Abstract and keywords
Abstract (English):
The application of artificial intelligence (AI) for environmental monitoring enables accurate forecasts of natural disasters, identification of pollution sources, and comprehensive monitoring of air and water quality. This article provides an overview of the challenges associated with monitoring using traditional methods, as well as the potential for implementing AI-based solutions. The article discusses several models that apply artificial intelligence in the implementation of environmental monitoring, demonstrating case studies of environmental research. However, realizing the full potential of AI faces obstacles such as the lack of specialized AI experts in the environmental sector and the problem of data access, control and privacy. The above challenges are more acute in regions with developing technological infrastructure.

Keywords:
Artificial intelligence, environmental monitoring, pollution detection, disaster forecasting, air and water quality
Text
Text (PDF): Read Download
References

1. Artamonov V. A., Artamonova E. V. and Safonov A. E. Artificial Intelligence Security // Zaŝita informacii. Inside. — 2022. — 6(108). — P. 8–17. — EDN: https://elibrary.ru/DXRCNO ; (in Russian).

2. Baryshnikova O. S. and Kolodina A. I. Environmental monitoring with application of GIS-technologies // Models and technologies environmental engineering (regional aspect). — 2019. — 2(9). — P. 109–113. — EDN: https://elibrary.ru/NVWONA ; (in Russian).

3. Bykov F. L. and Tsaralov N. D. Modern application practices of machine learning in weather forecasting // StudNet. — 2022. — Vol. 5, no. 4. — EDN: https://elibrary.ru/JFTHOB ; (in Russian).

4. Cheremisova A. A. Integrating artificial intelligence into software development: Prospects and challenges // Sustainable development of society: New scientific approaches and research collection of scientific papers on the materials of the III International Scientific and Practical Conference. — Moscow : CESD, 2024. — P. 90–97. — EDN: https://elibrary.ru/OZRGNE ; (in Russian).

5. Chernousova P. E., Gorkovets N. S. and Bobrov I. L. General comparison of methods to improve the quality of satellite images using machine learning and deep learning methods // Engineers of Russia and Belarus: strength in cooperation: Proceedings of the International Scientific and Practical Conference. — Arkhangelsk : Northern (Arctic) Federal University named after M. V. Lomonosov, 2024. — P. 212–215. — EDN: https://elibrary.ru/TPPDXG ; (in Russian).

6. Demidova L. A. and Sokolova Yu. S. Two-stage data classification method based on SVM-algorithm and the k nearest neighbors algorithm // Vestnik of Ryazan State Radio Engineering University. — 2017. — Vol. 62. — P. 119–132. — https://doi.org/10.21667/1995-4565-2017-62-4-119-132. — (In Russian).

7. Dobrinskaya A. A., Yuriev Yu. Yu., Rieger A. A., et al. Modern environmental monitoring systems and areas of their application // Modern issues of safety: Proceedings of the III University Scientific and Technical Conference young researchers. — Volgograd : Volgograd State Technical University, 2025. — P. 77–79. — EDN: https://elibrary.ru/BZWHJI ; (in Russian).

8. Dovgal V. A. Analysis of the relevance of the use of collaborative robots in the industry 4.0 paradigm // Control systems, complex systems: modeling, stability, stabilization, intelligent technologies: proceedings of the VIII International Scientific and Practical Conference. — Elets : Elets State University named after I. A. Bunin, 2022. — P. 303–308. — EDN: https://elibrary.ru/CCFLSC ; (in Russian).

9. Dovgal V. A. and Kuizheva S. K. Use of big data technology for environmental protection // Fundamental and applied aspects of geology, geophysics and geoecology using modern information technologies: proceedings of the VI International Scientific and Practical Conference. Part 1. — Maykop : Individual entrepreneur Kucherenko Vyacheslav Olegovich, 2021. — P. 86–94. — EDN: https://elibrary.ru/IUTXEJ ; (in Russian).

10. Dzhumabaev M. S. Environmental monitoring of environmental objects: the essence of the concept // AgroEcoInfo. — 2023. — Vol. 3, no. 57. — https://doi.org/10.51419/202133304.. — EDN: https://elibrary.ru/UYDIYV ; (in Russian).

11. Fishcheva I. N., Goloviznina V. S. and Kotelnikov E. V. Traditional Machine Learning and Deep Learning Models for Argumentation Mining in Russian Texts // Computational Linguistics and Intellectual Technologies. — Moscow : Russian State University for the Humanities, 2021. — P. 246–258. — https://doi.org/10.28995/2075-7182-2021-20-246-258.

12. Kolegov P. P. Application of machine learning methods for slope classification based on satellite imagery, illustrated using selected areas in Northern Priokhotyea // Bulletin of the North-East Science Center. — 2023. — No. 4. — P. 62–71. — https://doi.org/10.34078/1814-0998-2023-4-62-71. — (In Russian).

13. Krivosheev N. A. and Spitsyn V. G. Machine Learning Methods for Classification Textual Information // GraphiCon’2019 Proceedings. Volume 1. — Bryansk State Technical University, 2019. — P. 266–269. — https://doi.org/10.30987/graphicon-2019-1-266-269. — (In Russian).

14. Liu G., Qin H., Shen Q., et al. Probabilistic spatiotemporal solar irradiation forecasting using deep ensembles convolutional shared weight long short-term memory network // Applied Energy. — 2021. — Vol. 300. — P. 117379. — https://doi.org/10.1016/j.apenergy.2021.117379.

15. Medvedkov A. A. Geoecological problems in the context of climate change: Theoretical analysis and regional manifestations // Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. — 2024. — Vol. 88, S3. — P. 263–280. — https://doi.org/10.31857/S2587556624030011. — EDN: https://elibrary.ru/SPCWFT ; (in Russian).

16. Minkin A. S. and Nikolaeva O. V. Cloud Recognition in Hyperspectral Satellite Images Using an Explainable Machine Learning Model // Atmospheric and Oceanic Optics. — 2024. — Vol. 37, no. 3. — P. 400–408. — https://doi.org/10.1134/s1024856024700507.

17. Naberezhnyeh D. D. Use of preprocessing methods for the classification problem // Information and telecommunication technologies and mathematical modeling of high-tech systems: Proceedings of the All-Russian conference with international participation. — Moscow : RUDN University, 2023. — P. 373–377. — EDN: https://elibrary.ru/YYCYAT ; (in Russian).

18. Novgorodov K. I. Algorithm for control of information and measuring complex for monitoring the state of water bodies // Caspian journal: Control and High Technologies. — 2024. — 4(68). — P. 114–123. — EDN: https://elibrary.ru/ZAPHSC ; (in Russian).

19. Orlov A. I. Organizational-economic modeling and artificial intelligence in the digital economy (On the example of quality management) // Polythematic Online Scientific Journal of Kuban State Agrarian University. — 2021. — No. 169. — P. 216–242. — https://doi.org/10.21515/1990-4665-169-016. — (In Russian).

20. Pak Ki. S. and Jong S. Il. The prediction of heavy rainfall using a neural network and consensus forecast method for the system of environmental calamity prevention // Science, technology and education. — 2017. — 3(33). — P. 113–120. — EDN: https://elibrary.ru/YHFAFD.

21. Popova I. V., Burak E. E. and Vorobyeva Yu. A. Using GIS for monitoring and development of green plantings of the city // Housing and utilities infrastructure. — 2018. — 4(7). — P. 67–75. — EDN: https://elibrary.ru/YMKENN ; (in Russian).

22. Razveeva I. F. and Rakhimbaeva E. O. Application of artificial intelligence methods in the analysis of phytoplankton populations on the water surface // Intelligent information technologies and mathematical modeling 2022: International scientific conf. (settlement Divnomorskoye, Krasnodar Territory, August 26-29, 2022). — Rostov-on-Don : DSTU, 2022. — P. 45–49. — EDN: https://elibrary.ru/KYTBBV ; (in Russian).

23. Sharavina I. M. and Molchanova Ya. P. Harnessing artificial intelligence for environmental monitoring // Bulletin of the Mendeleev Russian State Technical University: Humanities and Socio-Economic Research. — 2024. — No. 15–2. — P. 77–84. — EDN: https://elibrary.ru/SKTDKQ ; (in Russian).

24. Shcherbakov G. A. Resource intensity of modern intelligent systems: Environmental component of artificial intelligence technologies development // Soft Measurements and Computing. — 2023. — Vol. 9/2, no. 70. — P. 40–48. — https://doi.org/10.36871/2618-9976.2023.09-2.005. — (In Russian).

25. Skatkov A. V., Bryukhovetsky A. A. and Moiseev D. V. Adaptation of mechanisms of artificial immune systems to control environmental parameters // Monitoring systems of environment. — 2020. — No. 2. — P. 127–133. — https://doi.org/10.33075/2220-5861-2020-2-127-133. — (In Russian).

26. Stepanov K. D., Druzhinina O. V. and Petrov A. A. Analysis of models and development of a software package for assessing the impact of vibration effects of vehicles on urban infrastructure // Nonlinear World. — 2024. — Vol. 22, no. 1. — P. 5–14. — https://doi.org/10.18127/j20700970-202401-01. — (In Russian).

27. Valero-Carreras D., Aparicio J. and Guerrero N. M. Support vector frontiers: A new approach for estimating production functions through support vector machines // Omega. — 2021. — Vol. 104. — P. 102490. — https://doi.org/10.1016/j.omega.2021.102490.

28. Ye Zh., Yang J., Zhong N., et al. Tackling environmental challenges in pollution controls using artificial intelligence: A review // Science of The Total Environment. — 2020. — Vol. 699. — P. 134279. — https://doi.org/10.1016/j.scitotenv.2019.134279.

29. Zhao L., Li Zh. and Qu L. A novel machine learning-based artificial intelligence method for predicting the air pollution index PM2.5 // Journal of Cleaner Production. — 2024. — Vol. 468. — P. 143042. — https://doi.org/10.1016/j.jclepro.2024.143042.


Login or Create
* Forgot password?