KAULA'S RULE - A CONSEQUENCE OF PROBABILITY LAWS BY A. N. KOLMOGOROV AND HIS SCHOOL
Abstract and keywords
Abstract (English):
The paper analyzes a possible cause for the universal behavior of the covariating fluctuations of planet gravity. The consideration based on the idea that the topography fluctuations are governed by a random Markov process leads to universal dependence k−2" role="presentation" style="position: relative;">k-2k-2k^{-2} with k" role="presentation" style="position: relative;">kkk being the amplitudes of the j" role="presentation" style="position: relative;">jjj-th spherical harmonic of the terrain profile. This law known as the Kaula's rule is then derived from the solution of the Fokker - Plank equation for the fluctuations of the terrain profile as the function of the horizontal coordinate. The respective diffusivities for Earth and Venus are retrieved from the existing data.

Keywords:
Kaula's rule, Thumb rule, planet gravity, Fokker-Planck equation
Text
Publication text (PDF): Read Download
References

1. Barenblatt, G. I. (1996) , Scaling, Similarity and Intermediate Asymptotics, 386 pp., Cambridge Univ. Press, Cambridge, UK, https://doi.org/10.1017/CBO9781107050242.

2. Barenblatt, G. I. (2003) , Scaling, 171 pp., Cambridge Univ. Press, Cambridge, UK, https://doi.org/10.1017/CBO9780511814921.

3. Bridgman, P. W. (1932) , Dimensional Analysis, 113 pp., Yale Univ. Press, London, UK.

4. Gledzer, E. B., G. S. Golitsyn (2010) , Scaling and finite ensembles of particles with the energy influx, Doklady RAS, 433, no. 4, p. 466-470.

5. Golitsyn, G. S. (2001) , The place of the Gutenberg-Richter law among other statistical laws of nature, Comput. Seismology, 77, p. 160-192.

6. Golitsyn, G. S. (2003) , Statistical description of the planetary surface relief and its evolution, Proc. RAS. Physics of the Earth, no. 7, p. 3-8.

7. Golitsyn, G. S. (2018) , Laws of random walks by A. N. Kolmogorov 1934, Soviet Meteorol. Hydrol, no. 3, p. 5-15, https://doi.org/10.3103/S1068373918030019.

8. Golitsyn, G. S. (2018) , Random Walk Laws by A. N. Kolmogorov as the bases for understanding most phenomena of the nature, Izv. RAS Atmos. and Ocean. Phys., 54, p. 223-228.

9. Kaula, W. M. (1966) , Theory of Satellite Geodesy, 143 pp., Bleinsdell, Waltham. Ma.

10. Kolmogorov, A. N. (1934) , Zufallige Bewegungen, Ann. Math. , 35, p. 166-117, https://doi.org/10.2307/1968123.

11. Konopliv, A. S., et al. (2014) , The Vesta gravity field, Icarus, 240, p. 103-117, https://doi.org/10.1016/j.icarus.2013.09.005.

12. Lindborg, E. (2008) , Stratified turbulence: a possible interpretation of some geophysical turbulence measurements, J. Atmos. Sci., 65, p. 2416-2424, https://doi.org/10.1175/2007JAS2455.1.

13. McMahon, J. W., et al. (2016) , Understanding the Kaula's rule for small bodies, Proc. 47th Lunar and Planetary Sci. Conference, AGU, Washington, DC (https://www.hou.usra.edu/meetings/lpsc2016/pdf 2129.pdf).

14. Monin, A. S., A. M. Yaglom (1975) , The Statistical Hydromechanics, MIT Press, Cambridge (Russ. ed. 1967).

15. Obukhov, A. M. (1941) , On the energy distribution in the spectrum of turbulent flow, Proc. (Doklady) USSR Ac. Sci., 32, no. 1, p. 22-24.

16. Obukhov, A. M. (1959) , Description of turbulence in terms of Lagrangian variables, Adv. Geophys., 6, p. 113-115, https://doi.org/10.1016/S0065-2687(08)60098-9.

17. Rexer, M., C. Hirt (2015) , Ultra-high spherical harmonics analysis and application to planetary topography of Earth, Mars and Moon, Surv. Geophys., 36, no. 6, p. 803-830, https://doi.org/10.1007/s10712-015-9345-z.

18. Richardson, L. F. (1926) , Atmospheric diffusion shown on a distance-neighbour graph, Proc. Roy. Soc., A110, no. 756, p. 709-737, https://doi.org/10.1098/rspa.1926.0043.

19. Richardson, L. F. (1929) , A search for the law of atmospheric diffusion, Beitr. Phys. für Atmosphäre, 15, no. 1, p. 24-29.

20. Turcotte, D. L. (1997) , Chaos and Fractals in Geology and Geophysics, 416 pp., Cambridge University Press, New York, https://doi.org/10.1017/CBO9781139174695.

21. Yaglom, A. M. (1955) , Correlation theory for processes with stochastic stationary increments of the n-th order, Math. Collection, 37, no. 1, p. 259-288 (in Russian).

22. Yaglom, A. M. (1986) , Correlation Theory of Stationary and Related Random Functions, 526 pp., Springer Verlag, Berlin.

Login or Create
* Forgot password?