): Application to ocean altimetry // ESA Journal. — 1993. — Vol. 17. — P. 331–355.

44. McMullan K. D., Brown M. A., Martín-Neira M., et al. SMOS: The Payload // IEEE Transactions on Geoscience and Remote Sensing. — 2008. — Vol. 46, no. 3. — P. 594–605. — https://doi.org/10.1109/tgrs.2007.914809.

45. Melsheimer C. and Spreen G. AMSR2 ASI sea ice concentration data, Antarctic, version 5.4 (NetCDF) (July 2012 - December 2019). — 2019. — https://doi.org/10.1594/PANGAEA.898400.

46. MERRByS. Measurement of Earth Reflected Radio-navigation signals By Satellite. — URL: https://merrbys.co.uk/ (visited on 08/20/2025).

47. Mitnik L. M. and Kalmykov A. I. Structure and dynamics of the Sea of Okhotsk marginal ice zone from "ocean" satellite radar sensing data // Journal of Geophysical Research: Oceans. — 1992. — Vol. 97, no. C5. — P. 7429–7445. — https://doi.org/10.1029/91jc01596.

48. Mitnik L. M. and Viktorov S. V. Radar Location of the Earth’s Surface from Space. — Saint Petersburg : Gidrometeoizdat, 1990. — 200 p. — EDN: https://elibrary.ru/LTMGKT ; (in Russian).

49. Najibi N. and Jin S. Physical Reflectivity and Polarization Characteristics for Snow and Ice-Covered Surfaces Interacting with GPS Signals // Remote Sensing. — 2013. — Vol. 5, no. 8. — P. 4006–4030. — https://doi.org/10.3390/rs5084006.

50. Nogués-Correig O., Galí E. C., Campderrós J. S., et al. A GPS-Reflections Receiver That Computes Doppler/Delay Maps in Real Time // IEEE Transactions on Geoscience and Remote Sensing. — 2007. — Vol. 45, no. 1. — P. 156–174. — https://doi.org/10.1109/TGRS.2006.882257.

51. Onstott R. G. SAR and scatterometer signatures of sea ice // Microwave Remote Sensing of Sea Ice / ed. by F. D. Carsey. — Washington : American Geophysical Union, 1992. — P. 73–104. — https://doi.org/10.1029/gm068p0073.

52. Ryabkova M., Karaev V., Guo J., et al. A Review of Wave Spectrum Models as Applied to the Problem of Radar Probing of the Sea Surface // Journal of Geophysical Research: Oceans. — 2019. — Vol. 124, no. 10. — P. 7104–7134. — https://doi.org/10.1029/2018jc014804.

53. Sandven S., Spreen G., Heygster G., et al. Sea Ice Remote Sensing-Recent Developments in Methods and Climate Data Sets // Surveys in Geophysics. — 2023. — Vol. 44, no. 5. — P. 1653–1689. — https://doi.org/10.1007/s10712-023-09781-0.

54. Smith G. C., Allard R., Babin M., et al. Polar Ocean Observations: A Critical Gap in the Observing System and Its Effect on Environmental Predictions From Hours to a Season // Frontiers in Marine Science. — 2019. — Vol. 6. — https://doi.org/10.3389/fmars.2019.00429.

55. Sutton R., Schroeder E., Thompson A., et al. Satellite-Aircraft Multipath and Ranging Experiment Results at L Band // IEEE Transactions on Communications. — 1973. — Vol. 21, no. 5. — P. 639–647. — https://doi.org/10.1109/tcom.1973.1091693.

56. Timchenko A. I., Sinitsyn Y. A. and Efimov V. B. Simulation of radio wave scattering by ice coatings // Radiophysics and Quantum Electronics. — 1985. — Vol. 28, no. 7. — P. 556–561. — https://doi.org/10.1007/bf01034097.

57. Titchenko Y. Bistatic Doppler spectrum of radiation reflected by a water surface // Russian Journal of Earth Sciences. — 2020. — Vol. 20, no. 6. — ES6007. — https://doi.org/10.2205/2020es000745.

58. Ulaby F. T., Moore R. K. and Fung A. K. Microwave Remote Sensing. Vol. 3: From Theory to Applications. — Artech House, 1986.

59. Vagapov Z. K., Gavrilo V. P., Kozlov A. I., et al. Remote Sensing Methods for Sea Ice Research. — Saint Petersburg : Gidrometeoizdat, 1993. — 342 p. — EDN: https://elibrary.ru/ALWNAJ ; (in Russian).

60. Voronovich A. G. Small-slope approximation for electromagnetic wave scattering at a rough interface of two dielectric half-spaces // Waves in Random Media. — 1994. — Vol. 4, no. 3. — P. 337–367. — https://doi.org/10.1088/0959-7174/4/3/008.

61. Voronovich A. G. and Zavorotny V. U. Theoretical model for scattering of radar signals in Ku- and C-bands from a rough sea surface with breaking waves // Waves in Random Media. — 2001. — Vol. 11, no. 3. — P. 247–269. — https://doi.org/10.1080/13616670109409784.

62. Winebrenner D. P., Bredow J., Fung A. K., et al. Microwave sea ice signature modeling // Microwave Remote Sensing of Sea Ice / ed. by F. D. Carsey. — Washington : American Geophysical Union, 1992. — P. 137–175. — https://doi.org/10.1029/gm068p0137.

63. Yan Q. and Huang W. Sea Ice Sensing From GNSS-R Data Using Convolutional Neural Networks // IEEE Geoscience and Remote Sensing Letters. — 2018. — Vol. 15, no. 10. — P. 1510–1514. — https://doi.org/10.1109/lgrs.2018.2852143.

64. Yan Q. and Huang W. Sea Ice Remote Sensing Using GNSS-R: A Review // Remote Sensing. — 2019. — Vol. 11, no. 21. — P. 2565. — https://doi.org/10.3390/rs11212565.

65. Yan Q., Huang W. and Moloney C. Neural Networks Based Sea Ice Detection and Concentration Retrieval From GNSS-R Delay-Doppler Maps // IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. — 2017. — Vol. 10, no. 8. — P. 3789–3798. — https://doi.org/10.1109/jstars.2017.2689009.

66. Yang T., Wan W., Sun Z., et al. Comprehensive Evaluation of Using TechDemoSat-1 and CYGNSS Data to Estimate Soil Moisture over Mainland China // Remote Sensing. — 2020. — Vol. 12, no. 11. — P. 1699. — https://doi.org/10.3390/rs12111699.

67. Zapevalov A. S. and Knyazkov A. S. Simulation of characteristics of the sea surface for problems of quasi-specular reflection of radio waves // Processes in Geomedia. — 2019. — 4 (22). — P. 490–496. — EDN: https://elibrary.ru/GRBOQO ; (in Russian).

68. Zavorotny V. U., Gleason S., Cardellach E., et al. Tutorial on Remote Sensing Using GNSS Bistatic Radar of Opportunity // IEEE Geoscience and Remote Sensing Magazine. — 2014. — Vol. 2, no. 4. — P. 8–45. — https://doi.org/10.1109/mgrs.2014.2374220.

69. Zhu Y., Yu K., Zou J., et al. Sea Ice Detection Based on Differential Delay-Doppler Maps from UK TechDemoSat-1 // Sensors. — 2017. — Vol. 17, no. 7. — P. 1614. — https://doi.org/10.3390/s17071614.


Login or Create
* Forgot password?