LANDSLIDE SUSCEPTIBILITY ANALYSIS FOR THE KERCH PENINSULA USING WEIGHTS OF EVIDENCE APPROACH AND GIS
Abstract and keywords
Abstract (English):
Landslides are one of the most important problems on Kerch Peninsula. Rapidly increasing anthropogenic pressure, which has been particularly could be seen in recent years, leads to destabilization of slopes and significant economic and social damage. Nowdays, economic activities for the further development of Kerch Peninsula, urbanization and the construction of new infrastructure facilities may lead to destabilization of slopes and activation of landslides. Application of an integrated mathematical model, helped us to reflect the current state of Kerch Peninsula in the context of solving this problem. With the help of field research, we mapped a complex of landslide areas, which made it possible to identify the main types of them occurring here - earth and earthwork slips landslides, and in the coastal zone - landfalls and caving slides, total area of which reaches 87.5 km2" role="presentation" style="position: relative;">22^2 (7.4% of the research area territory). We chose an optimal method under the given conditions - the weight of evidence. The approach presented in this paper allows us to classify the territory according to the degree of its susceptibility to landslides with rather high accuracy and analyze the existing situation in this area and analyze possible scenarios for its development. We zoned the territory of the Kerch peninsula into 3 classes - stable, unstable and unsusceptible according to the degree of landslide probable occurrences. The susceptibility analysis revealed that the factors causing the activation of landslides on the Kerch Peninsula are the slope steepness from 20 to 40 degrees, the anthropogenic impact, excessive salinity of the soil cover and the lithological composition of the terrain.

Keywords:
Landslides, landslide susceptibility, GIS, spatial analysis, landslide zoning
References

1. Akbari, A., et al. (2014) , Landslide Susceptibility Mapping Using Logistic Regression Analysis and GIS Tools, Electron. J. Geotech. Eng., 19, p. 1687-1696

2. Atkinson, P. M., R. Massari (1998) , Generalised linear modelling of susceptibility to landsliding in the Central Apennines, Italy, Comput. Geosci., 24, no. 4, p. 373-385, https://doi.org/10.1016/S0098-3004(97)00117-9

3. Ayalew, L., H. Yamagishi, N. Ugawa (2004) , Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan, Landslides, 1, no. 1, p. 73-81, https://doi.org/10.1007/s10346-003-0006-9

4. Aydin, A., R. Eker (2016) , Fuzzy rule-based landslide susceptibility mapping in Yiugi lca Forest District (Northwest of Turkey), J. J. Fac. For. Istanbul Univ. Anahtar Kelimeler FIS, 66, no. 662, p. 559-571, https://doi.org/10.17099/jffiu.48480

5. Baban, S. M. J., K. J. Sant (2005) , Mapping landslide susceptibility for the Caribbean island of Tobago using GIS, multi-criteria evaluation techniques with a varied weighted approach, Caribb. J. Earth Sci., 38, p. 11-20

6. Coe, J. A., J. W. Godt, R. L. Baum (2004) , Landslide susceptibility from topography in Guatemala, Proc. 9th Int. Symp. Landslides, p. 69-79, Balkema, Leiden, London

7. Cruden, D. M., D. J. Varnes (1996) , Landslides: investigation and mitigation. Chapter 3 - Landslide types and processes, Transportation Research Board Special Report, no. 247, p. 76

8. Dzeboev, B. A., R. I. Krasnoperov (2018) , On the monitoring of seismic activity using the algorithms of discrete mathematical analysis, Russ. J. Earth Sci., 18, no. 3, p. ES3003, https://doi.org/10.2205/2018ES000623

9. Ercanoglu, M. (2005) , Landslide susceptibility assessment of SE Bartin (West Black Sea region, Turkey) by artificial neural networks, Nat. Hazards Earth Syst. Sci., 5, no. 6, p. 979-992, https://doi.org/10.5194/nhess-5-979-2005

10. Feizizadeh, B., T. Blaschke (2014) , Uncertainty Analysis of GIS-based Ordered Weighted Averaging Method for Landslide Susceptibility Mapping in Urmia Lake Basin, Iran, Comput. Geosci., 73, p. 208-221

11. Fomenko, I. K., O. V. Zerkal (2017) , The Application of Anisotropy of Soil Properties in the Probabilistic Analysis of Landslides Activity, Procedia Eng., 189, p. 886-892, https://doi.org/10.1016/j.proeng.2017.05.138

12. Gvishiani, A. D., F. S. Roberts, I. A. Sheremet (2018) , On the assessment of sustainability of distributed sociotechnical systems to natural disasters, Russ. J. Earth Sci., 18, no. 4, p. ES4004, https://doi.org/10.2205/2018ES000627

13. Haque, U., et al. (2016) , Fatal landslides in Europe, Landslides, 13, no. 6, p. 1545-1554, https://doi.org/10.1007/s10346-016-0689-3

14. Highland, L. (2009) , Economic and Social Impacts of Landslides, Landslides - Disaster Risk Reduction, K. Sassa and P. Canuti (eds.), p. 573-587, Springer, Berlin, Heidelberg

15. Hungr, O., S. Leroueil, L. Picarelli (2014) , The Varnes classification of landslide types, an update, Landslides, 11, no. 2, p. 167-194, https://doi.org/10.1007/s10346-013-0436-y

16. Ismail-Zadeh, A. T. (2016) , Geohazard research, modeling, and assessment for disaster risk reduction, Russ. J. Earth Sci., 16, no. 3, p. ES3002, https://doi.org/10.2205/2016ES000572

17. Korzhenevsky, V. V., et al. (2017) , Natural reserves of the Kerch peninsula: problems and prospects, Tambov Univ. Reports. Ser. Nat. Tech. Sci., 22, no. 5-1, p. 930-934, https://doi.org/10.20310/1810-0198-2017-22-5-930-934 (in Russian)

18. Krivoguz, D. O. (2019) , Validation of landslide susceptibility map using ROCR package in R, Materialy II Nacional'noj nauchno-prakticheskoj konferencii, posvjashhennoj 20-letiju kafedry jekologii morja FGBOU VO "KGMTU", p. 188-192, Arial, Kerch (in Russian)

19. Krivoguz, D., L. Bespalova (2017) , Spatial analysis of topography of Kerch peninsula using GIS and its impact on landslides, Int. J. Prof. Sci., no. 6, p. 19-32

20. Krivoguz, D., L. Bespalova (2018) , Analysis of Kerch peninsula's climatic parameters in scope of landslide susceptibility, Vestn. Kerchenskogo Gos. Morskogo Tehnol. Univ., no. 2, p. 5-11

21. Krivoguz, D. O., D. N. Burtnik (2018) , Neural network modeling of changes in the land cover of the Kerch peninsula in the context of landslides occurence, Nauchno-tekhnicheskiy Vestn. Bryanskogo Gos. Univ., 4, no. 1, p. 113-121, https://doi.org/10.22281/2413-9920-2018-04-01-113-121 (in Russian)

22. Lee, S., M.-J. Lee, H.-S. Jung (2017) , Data Mining Approaches for Landslide Susceptibility Mapping in Umyeonsan, Seoul, South Korea, Appl. Sci., 7, no. 7, p. 683, https://doi.org/10.3390/app7070683

23. Mancini, F., C. Ceppi, G. Ritrovato (2010) , GIS and statistical analysis for landslide susceptibility mapping in the Daunia area, Italy, Nat. Hazards Earth Syst. Sci., 10, p. 1851-1864, https://doi.org/10.5194/nhess-10-1851-2010

24. Matishov, G. G., et al. (2016) , The Sea of Azov: Recent abrasion processes and problems of coastal protection, Dokl. Earth Sci., 471, no. 2, p. 1269-1272, https://doi.org/10.1134/S1028334X16120059

25. Nawaz Khan, A. (2001) , Impact of landslide hazard on housing and related socio-economic characteristics in Murree (Pakistan), Pak. Econ. Soc. Rev., XXXIX, no. 1, p. 57-74

26. Nikolic, T. (2015) , Direct and Indirect Impact of Landslide on Environment, Engineering Geology for Society and Territory - Volume 5, p. 1237-1241, Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-09048-1_236

27. Nikolov, B. P., et al. (2015) , Integration of data mining methods for Earth science data analysis in GIS environment, Russ. J. Earth Sci., 15, no. 4, p. ES4004, https://doi.org/10.2205/2015ES000559

28. Pande, A., R. C. Joshi, D. S. Jalal (2002) , Selected landslide types in the Central Himalaya: Their relation to geological structure and anthropogenic activities, Environmentalist, 22, no. 3, p. 269-287, https://doi.org/10.1023/A:1016536013793

29. Peshkov, V. M. (2015) , Modern state and perspectives of protection of the Black and Azov Seas coasts in the Krasnodar region, Ecol. Saf. Coast. Shelf Zo. Sea, 1, p. 12-19

30. Ramos-Cañón, A. M., et al. (2016) , Linear discriminant analysis to describe the relationship between rainfall and landslides in Bogotá, Colombia, Landslides, 13, no. 4, p. 671-681, https://doi.org/10.1007/s10346-015-0593-2

31. Rybkina, A. I., Y. V. Rostovtseva (2017) , New evidence of the age of the Black Sea Pontian substage, Russ. J. Earth Sci., 17, no. 5, p. ES5004, https://doi.org/10.2205/2017ES000613

32. Sanda, R., et al. (2016) , Comparative assessment of landslide susceptibility. Case study: the Niraj river basin (Transylvania depression, Romania), Geomatics, Nat. Hazards Risk, 7, no. 3, p. 1043-1064, https://doi.org/10.1080/19475705.2015.1030784

33. Shubina, D. D., I. K. Fomenko, D. N. Gorobtsov (2017) , The Specifities of Landslides Danger Assessment Accepted in Eurocode, Procedia Eng., 189, p. 51-58, https://doi.org/10.1016/j.proeng.2017.05.009

34. Tazik, E., et al. (2014) , Landslide susceptibility mapping by combining the three methods Fuzzy Logic, Frequency Ratio and Analytical Hierarchy Process in Dozain basin, ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., XL-2/W3, p. 267-272, https://doi.org/10.5194/isprsarchives-XL-2-W3-267-2014

35. Tibaldi, A., L. Ferrari, G. Pasquarè (1995) , Landslides triggered by earthquakes and their relations with faults and mountain slope geometry: an example from Ecuador, Geomorphology, 11, no. 3, p. 215-226, https://doi.org/10.1016/0169-555X(94)00060-5

36. Torgoev, I., R. Niyazov, H. B. Havenith (2013) , Tien-Shan landslides triggered by earthquakes in Pamir-Hindukush zone, Landslide Science and Practice: Complex Environment, p. 191-197, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-31427-8_25

37. Vahidnia, M. H., et al. (2009) , Landslide Hazard Zonation Using Quantitative Methods in GIS, Int. J. Civ. Eng., 7, no. 3, p. 176-189

38. van Westen, C. (1997) , Statistical landslide hazard analysis, Ilwis, 2, p. 1-10

39. van Westen, C. J., E. Castellanos, S. L. Kuriakose (2008) , Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview, Eng. Geol., 102, no. 3-4, p. 112-131, https://doi.org/10.1016/j.enggeo.2008.03.010

Login or Create
* Forgot password?