The compositional variability of the sandstones leads to insight about the controlling sedimentary processes and plate tectonic environments. The geochemical composition of the Lower Gondwana sandstones exposed along the Main Boundary Thrust in parts of East Siang and West Siang districts of Arunachal Pradesh, India was determined to deduce their provenance and tectonic setting governing their deposition. The overall analyses of the samples from the study area reveals the chemically coherent nature of the sediments and derivation from rocks of acidic and intermediate compositions. Trace element concentrations of the rocks of the study area are in concurrence with average Upper Continental Crust (UCC) whereas the Rare Earth Element (REE) values indicate felsic source rocks. Discrimination of tectonic setting using oxide data indicates passive margin setting for the sediments. The Chemical Alteration Index (CIA) was calculated and indicates medium to high chemical weathering during sedimentation of the basin.
Gondwana, sandstone, Himalayas, geochemistry, tectonic setting, weathering
1. Armstrong-Altrin, J. S., S. P. Verma (2005) , Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings, Sedimentary Geology, 177, p. 115-129, https://doi.org/10.1016/j.sedgeo.2005.02.004
2. Bellanca, A., D. Masetti, R. Neri, et al. (1999) , Geochemical and sedimentological evidence of productivity cycles recorded in Toarcian black shales from the Belluno Basin, Southern Alps, northern Italy, Journal of Sedimentary Research, 69, p. 466-476, https://doi.org/10.2110/jsr.69.466
3. Bhatia, M. R. (1983) , Plate tectonics and geochemical composition of sandstones, Journal of Geology, 91, p. 611-627, https://doi.org/10.1086/628815
4. Bhatia, M. R., K. A. W. Crook (1986) , Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins, Contributions to Mineralogy and Petrology, 92, p. 181-193, https://doi.org/10.1007/BF00375292
5. Cullers, R. L., A. Basu, L. J. Suttner (1988) , Geochemical signature of provenance in sand-size material in soils and stream sediments near the Tobacco Root batholith, Montana, USA, Chemical Geology, 70, p. 335-348, https://doi.org/10.1016/0009-2541(88)90123-4
6. Cullers, R. L. (1994) , The controls on the major and trace element variation of shales, siltstones, and sandstones of Pennsylvanian-Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA, Geochimica et Cosmochimica Acta, 58, p. 4955-4972, https://doi.org/10.1016/0016-7037(94)90224-0
7. Cullers, R. L. (2000) , The geochemistry of shales, siltstones and sandstones of Pennsylvanian-Permian age, Colorado, USA: Implications for provenance and metamorphic studies, Lithos, 51, p. 181-203, https://doi.org/10.1016/S0024-4937(99)00063-8
8. Cullers, R. L., V. N. Podkovyrov (2000) , Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: Implications for mineralogical and provenance control, and recycling, Precambrian Research, 104, p. 77-93, https://doi.org/10.1016/S0301-9268(00)00090-5
9. Crook, K. A. W. (1974) , Lithogenesis and geotectonics: the significance of compositional variation in flyscharenites (greywackes), Special publication - Society of Economic Paleontologists and Mineralogists, 19, p. 304-310
10. Dymond, J., E. Suess, M. Lyle (1992) , Barium in deep-sea sediment: A geo-chemical proxy for paleoproductivity, Paleoceanography, 7, p. 163-181, https://doi.org/10.1029/92PA00181
11. Feng, R., R. Kerrich (1990) , Geochemistry of fine-grained clastic sediments in the Archean Abitibi greenstone belt, Canada: Implications for provenance and tectonic setting, Geochimica et Cosmochimica Acta, 54, p. 1061-1081, https://doi.org/10.1016/0016-7037(90)90439-R
12. Fyffe, L. R., R. K. Pickerill (1993) , Geochemistry of Upper Cambrian-Lower Ordovician black shale along a northeastern Appalachian transect, Bulletin of Geological Society of America, 105, p. 897-910, https://doi.org/10.1130/0016-7606(1993)105%3C0897:GOUCLO%3E2.3.CO;2
13. GSI, (2010) , Geology and Mineral Resources of Arunachal Pradesh, Geological Survey of India, Miscellaneous Publication, 30, no. IV (I), p. 54
14. Herron, M. M. (1986) , Geochemical classification of terrigeneous sands and shales from core or log data, Journal of Sedimentary Petrology, 58, p. 820-829
15. Mahanta, B. N., R. K. Sarmah, T. K. Goswami, et al. (2017) , Heavy mineral studies of Gondwana sandstones of Eastern Arunachal Himalaya and implications for provenance, Science Vision, 17, p. 8-14, https://doi.org/10.33493/scivis.17.01.02
16. Mahanta, B. N., R. K. Sarmah, T. K. Goswami (2019) , Elucidation of Provenance, palaeoclimate and tectonic setting of the Gondwana sandstones of Arunachal Himalayas, Journal of Geological Society of India, 94, no. 3, p. 260-266, https://doi.org/10.1007/s12594-019-1305-7
17. Mahanta, B. N., B. R. Syngai, R. K. Sarmah, et al. (2020) , Geochemical composition of Lower Gondwana sandstones of eastern Arunachal Himalayas, India, Earth Science DataBase, GC RAS, Moscow, https://doi.org/10.2205/RJES-data-698
18. Maynard, J. B., R. Valloni, H. S. Yu (1982) , Composition of modern deep-sea sands from arc related basins, Trench and forearc Geology: Sedimentation and Tectonics on Modern and Ancient Active Plate Margins, J.K. Leggett (Ed.), Geological Society of London, Special Publication, 10, p. 551-561, Geological Society of London, London
19. McLennan, S. M., S. R. Taylor, K. A. Eriksson (1983) , Geochemistry of Archean shales from the Pilbara Supergroup, Western Australia, Geochimica et Cosmochimica Acta, 47, p. 1211-1222, https://doi.org/10.1016/0016-7037(83)90063-7
20. McLennan, S. C., S. Hemming, D. K. McDaniel, et al. (1993) , , Geochemeical approach to sedimentation, provenance and tectonics, Geological Society of America, Special Paper, 284, p. 21-40, Geological Society of America, Washington, DC
21. McLennan, S. M. (2001) , Relationships between the trace element composition of sedimentary rocks and upper continental crust, Geochemistry, Geophysics, Geosystems, 2, no. 4, p. 1021-1024, https://doi.org/10.1029/2000GC000109
22. Nath, B. N., H. Kunzendorf, W. L. Pluger (2000) , Influence of provenance, weathering and sedimentary processes on the elemental ratio of the fine-grained fraction of the bed load sediments from the Vembanad Lake and the adjoining continental shelf, southwest coast of India, Journal of Sedimentary Research, 70, p. 1081-1094, https://doi.org/10.1306/100899701081
23. Nesbitt, H. W., G. M. Young (1982) , Early proterozoic climates and plate motions inferred from major element chemistry of lutites, Nature, 299, p. 715-717, https://doi.org/10.1038/299715a0
24. Osae, S., D. K. Asiedu, B. Banoeng-Yakubo, et al. (2006) , Provenance and tectonic setting of Late Proterozoic Buem sandstones of southeastern Ghana: Evidence from geochemistry and detrital modes, Journal of African Earth Science, 44, p. 85-96, https://doi.org/10.1016/j.jafrearsci.2005.11.009
25. Peterson, J. A. (2009) , Geochemical Provenance of Clastic Sedimentary Rocks in the Western Cordillera: Utah, Colorado, Wyoming, and Oregon, M. S. Thesis, Utah State University, Utah, USA
26. Rahman, M. J. J., S. S. Suzuki (2007) , Geochemistry of sandstones from the Miocene Surma Group, Bengal Basin, Bangladesh: Implications for Provenance, tectonic setting and weathering, Geochemical Journal, 41, p. 415-428, https://doi.org/10.2343/geochemj.41.415
27. Rahman, M. J. J., A. S. M. Sayem, T. McCann (2014) , Geochemistry and Provenance of the Miocene Sandstones of the Surma Group from the Sitapahar Anticline, Southeastern Bengal Basin, Bangladesh, Journal of Geological Society of India, 83, no. 4, p. 447-456, https://doi.org/10.1007/s12594-014-0061-y
28. Roser, B. P., R. J. Korsch (1986) , Determination of tectonic setting of sandstone and mudstone suites using SiO22 content and K22O/Na22O ratio, Journal of Geology, 94, no. 5, p. 635-650, https://doi.org/10.1086/629071
29. Roser, B. P., R. J. Korsch (1988) , Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data, Chemical Geology, 67, p. 119-139, https://doi.org/10.1016/0009-2541(88)90010-1
30. Roser, B. P., R. J. Korsch (1999) , Geochemical characterization, evolution and source of a Mesozoic accretionary wedge: the Torlesse terrane, New Zealand, Geological Magazine, 136, no. 5, p. 493-512, https://doi.org/10.1017/S0016756899003003
31. Schmitz, B. (1987) , Barium, equatorial high productivity, and the northward wandering of the Indian continent, Paleoceanography, 2, no. 1, p. 63-77, https://doi.org/10.1029/PA002i001p00063
32. Shaw, D. M. (1968) , A review of K-Rb fractionation trends by covariance analysis, Geochimica et Cosmochimica Acta, 32, p. 573-602, https://doi.org/10.1016/0016-7037(68)90050-1
33. Siever, R. (1979) , Plate tectonic controls on diagenesis, Journal of Geology, 3, p. 487-490
34. Taylor, S. R., S. M. McLennan (1985) , The Continental Crust; Its Composition and Evolution, 312 pp., Blackwell, London
35. Vdacny, M., A. Vozarova, J. Vozar (2013) , Geochemistry of the Permian sandstones from the Maluzina Formation in the Male Karpaty Mts (Hronic Unit, Western Carpathians, Slovakia): implications for source-area weathering, provenance and tectonic setting, Geologia Carpathicas, 64, no. 1, p. 23-38, https://doi.org/10.2478/geoca-2013-0002