Analysis of the generation of internal tides over submarine ridges in the Atlantic Ocean based on numerical modeling and measurements on moorings is considered. It was found that energy fluxes of internal tides from submarine ridges are many times greater than those from the continental slopes because generally the barotropic tidal flow is parallel to the coastline. If submarine ridges are normal to the tidal flow, they form an obstacle to the tidal currents and induce generation of large internal waves. Energy fluxes were estimated from many submarine ridges. These estimates were compared with the measurements on moorings. Numerical estimates and measurements on moorings resulted in a map of internal tide amplitudes in the Atlantic Ocean. Large amplitudes of internal tides were found over the slopes of the Mid-Atlantic Ridge in the South Atlantic, Walvis Ridge, Great Meteor Bank, in Biscay Bay, and in the Strait of Gibraltar.
Internal tide, submarine ridges, energy flux, deep basins
1. Baines, P. G. (1982) , On internal tide generation models, Deep-Sea Res., 29, no. 3, p. 307-338, https://doi.org/10.1016/0198-0149(82)90098-X
2. Baines, P. G. (2007) , Internal tide generation by seamounts, Deep Sea Res., 54, no. 9, p. 1486-1508, https://doi.org/10.1016 j.dsr.2007.05.009
3. Dushaw, B. D. (2006) , Mode-1 internal tides in the western North Atlantic Ocean, Deep-Sea Res., 53, no. 3, p. 449-473, https://doi.org/10.1016/j.dsr.2005.12.009
4. Egbert, G. D., S. Erofeeva (2002) , Efficient inverse modeling of barotropic ocean tides, J. Atmos. Ocean Tech., 19, p. 183-204, https://doi.org/10.1175/1520-0426(2002)019%3C0183:eimobo%3E2.0.co;2
5. Garrett, C., W. Munk (1979) , Internal waves in the ocean, Ann. Rev. Fluid Mech., 11, p. 339-369, https://doi.org/10.1146/annurev.fl.11.010179.002011
6. Gerkema, T., J. T. F. Zimmerman (1995) , Generation of nonlinear internal tides and solitary waves, J. Phys. Oceanogr., 25, no. 6, p. 1081-1094, https://doi.org/10.1175/1520-0485(1995)025%3C1081:gonita%3E2.0.co;2
7. Gill, A. E. (1982) , Atmosphere-Ocean Dynamics, Academic Press, NY
8. Khimchenko, E. E., D. I. Frey, E. G. Morozov (2020) , Tidal internal waves in the Bransfield Strait, Antarctica, Russian J. Earth Sciences, 20, p. ES2006, https://doi.org/10.2205/2020ES000711
9. Marchenko, A. V., E. G. Morozov (2016) , Surface manifestations of the waves in the ocean covered with ice, Russian J. Earth Sciences, 16, p. ES1001, https://doi.org/10.2205/2016ES000561
10. Morozov, E. G. (1995) , Semidiurnal internal wave global field, Deep Sea Res., 42, no. 1, p. 135-148, https://doi.org/10.1016/0967-0637(95)92886-c
11. Morozov, E. G. (2018) , Oceanic Internal Tides. Observations, Analysis and Modeling. A Global View, 316 pp., Springer, Switzerland, https://doi.org/10.1007/978-3-319-73159-9
12. New, A. L. (1988) , Internal tidal mixing in the Bay of Biscay, Deep-Sea Res., 35, p. 691-709, https://doi.org/10.1016/0198-0149(88)90026-x
13. Phillips, O. M. (1977) , The Dynamics of the Upper Ocean, 336 pp., Cambridge Univ. Press, NY
14. Schwiderski, E. W. (1983) , Atlas of ocean tidal charts and maps, Part I: The semidiurnal principal lunar tide M2, Marine Geodesy, 6, no. 3-4, p. 219-265, https://doi.org/10.1080/15210608309379461
15. Sjöberg, B., A. Stigebrandt (1992) , Computations of the geographical distribution of the energy flux to mixing process via internal tides and the associated vertical circulation in the ocean, Deep-Sea Res., 39, p. 269-291, https://doi.org/10.1016/0198-0149(92)90109-7
16. Vlasenko, V. I. (1992) , Nonlinear model for the generation of baroclinic tides over extensive inhomogeneities of bottom topography, Phys. Oceanogr. (Morskoy Gidrofizicheskiy Zhurnal), 3, p. 417-424, https://doi.org/10.1007/BF02197556
17. Vlasenko, V., N. Stashchuk, K. Hutter (2005) , Baroclinic Tides: Theoretical Modeling and Observational Evidence, 351 pp., Cambridge Univ. Press, Cambridge, https://doi.org/10.1017/CBO9780511535932