LATE QUATERNARY LATERAL SEDIMENTATION IN THE SÃO TOMÉ SEAMOUNT AREA OF THE WESTERN SOUTH ATLANTIC
Abstract and keywords
Abstract (English):
This work is focused on a problem of distinguishing between contourites and turbidites in the southwestern Brazil Basin, which is crucial for better understanding of the Late Quaternary history of interplay between along slope and down slope sedimentation processes in the western South Atlantic. The study embraces an area between the Almirante Saldanha and São Tomé Seamounts, which is not linked to any known depositional system. This area was not previously studied in frame of the contourite paradigm. Very high-resolution seismic records and lithological data acquired during three cruises of the RV Akademik Ioffe (2011-2013) revealed domination of lateral sedimentation in the area of the São Tomé Seamount. Interplay between along slope and gravity driven sedimentation processes interacting with the ocean floor topography resulted in the formation of complicated sediment structures and a wide range of seismic facies. Along slope sedimentation processes are controlled by the Antarctic bottom water current, which reworked coarse-grained material derived from the continental slope through turbidity flows. The study area is divided into two zones, which are characterized by domination of either gravity flows or bottom current related sedimentation processes. The São Tomé Seamount marks a boundary between these zones. The obtained results improved knowledges about the formation history of the Upper Quaternary sediment cover on the continental rise of the southwestern Brazil Basin and about interplay between gravity-driven and bottom current related sedimentation processes during the last glacial-interglacial cycle.

Keywords:
Contourites, turbidites, continental rise, bottom current, AABW, seismic profiling, seismic facies
Text
Publication text (PDF): Read Download
References

1. Allen, M. B., H. A. Armstrong (2008) , Arabia-Eurasia collision and the forcing of mid-Cenozoic global cooling, Palaeogeography, Palaeoclimatology, Palaeoecology, 265, no. 1-2, p. 52-58, https://doi.org/10.1016/j.palaeo.2008.04.021.

2. Barash, M. S. (1988) , Quaternary Paleooceanology of the Atlantic Ocean, Nauka, Moscow (in Russian).

3. Barash, M. S., N. S. Oskina, N. S. Bylum (1983) , Quaternary Biostratigraphy and Surface Paleotemperatures Based on Planktonic Foraminifers, Initial Reports of the Deep Sea Drilling Project, 72 (eds. P. F. Barker, D. A. Johnson, & R. L. Carlson), p. 849-869, U.S. Government Printing Office, Washington, https://doi.org/10.2973/dsdp.proc.72.142.1983.

4. Barker, P. F., D. A. Johnson, R. L. Carlson, et al. (1983) , Site 515: Brazil Basin, Initial Reports of the Deep Sea Drilling Project, 72 (P. F. Barker et al. (eds.), p. 54-154, U.S. Government Printing Office, Washington.

5. Bassetto, M., F. F. Alkmim, et al. (2000) , The oceanic segment of the Southern Brazilian margin: Morpho-structural domains and their tectonic significance, Geophysical Monograph Series, 115, p. 235-299.

6. Bleil, U., M. Breitzke, H. Buschhoff, et al. (1993) , Report and preliminary results of Meteor Cruise 23/2, Rio de Janeiro-Recife, 27.02.-19.03.1993, Berichte, Fachbereich Geowissenschaften, Universität Bremen, no. 43, p. 133.

7. Borisov, D. G., I. O. Murdmaa, E. V. Ivanova, et al. (2013) , Erosion - Accumulative Activity of the Bottom Currents on the Continental Rise of Brazil, Doklady Earth Sciences, 452, no. 3, p. 979-982, https://doi.org/10.1134/S1028334X13090146.

8. Chang, H. K., R. O. Kowsmann, A. M. F. Figueiredo, A. Bender (1992) , Tectonics and stratigraphy of the East Brazil Rift system: an overview, Tectonophysics, 213, no. 1-2, p. 97-138, https://doi.org/10.1016/0040-1951(92)90253-3.

9. Damuth, J. E. (1975) , Echo character of the western equatorial Atlantic floor and its relationship to the dispersal and distribution of terrigenous sediments, Mar. Geol., 18, p. 17-45, https://doi.org/10.1016/0025-3227(75)90047-X.

10. Damuth, J. E. (1980) , Use of high-frequency (3.5-12 kHz) echograms in the study of near-bottom sedimentation processes in the deep-sea: A review, Mar. Geol., 38, p. 51-75, https://doi.org/10.1016/0025-3227(80)90051-1.

11. Damuth, J. E., D. E. Hayes (1977) , Echo character of the East Brazilian continental margin and its relationship to sedimentary processes, Marine Geology, 24, no. 2, p. 73-95, https://doi.org/10.1016/0025-3227(77)90002-0.

12. Embley, R. W., P. J. Hoose, P. Lonsdale, L. Mayer, B. E. Tucholke (1980) , Furrowed mud waves on the western Bermuda Rise, Geological Society of America Bulletin, 91, no. 12, p. 731, https://doi.org/10.1130/0016-7606(1980)91%3C731:FMWOTW%3E2.0.CO;2.

13. Ericson, D. B., G. Wollin (1968) , Pleistocene Climates and Chronology in Deep-Sea Sediments, Science, 162, no. 3859, p. 1227-1234, https://doi.org/10.1126/science.162.3859.1227.

14. Faugères, J.-C., A. F. Lima, L. Massé, S. Zaragosi (2002) , The Columbia Channel-levee system: a fan drift in the southern Brazil Basin, Geological Society, London, Memoirs, 22, no. 1, p. 223-238, https://doi.org/10.1144/GSL.MEM.2002.022.01.16.

15. Frey, D. I., E. G. Morozov, I. Ansorge, et al. (2019) , Thermohaline structure of Antarctic Bottom Water in the abyssal basins of South Atlantic, Russ. J. Earth Sci., 19, no. 5, https://doi.org/10.2205/2019ES000679.

16. Gamboa, L. A., R. T. Buffler, P. F. Barker (1983) , Seismic Stratigraphy and Geologic History of the Rio Grande Gap and Southern Brazil Basin, Initial Reports of the Deep Sea Drilling Project, 72 (eds. P. F. Barker, D. A. Johnson, & R. L. Carlson), p. 481-496, U.S. Government Printing Office, Washington.

17. Gonthier, E., J. C. Faugères, A. Viana, et al. (2003) , Upper Quaternary deposits on the Sao Tomé deep-sea channel levee system (South Brazilian Basin): Major turbidite versus contourite processes, Marine Geology, 199, no. 1-2, p. 159-180, https://doi.org/10.1016/S0025-3227(03)00128-2.

18. Harloff, J., A. Mackensen (1997) , Recent benthic foraminiferal associations and ecology of the Scotia Sea and Argentine Basin, Marine Micropaleontology, 31, no. 1-2, p. 1-29, https://doi.org/10.1016/S0377-8398(96)00059-X.

19. Hernández-Molina, F. J., E. Llave, D. A. V. Stow (2008) , Continental Slope Contourites, Contourites. Developments in Sedimentology, 60 (eds. M. Rebesco & A. Camerlenghi), p. 379-408, Elsevier, Amsterdam, https://doi.org/10.1016/S0070-4571(08)10019-X.

20. Hüneke, H., D. A. V. Stow (2008) , Chapter 17 Identification of Ancient Contourites: Problems and Palaeoceanographic Significance, Contourites. Developments in Sedimentology, 60 (eds. M. Rebesco & A. Camerlenghi), p. 323-344, Elsevier, Amsterdam.

21. Ivanova, E., I. Murdmaa, D. Borisov, O. Dmitrenko, O. Levchenko, E. Emelyanov (2016) , Late Pliocene - Pleistocene stratigraphy and history of formation of the Ioffe calcareous contourite drift, Western South Atlantic, Marine Geology, 372, p. 17-30, https://doi.org/10.1016/j.margeo.2015.12.002.

22. Ledbetter, M. T. (1984) , Bottom-current speed in the Vema Channel recorded by particle size of sediment fine-fraction, Marine Geology, 58, no. 1-2, p. 137-149, https://doi.org/10.1016/0025-3227(84)90120-8.

23. Ledbetter, M. T. (1986) , A Late Pleistocene time-series of bottom-current speed in the Vema Channel, Palaeogeography, Palaeoclimatology, Palaeoecology, 53, no. 1, p. 97-105, https://doi.org/10.1016/0031-0182(86)90040-4.

24. Levchenko, O. V., I. O. Murdmaa (2013a) , Strategy of the lithological and seismoacoustic research of the deep-water deposits along transatlantic geotraverses during cruise 32 of the RV Akademik Ioffe, in the autumn of 2010 (Kaliningrad to Ushuaia), Oceanology, 53, p. 124-128, https://doi.org/10.1134/S0001437013010098.

25. Levchenko, O. V., I. O. Murdmaa (2013b) , Multidisciplinary investigations along the transatlantic transect Ushuaia (Argentine)-La Manche Strait: Cruise 33 of the RV Akademik Ioffe, Oceanology, 53, no. 2, p. 252-257, https://doi.org/10.1134/S0001437013010104.

26. Levchenko, O. V., I. O. Murdmaa, et al. (2014) , New Result of the Seismic Facies Analysis of the Quaternary Deposits in the Western Atlantic, Doklady Earth Sciences, 458, no. 4, p. 1256-1260, https://doi.org/10.1134/S1028334X14100080.

27. Lima, A. F., J. C. Faugeres, M. Mahiques (2009) , The Oligocene-Neogene deep-sea Columbia Channel system in the South Brazilian Basin: Seismic stratigraphy and environmental changes, Marine Geology, 266, no. 1-4, p. 18-41, https://doi.org/10.1016/j.margeo.2009.07.009.

28. Loncke, L., L. Droz, V. Gaullier, et al. (2009) , Slope instabilities from echo-character mapping along the French Guiana transform margin and Demerara abyssal plain, Mar. Pet. Geol., 26, p. 711-723, https://doi.org/10.1016/j.marpetgeo.2008.02.010.

29. Machado, L. C. R., R. O. Kowsmann, J. R. Almeida, et al. (1998) , Abstract: Modern Turbidite System in the Campos Basin: Key to Reservoir Heterogeneities, ABGP/AAPG International Conference and Exhibition, AAPG Bulletin, p. 82, American Association of Petroleum Geologists, Tulsa, USA.

30. Mackensen, A., D. K. Fütterer, et al. (1993) , Benthic foraminiferal assemblages from the eastern South Atlantic Polar Front region between 35° and 57° S: Distribution, ecology and fossilization potential, Marine Micropaleontology, 22, no. 1-2, p. 33-69, https://doi.org/10.1016/0377-8398(93)90003-G.

31. Maestro, A., G. Jané, et al. (2018) , Echo-character of the NW Iberian continental margin and the adjacent abyssal plains, J. Maps, 14, p. 56-67, https://doi.org/10.1080/17445647.2018.1424653.

32. Massé, L., J.-C. Faugères, M. Bernat, A. Pujos, M.-L. Mézerais (1994) , A 600,000-year record of Antarctic Bottom Water activity inferred from sediment textures and structures in a sediment core from the Southern Brazil Basin, Paleoceanography, 9, no. 6, p. 1017-1026, https://doi.org/10.1029/94PA01442.

33. Mézerais, M. L., J.-C. Faugères, A. G. Figueiredo, L. Massé (1993) , Contour current accumulation off the Vema Channel mouth, southern Brazil Basin: pattern of a "contourite fan", Sedimentary Geology, 82, no. 1-4, p. 173-187, https://doi.org/10.1016/0037-0738(93)90120-T.

34. Morozov, E. G., A. N. Demidov, R. Y. Tarakanov, W. Zenk (2010) , Abyssal Channels in the Atlantic Ocean, Dordrecht, 266 pp., Springer, Netherlands, https://doi.org/10.1007/978-90-481-9358-5.

35. Morozov, E. G., R. Yu. Tarakanov, et al. (2018) , Currents and water strucrure north of the Vema Channel, Russ. J. Earth Sci., 18, p. ES5006, https://doi.org/10.2205/2018ES000630.

36. Munsell Color Company, (1995) , The Geological Society of America Rock Color Chart, Rock-Color Chart Committee. Geological Society of America, Boulder, CO.

37. Murdmaa, I. O., D. G. Borisov, T. A. Demidova, E. V. Ivanova, O. V. Levchenko, Y. G. Marinova, A. D. Mutovkin, V. A. Putans (2012) , Very High Resolution Seismic Profiling at the Brazil Margin, Eos Transactions, 93, no. 25, p. 233-234, https://doi.org/10.1029/2012EO250002.

38. Pratson, L. F., E. P. Laine (1989) , The relative importance of gravity-induced versus current-controlled sedimentation during the Quaternary along the Mideast U.S. outer continental margin revealed by 3.5 kHz echo character, Mar. Geol., 89, p. 87-126, https://doi.org/10.1016/0025-3227(89)90029-7.

39. Pudsey, C. J., J. A. Howe (1998) , Quaternary history of the Antarctic Circumpolar Current: evidence from the Scotia Sea, Marine Geology, 148, no. 1-2, p. 83-112, https://doi.org/10.1016/S0025-3227(98)00014-0.

40. Reid, J. L. (1989) , On the total geostrophic circulation of the South Atlantic Ocean: Flow patterns, tracers, and transports, Progress in Oceanography, 23, no. 3, p. 149-244, https://doi.org/10.1016/0079-6611(89)90001-3.

41. Reid, J. R. (1996) , On the Circulation of the South Atlantic Ocean, The South Atlantic, G. Wefer, W. H. Berger, G. Siedler & D. J. Webb (eds.), p. 13-44, Springer, Berlin, Heidelberg.

42. Reid, J. L., W. D. Nowlin, W. C. Patzert (1977) , On the Characteristics and Circulation of the Southwestern Atlantic Ocean, Journal of Physical Oceanography, 7, no. 1, p. 62-91, https://doi.org/10.1175/1520-0485(1977)007%3C0062:OTCACO%3E2.0.CO;2.

43. Skolotnev, S. G., E. V. Ivanova, et al. (2018) , Study of Seamounts and Contourite Systems of the Central and South Atlantic during Cruise 43 of the RV Akademik Ioffe, Oceanology, 58, no. 4, p. 671-673, https://doi.org/10.1134/S0001437018040094.

44. Spooner, P. T., D. J. R. Thornalley, P. Ellis (2018) , Grain Size Constraints on Glacial Circulation in the Southwest Atlantic, Paleoceanography and Paleoclimatology, 33, no. 1, p. 21-30, https://doi.org/10.1002/2017PA003232.

45. Stow, D. A. V., J.-C. Faugères (2008) , Chapter 13 Contourite Facies and the Facies Model, Contourites. Developments in Sedimentology, 60 (eds. M. Rebesco & A. Camerlenghi), p. 223-256, Elsevier, Amsterdam, https://doi.org/10.1016/S0070-4571(08)10013-9.

46. Viana, A., A. G. Figueiredo, et al. (2003) , The Sao Tomé deep-sea turbidite system (Southern Brazil Basin): Cenozoic seismic stratigraphy and sedimentary processes, American Association of Petroleum Geologists Bulletin, 87, no. 5, p. 873-894, https://doi.org/10.1306/12100201048.

47. Viana, A. R., J.-C. Faugères, D. A. V. Stow (1998) , Bottom-current-controlled sand deposits - a review of modern shallow- to deep-water environments, Sedimentary Geology, 115, no. 1-4, p. 53-80, https://doi.org/10.1016/S0037-0738(97)00087-0.

48. Wetzel, A., F. Werner, D. A. V. Stow (2008) , Chapter 11 Bioturbation and Biogenic Sedimentary Structures in Contourites, Contourites. Developments in Sedimentology, 60 (eds. M. Rebesco & A. Camerlenghi), p. 183-202, Elsevier, Amsterdam, https://doi.org/10.1016/S0070-4571(08)10011-5.

Login or Create
* Forgot password?