CLASSIFICATION OF INTERNAL WAVES SHOALING OVER SLOPE-SHELF TOPOGRAPHY
Abstract and keywords
Abstract (English):
The shoaling of an internal solitary waves of depression in two layer fluid with a idealized slope-shelf topography is studied to classify the regimes of shoaling. Two mechanisms were assumed to be essential during wave shoaling: (i) wave breaking resulting in mixing and (ii) changing of the polarity of the initial wave of depression over the slope into wave of elevation on the shelf. Proposed three-dimensional αβγ" role="presentation">αβγ

Keywords:
Internal solitary waves, shelf, continental slope, wave breaking, changing polarity
References

1. Aghsaee, P., L. Boegman, K. G. Lamb (2012) , Breaking of shoaling internal solitary waves, J. Fluid Mech., 659, p. 289-317, https://doi.org/10.1017/S002211201000248X

2. Boegman, L., M. Stastna (2019) , Sediment resuspension and transport by internal solitary waves, Annu. Rev. Fluid. Mech., 51, p. 129-154, https://doi.org/10.1146/annurev-fluid-122316-045049

3. Boegman, L, G. Ivey N., J. Imberger (2005) , The degeneration of internal waves in lakes with sloping topography, Limnol. Oceanogr., 50, p. 1620-1637, https://doi.org/10.4319/lo.2005.50.5.1620

4. Cheng, M. H., J. R.-C. Hsu, C. Y. Chen (2011) , Laboratory experiments on waveform inversion of an internal solitary wave over a slope-shelf, Environ Fluid Mech., 11, p. 353-384, https://doi.org/10.1007/s10652-010-9204-x

5. Choi, W. E., R. Camassa (1967) , Fully nonlinear internal waves in a two-fluid system, J. Fluid Mech., 396, p. 1-36, https://doi.org/10.1017/S0022112099005820

6. Fu, K. H., Yu. H. Wang, C. P. Lee, I. H. Lee (2016) , The deformation of shoaling internal waves observed at the Dongsha Atoll in the northern South China Sea, Coastal Engineering Jornal, 58, p. 1650001, https://doi.org/10.1142/S0578563416500017

7. Grimshaw, R., E. N. Pelinovsky, T. G. Talipova, A. Kurkin (2004) , Simulations of the transformation of internal solitary waves on oceanic shelves, J. Phys. Oceanogr., 34, p. 2774-2791, https://doi.org/10.1175/JPO2652.1

8. Helfrich, K., W. K. Melville, W. Miles (1984) , On interfacial solitary waves over slope-shelf topography, J. Fluid Mech., 149, p. 305-317

9. Helfrich, K. R., W. K. Melville (1986) , On long nonlinear internal waves over slopeshelf topography, J. Fluid Mech., 167, p. 285-308, https://doi.org/10.1017/S0022112086002823

10. Kanarska, Yu., V. Maderich (2003) , A non-hydrostatic numerical model for calculating of free-surface stratified flows, Ocean Dynamics, 51, p. 176-185

11. Kao, T. W., F. Pan S., D. Renouard (2010) , Internal solitions on the pycnocline: generation, propagation, shoaling and breaking over a slope, J. Fluid Mech., 159, p. 19-53, https://doi.org/10.1063/1.3455984

12. Lamb, K. G. (2014a) , Internal wave breaking and dissipation mechanisms on the continental slope/shelf, Annu. Rev. Fluid Mech., 46, p. 231-254, https://doi.org/10.1146/annurev-fluid-011212-140701

13. Lamb, K. G., W. Xiao (2014b) , Internal solitary waves shoaling onto a shelf: comparisons of weakly-nonlinear and fully nonlinear models for hyperbolic-tangent stratifications, Ocean Model., 78, p. 17-34, https://doi.org/10.1016/j.ocemod.2014.02.005

14. Lim, K., G. N. Ivey, R. I. Nokes (2008) , The generation of internal waves by tidal flow over continental shelf/slope topography, Environ Fluid Mech., 8, p. 511-526, https://doi.org/10.1007/s10652-008-9085-4

15. Maderich, V., T. Talipova, et al. (2010) , Interaction of a large amplitude interfacial solitary wave of depression with a bottom step, Physics of Fluids, 22, p. 1-36

16. Maderich, V., I. Brovchenko, et al. (2012) , Numerical simulations of the nonhydrostatic transformation of basin-scale internal gravity waves and wave-enhanced meromixis in lakes, Nonlinear internal waves in lakes, K. Hutter (Ed.), p. 192-276, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-23438-5_4

17. Moum, J. N., D. M. Farmer, W. D. Smyth, et al. (2003) , Structure and generation of turbulence at interfaces strained by internal solitary waves propagating shoreward over the continental shelf, J. Phys. Oceanogr., 33, p. 2093-2112, https://doi.org/10.1175/1520-0485(2003)033%3C2093:SAGOTA%3E2.0.CO;2

18. Nam, S. H., U. Send (2010) , Direct evidence of deep water intrusions onto the continental shelf via surging internal tides, J. Geophys. Res., 116, no. C05004, p. 1-15, https://doi.org/10.1029/2010JC006692

19. Orr, M., P. C. Mignerey (2003) , Nonlinear internal waves in the South China Sea: observation of the conversion of depression internal waves to elevation internal waves, J. Geophys. Res., 108, p. 9-16, https://doi.org/10.1029/2001JC001163

20. Osborne, A. R., T. L. Burch, B. Butman, J. Pineda (1890) , Internal solitons in the Andaman Sea, Science, 208, p. 451-460, https://doi.org/10.1126/science.208.4443.451

21. Pomar, L., M. Morsilli, P. Hallock, B. Badenas (2012) , Internal waves, an under-explored source of turbulence events in the sedimentary record, Earth-Science Reviews, 111, p. 56-81

22. Sutherland, B. R., K. J. Barrett, G. N. Ivey (2013) , Shoaling internal solitary waves, J. Geophys. Res., 118, p. 4111-4124, https://doi.org/10.1002/jgrc.20291

23. Talipova, T., K. Terletska, V. Maderich, et al. (2013) , Internal solitary wave transformation over a bottom step: Loss of energy, Physics of Fluids, 25, p. 1620-1637

24. Vlasenko, V., K. Hutter (2002) , Numerical experiments on the breaking of solitary internal waves over a slope shelf topography, J. Phys. Oceanogr., 32, p. 1779-1793, https://doi.org/10.1175/1520-0485(2002)032%3C1779:NEOTBO%3E2.0.CO;2

25. Vlasenko, V., L. Ostrovsky, K. Hutter (2005) , Adiabatic behavior of strongly nonlinear internal solitary waves in slope-shelf areas, J. Geophys. Res., 110, p. 289-317, https://doi.org/10.1029/2004JC002705

26. Vlasenko, V., N. Stashchuk, M. E. Inall, et al. (2014) , Tidal energy conversion in a global hot spot: On the 3-D dynamics of baroclinic tides at the Celtic Sea shelf break, J. Geophys. Res., 119, p. 3249-3265, https://doi.org/10.1002/2013JC009708

27. Wessels, F, K. Hutter (1996) , Interaction of internal waves with topographic sill in a two-layer fluid, J. Phys. Oceanogr., 26, p. 5-20, https://doi.org/10.1175/1520-0485(1996)026%3C0005:IOIWWA%3E2.0.CO;2

Login or Create
* Forgot password?