We use measurements of the ionospheric electron density (Ne" role="presentation" style="position: relative;">NeNeN_e) obtained by the EISCAT Svalbard radar (ESR) and the Sodankyla Geophysical Observatory (SGO) ionosonde for comparison with the Ne" role="presentation" style="position: relative;">NeNeN_e distribution predicted by a numerical model of the polar F" role="presentation" style="position: relative;">FFF region ionosphere. The model enables representing the main large-scale ionospheric irregularities, which are primarily controlled by the interplanetary magnetic field, particle precipitation, solar zenith angle and properties of the neutral atmosphere. The analysis utilizes the data collected in March, July and January under very quiet space weather conditions, when the radar operated almost continuously during International Polar Year. The main ionospheric parameters (magnitude and height of the F2" role="presentation" style="position: relative;">F2F2F2 layer peak density) are inferred from the Ne" role="presentation" style="position: relative;">NeNeN_e composites constructed for each local time hour. The results indicate that the modeled Ne" role="presentation" style="position: relative;">NeNeN_e distributions are in a reasonable agreement with the experimental data. However, the modeled altitude and peak density systematically exceed, by about 10%, the observed values.
Polar𝐹region ionosphere, numerical modeling, plasma density, EISCAT radar, SGOionosonde
1. Benson, R. F., J. M. Grebowsky (2001) , Extremely low ionospheric peak altitudes in the polar hole region, Radio Science, 36, no. 2, p. 277-285, https://doi.org/10.1029/1999RS002401
2. Bilitza, D., D. Altadill, Y. Zhang, et al. (2014) , The international reference ionosphere 2012 - a model of international collaboration, Journal Space Weather Space Climate, 4, p. A07, https://doi.org/10.1051/swsc/2014004
3. Cai, H. T., S. Y. Ma, Y. Fan, et al. (2007) , Climatological features of electron density in the polar ionosphere from long-term observations of EISCAT/ESR radar, Annales Geophysicae, 25, p. 2561-2569, https://doi.org/10.5194/angeo-25-2561-2007
4. David, T. W., D. M. Wright, et al. (2018) , A study of observations of ionospheric upwelling made by the EISCAT Svalbard Radar during the International Polar Year campaign of 2007, Journal Geophysical Research Space Physics, 123, p. 2192-2203, https://doi.org/10.1002/2017JA024802
5. Decker, D. T., C. E. Valladares, R. Sheehan, et al. (1994) , Modeling daytime F layer over Sondrestrom, Radio Science, 29, no. 1, p. 249-268, https://doi.org/10.1029/93RS02866
6. Emmert, J. T., D. P. Drob, G. G. Shepherd, et al. (2008) , DWM07 global empirical model of upper thermospheric storm-induced disturbance winds, Journal Geophysical Research Space Physics, 113, p. A11319, https://doi.org/10.1029/2008JA013541
7. Fuller-Rowell, T. J., D. Rees, et al. (1996) , A coupled thermosphere-ionosphere model (CTIM), STEP Report: Handbook of Ionospheric Models, R. W. Schunk (Ed.), p. 217-238, Center for Atmospheric Space Science, Utah State University, Logan Utah
8. Hardy, D. A., M. S. Gussenhoven, R. Raistrick, et al. (1987) , Statistical and functional representations of the pattern of auroral energy flux, number flux, and conductivity, Journal Geophysical Research, 92, no. A11, p. 12,275-12,294, https://doi.org/10.1029/JA092iA11p12275
9. Hedin, A. E., M. A. Biondi, R. G. Burnside, et al. (1991) , Revised global model of thermospheric winds using satellite and groundbased observations, Journal Geophysical Research, 96, no. A5, p. 7657-7688, https://doi.org/10.1029/91JA00251
10. Heppner, J. P., N. C. Maynard (1987) , Empirical high-latitude electric field model, Journal Geophysical Research, 92, no. A5, p. 4467-4489, https://doi.org/10.1029/JA092iA05p04467
11. Holt, J. M., S.-R. Zhang (2008) , Long-term temperature trends in the ionosphere above Millstone Hill, Geophysical Research Letters, 35, p. L05813, https://doi.org/10.1029/2007GL031148
12. Iijima, T., T. A. Potemra (1976) , The amplitude distribution of fieldaligned currents of northern high latitudes observed by Triad, Journal Geophysical Research, 81, no. 13, p. 2165-2174, https://doi.org/10.1029/JA081i013p02165
13. Knudsen, W. C. (1974) , Magnetospheric convection and the high latitude F2F2 ionosphere, Journal Geophysical Research, 79, p. 1046-1055, https://doi.org/10.1029/JA079i007p01046
14. Kozlovsky, A., T. Turunen, T. Ulich (2013) , Rapid-run ionosonde observations of traveling ionospheric disturbances in the auroral ionosphere, Journal Geophysical Research, 118, no. 8, p. 5265-5276, https://doi.org/10.1002/jgra.50474
15. Lastovicka, J., S. C. Solomon, L. Qian (2012) , Trends in the Neutral and Ionized Upper Atmosphere, Space Science Review, 168, p. 113-145, https://doi.org/10.1007/s11214-011-9799-3
16. Lukianova, R., F. Christiansen (2006) , Modeling of the global distribution of ionospheric electric fields based on realistic maps of field-aligned currents, Journal Geophysical Research, 111, no. A3, p. A03213, https://doi.org/10.1029/2005JA011465
17. Lukianova, R., C. Hanuise, F. Christiansen (2008) , Asymmetric distribution of the ionospheric electric potential in the opposite hemispheres as inferred from the SuperDARN observations and FAC-based convection model, Journal Atmospheric Solar-Terrestrial Physics, 70, p. 2324-2335, https://doi.org/10.1016/j.jastp.2008.05.015
18. Lukianova, R., K. Mursula, A. Kozlovsky (2012) , Response of the polar magnetic field intensity to the exceptionally high solar wind streams in 2003, Geophysical Research Letters, 39, no. 4, https://doi.org/10.10029/2011GL050420
19. Lukianova, R., V. M. Uvarov, P. Coisson (2017) , Evolution of the high-latitude F region large-scale ionospheric irregularities under different solar wind and zenith angle conditions, Advances Space Research, 59, no. 2, p. 557-570, https://doi.org/10.1016/j.asr.2016.10.010
20. Millward, G. H., R. J. Moffett, et al. (1999) , Modeling the ionospheric effects of ion and electron precipitation in the cusp, Journal Geophysical Research, 104, p. 24603-24612, https://doi.org/10.1029/1999JA900249
21. Mingalev, V. S., V. N. Krivilev, et al. (1988) , Numerical modeling of the high-latitude FF-layer anomalies, Pure Applied Geophysics, 127, no. 2-3, p. 323-334, https://doi.org/10.1007/BF00879815
22. Mursula, K., R. Lukianova, L. Holappa (2015) , Occurrence of the high-speed solar wind streams over the Grand odern Maximum, The Astrophysical Journal, 801, no. 1, https://doi.org/doihttps://doi.org/10.1088/0004-637X/801/1/30
23. Namgaladze, A. A., Yu. N. Korenkov, et al. (1988) , Global model of the thermosphere-ionosphere-protonosphere system, Pure Applied Geophysics, 127, no. 2-3, p. 219-254, https://doi.org/10.1007/BF00879812
24. Papitashvili, V. O., F. J. Rich (2002) , High-latitude ionospheric convection models derived from Defense Meteorological Satellite Program ion drift observations and parameterized by the interplanetary magnetic field strength and direction, Journal Geophysical Research, 107, no. A8, p. 1198, https://doi.org/10.1029/2001JA000264
25. Picone, J. M., A. E. Hedin, D. P. Drob, et al. (2002) , NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons and scientific issues, Journal Geophysical Research, 107, no. A12, p. 1468, https://doi.org/10.1029/2002JA009430
26. Qian, L., A. G. Burns, B. A. Emery, et al. (2014) , The NCAR TIE-GCM: A community model of the coupled thermosphere/ionosphere system, Modeling the Ionosphere-Thermosphere System, AGU Geophysical Monograph Ser., Vol. 201, p. 73-83, AGU, Washington, DC
27. Qian, L., S. C. Solomon, et al. (2008) , Model simulations of global change in the ionosphere, Geophysical Research Letters, 35, p. L07811, https://doi.org/10.1029/2007GL033156
28. Ridley, A. J., Y. Deng, G. Toth (2006) , The global ionosphere-thermosphere model, Journal Atmospheric Solar-Terrestrial Physics, 68, no. 8, p. 839-864, https://doi.org/10.1016/j.jastp.2006.01.008
29. Rishbeth, H., O. K. Garriott (1969) , Introduction to Ionospheric Physics, 234 pp., Academic Press, New York
30. Ruohoniemi, J. M., R. A. Greenwald (2005) , Dependencies of high latitude plasma convection: Consideration of interplanetary magnetic field, seasonal, and universal time factors in statistical patterns, Journal Geophysical Research, 110, no. A9, p. A09204, https://doi.org/10.1029/2004JA010815
31. Schunk, R. W. (1996) , STEP: Handbook of Ionospheric Models, 295 pp., Utah State University, Logan, Utah
32. Schunk, R. W., L. Scherliess, et al. (2004) , Global Assimilation of Ionospheric Measurements (GAIM), Radio Science, 39, p. RS1S02, https://doi.org/10.1029/2002RS002794
33. Sojka, J. J. (1989) , Global scale, physical models of the FF region ionosphere, Review Geophysics, 27, no. 3, p. 371-403, https://doi.org/10.1029/RG027i003p00371
34. Sojka, J. J., R. W. Schunk (1987) , Theoretical study of the high-latitude ionosphere's response to multicell convection patterns, Journal Geophysical Research, 92, no. A8, p. 8733-8744, https://doi.org/10.1029/JA092iA08p08733
35. Sojka, J. J., R. W. Schunk, et al. (1991) , Model and observation comparison of the universal time and IMF By dependence of the ionospheric polar hole, Advances Space Research, 11, no. 10, p. 39-42, https://doi.org/10.1016/0273-1177(91)90318-E
36. Sojka, J., R. Schunk, T. van Eyken, et al. (2007) , Ionospheric challenges of the International Polar Year, Eos Trans. AGU, 88, no. 15, p. 171, https://doi.org/10.1029/2007EO150003
37. Themens, D. R., P. T. Jayachandran, et al. (2014) , A top to bottom evaluation of IRI 2007 within the polar cap, Journal Geophysical Research Space Physics, 119, p. 6689-6703, https://doi.org/10.1002/2014JA020052
38. Themens, D. R., P. T. Jayachandran, et al. (2017) , The Empirical Canadian High Arctic Ionospheric Model (E-CHAIM): NmF2NmF2 and hmF2hmF2, Journal Geophysical Research Space Physics, 122, p. 9015-9031, https://doi.org/10.1002/2017JA024398
39. Uvarov, V. M., R. Yu. Lukianova (2015) , Numerical modeling of the polar FF region ionosphere taking into account the solar wind conditions, Advances Space Research, 56, p. 2563-2574, https://doi.org/10.1016/j.asr.2015.10.004
40. Weimer, D. R. (2005) , Improved ionospheric electrodynamic models and application to calculating Joule heating rates, Journal Geophysical Research, 110, no. A5, p. A05306, https://doi.org/10.1029/2004JA010884
41. Williams, P. J. S. (1995) , A multi-antenna capability for the EISCAT Svalbard Radar, Journal Geomagnetizm Geoelectricity, 47, no. 8, p. 685-698, https://doi.org/10.5636/jgg.47.685
42. Zhang, S. R., J. M. Holt, A. P. van Eyken, et al. (2010) , IPY observations of ionospheric yearly variations from high- to middle-latitude incoherent scatter radars, Journal Geophysical Research, 115, no. A3, p. A03303, https://doi.org/10.1029/2009JA014327
43. Zhang, S. R., J. M. Holt, M. McCready (2007) , High latitude convection based on long-term incoherent scatter radar observations in North America, Journal Atmospheric Solar-Terrestrial Physics, 69, p. 1273-1291, https://doi.org/10.1016/j.jastp.2006.08.017
44. Zhang, S.-R., J. Holt, J. Kurdzo (2011) , Millstone Hill ISR observations of upper atmospheric long-term changes: Height dependency, Journal Geophysical Research, 116, no. A2, p. A00H05, https://doi.org/10.1029/2010JA016414