employee from 01.01.2015 until now
Moscow, Moscow, Russian Federation
from 01.01.2021 until now
Korolev, Moscow, Russian Federation
VAK Russia 1.6
UDC 55
UDC 550.34
UDC 550.383
CSCSTI 37.25
CSCSTI 37.01
CSCSTI 37.15
CSCSTI 37.31
CSCSTI 38.01
CSCSTI 36.00
CSCSTI 37.00
CSCSTI 38.00
CSCSTI 39.00
CSCSTI 52.00
Russian Classification of Professions by Education 05.00.00
Russian Library and Bibliographic Classification 26
Russian Trade and Bibliographic Classification 63
BISAC SCI SCIENCE
The study investigates the properties of deep and bottom waters in four previously unexplored fracture zones of the Mid-Atlantic Ridge located between 24° N and 36° N. Based on new field data, the spatial variability of thermohaline and hydrochemical structures in each of the fracture zones was studied. In the meridional direction, a decrease in oxygen and temperature and an increase in the concentrations of nutrients from north to south on both sides of the Mid-Atlantic Ridge have been confirmed. The absence of bottom water flow from the Eastern Atlantic to the Western Atlantic was shown to be mainly due to the large number of orographic obstacles within the fracture zones and the positive horizontal density gradient. The presence of deep water exchange between different parts of the Atlantic in all fracture zones was established. In the northern fracture zones, the flow is directed mainly westward at depths of 2200-2800 m, while in the southern fracture zones, eastward transport prevails at depths of 3100-4400 m. Thus, deep waters are renewed within the fracture zones and transported across the Mid-Atlantic Ridge.
transform fracture zone, dissolved oxygen, nutrients, water masses, bottom flow, thermohaline structure
1. Bordovsky O. K. and Chernyakova A. M. Modern methods of ocean hidrochemical investigations. — Moscow : USSR Academy of Sciences, IO RAS, 1992. — 199 p. — (In Russian).
2. Álvarez M., Pérez F. F., Bryden H., et al. Physical and biogeochemical transports structure in the North Atlantic subpolar gyre // Journal of Geophysical Research: Oceans. — 2004. — Vol. 109, no. C3. — https://doi.org/10.1029/2003jc002015.
3. Demidov A. N., Artamonova K. V., Gippius F. N., et al. Water Masses of the Guiana Basin // Water. — 2024. — Vol. 16, no. 23. — P. 3494. — https://doi.org/10.3390/w16233494.
4. Frajka-Williams E., Cunningham S. A., Bryden H., et al. Variability of Antarctic Bottom Water at 24.5∘N in the Atlantic // Journal of Geophysical Research: Oceans. — 2011. — Vol. 116, no. C11. — https://doi.org/10.1029/2011jc007168.
5. Frey D. I. Asymmetry of abyssal warming in the Atlantic Ocean // Global and Planetary Change. — 2025. — Vol. 256. — P. 105132. — https://doi.org/10.1016/j.gloplacha.2025.105132.
6. Frey D. I., Zuev O. A., Mekhova O. S., et al. An 800-Km-Long Erosional Channel System as a Pathway for Antarctic Bottom Water Abyssal Flow Into the Northwest Atlantic // Journal of Geophysical Research: Oceans. — 2025. — Vol. 130, no. 1. — e2024JC021846. — https://doi.org/10.1029/2024jc021846.
7. Gana S. and Provost C. Circulation and fluxes of the Central North Atlantic in 1983/84 estimated by inverse analysis of "Topogulf" hydrographic data // Journal of Marine Systems. — 1993. — Vol. 4, no. 1. — P. 67–92. — https://doi.org/10.1016/0924-7963(93)90020-m.
8. GEBCO Bathymetric Compilation Group 2024. The GEBCO_2024 Grid - a continuous terrain model of the global oceans and land. — 2024. — https://doi.org/10.5285/1C44CE99-0A0D-5F4F-E063-7086ABC0EA0F.
9. Hall M. M., McCartney M. and Whitehead J. A. Antarctic Bottom Water Flux in the Equatorial Western Atlantic // Journal of Physical Oceanography. — 1997. — Vol. 27, no. 9. — P. 1903–1926. — https://doi.org/10.1175/1520-0485(1997)027<1903:ABWFIT>2.0.co;2.
10. Harvey J. and Arhan M. The Water Masses of the Central North Atlantic in 1983-84 // Journal of Physical Oceanography. — 1988. — Vol. 18, no. 12. — P. 1855–1875. — https://doi.org/10.1175/1520-0485(1988)018<1855:TWMOTC>2.0.co;2.
11. Hernández-Guerra A., Pelegrí J. L., Fraile-Nuez E., et al. Meridional overturning transports at 7.5N and 24.5N in the Atlantic Ocean during 1992-93 and 2010-11 // Progress in Oceanography. — 2014. — Vol. 128. — P. 98–114. — https://doi.org/10.1016/j.pocean.2014.08.016.
12. Holfort J. and Siedler G. The Meridional Oceanic Transports of Heat and Nutrients in the South Atlantic // Journal of Physical Oceanography. — 2001. — Vol. 31, no. 1. — P. 5–29. — https://doi.org/10.1175/1520-0485(2001)031<0005:TMOTOH>2.0.co;2.
13. Johnson G. C. and Purkey S. G. Refined Estimates of Global Ocean Deep and Abyssal Decadal Warming Trends // Geophysical Research Letters. — 2024. — Vol. 51, no. 18. — e2024GL111229. — https://doi.org/10.1029/2024gl111229.
14. Koltermann K. P., Sokov A. V., Tereschenkov V. P., et al. Decadal changes in the thermohaline circulation of the North Atlantic // Deep Sea Research Part II: Topical Studies in Oceanography. — 1999. — Vol. 46, no. 1/2. — P. 109–138. — https://doi.org/10.1016/s0967-0645(98)00115-5.
15. Krechik V. A., Kapustina M. V., Frey D. I., et al. Properties of Antarctic Bottom Water in the Western Gap (AzoresGibraltar Fracture Zone, Northeast Atlantic) in 2021 // Deep Sea Research Part I: Oceanographic Research Papers. — 2023. — Vol. 202. — P. 104191. — https://doi.org/10.1016/j.dsr.2023.104191.
16. Lavín A. M., Bryden H. L. and Parrilla G. Mechanisms of heat, freshwater, oxygen and nutrient transports and budgets at 24.5∘N in the subtropical North Atlantic // Deep Sea Research Part I: Oceanographic Research Papers. — 2003. — Vol. 50, no. 9. — P. 1099–1128. — https://doi.org/10.1016/s0967-0637(03)00095-5.
17. Liu M. and Tanhua T. Water masses in the Atlantic Ocean: characteristics and distributions // Ocean Science. — 2021. — Vol. 17, no. 2. — P. 463–486. — https://doi.org/10.5194/os-17-463-2021.
18. Mauritzen C., Polzin K. L., McCartney M. S., et al. Evidence in hydrography and density fine structure for enhanced vertical mixing over the Mid-Atlantic Ridge in the western Atlantic // Journal of Geophysical Research: Oceans. — 2002. — Vol. 107, no. C10. — https://doi.org/10.1029/2001jc001114.
19. McCartney M. S., Bennett S. L. and Woodgate-Jones M. E. Eastward Flow through the Mid-Atlantic Ridge at 11∘N and Its Influence on the Abyss of the Eastern Basin // Journal of Physical Oceanography. — 1991. — Vol. 21, no. 8. — P. 1089–1121. — https://doi.org/10.1175/1520-0485(1991)021<1089:EFTTMA>2.0.co;2.
20. Mercier H. and Speer K. G. Transport of Bottom Water in the Romanche Fracture Zone and the Chain Fracture Zone // Journal of Physical Oceanography. — 1998. — Vol. 28, no. 5. — P. 779–790. — https://doi.org/10.1175/1520-0485(1998)028<0779:TOBWIT>2.0.co;2.
21. Messias M. J., Andrié C., Mémery L., et al. Tracing the North Atlantic Deep Water through the Romanche and Chain fracture zones with chlorofluoromethanes // Deep Sea Research Part I: Oceanographic Research Papers. — 1999. — Vol. 46, no. 7. — P. 1247–1278. — https://doi.org/10.1016/s0967-0637(99)00005-9.
22. Methods of Seawater Analysis / ed. by K. Grasshoff, K. Kremling and M. Ehrhardt. — Weinheim (Germany) : Wiley, 1999. — 600 p. — https://doi.org/10.1002/9783527613984.
23. Morozov E. G., Frey D. I., Zuev O. A., et al. Antarctic Bottom Water in the Vema Fracture Zone // Journal of Geophysical Research: Oceans. — 2023. — Vol. 128, no. 8. — e2023JC019967. — https://doi.org/10.1029/2023jc019967.
24. Morozov E. G., Tarakanov R. Y., Frey D. I., et al. Bottom water flows in the tropical fractures of the Northern Mid-Atlantic Ridge // Journal of Oceanography. — 2017. — Vol. 74, no. 2. — P. 147–167. — https://doi.org/10.1007/s10872-017-0445-x.
25. Pickart R. S., Straneo F. and Moore G. W. K. Is Labrador Sea Water formed in the Irminger basin? // Deep Sea Research Part I: Oceanographic Research Papers. — 2003. — Vol. 50, no. 1. — P. 23–52. — https://doi.org/10.1016/s0967-0637(02)00134-6.
26. Tsuchiya M., Talley L. D. and McCartney M. S. An eastern Atlantic section from Iceland southward across the equator // Deep Sea Research Part A. Oceanographic Research Papers. — 1992. — Vol. 39, no. 11/12. — P. 1885–1917. — https://doi.org/10.1016/0198-0149(92)90004-d.
27. Van Aken H. M. The hydrography of the mid-latitude northeast Atlantic Ocean // Deep Sea Research Part I: Oceanographic Research Papers. — 2000. — Vol. 47, no. 5. — P. 757–788. — https://doi.org/10.1016/s0967-0637(99)00092-8.
28. Zuev O. A. and Seliverstova A. M. Spatial Variability of the Hydrochemical Structure in Bottom Gravity Current in the Vema Fracture Zone // Russian Journal of Earth Sciences. — 2024. — Vol. 24. — ES5002. — https://doi.org/10.2205/2024es000945.




