THE UPPER LAYER OF THE MALVINAS/FALKLAND CURRENT: STRUCTURE, AND TRANSPORT NEAR 46° S IN JANUARY 2020
Abstract and keywords
Abstract (English):
Detailed velocity structure of the Malvinas/Falkland Current (M/FC) was studied based on the high-resolution shipborne ADCP direct current observations. The measurements were carried out along the transect located between 58°00′" role="presentation">58°00′

Keywords:
Malvinas (Falkland) Current, current jets, transport, direct velocity measurements, shipborne ADCP, shelf break front
References

1. Acha, E. M., H. W. Mianzan, et al. (2004) , Marine fronts at the continental shelves of austral South America: Physical and ecological processes, J. Mar. Syst., 44, p. 83-105, https://doi.org/10.1016/j.jmarsys.2003.09.005

2. Artana, C., R. Ferrari, Z. Koenig, et al. (2016) , Malvinas Current variability from Argo floats and satellite altimetry, J. Geophys. Res. Oceans, 121, p. 4854-4872, https://doi.org/10.1002/2016JC011889

3. Artana, C., J.-M. Lellouche, et al. (2018) , Fronts of the Malvinas Current System: Surface and subsurface expressions revealed by satellite altimetry, Argo floats, and Mercator operational model outputs, J. Geophys. Res. Oceans, 123, p. 5261-5285, https://doi.org/10.1029/2018JC013887

4. Brandini, F. P., D. Boltovskoy, A. R. Piola, et al. (2000) , Multiannual trends in fronts and distribution of nutrients and chlorophyll in the southwestern Atlantic (30-62 S), Deep Sea Res., Part I, 47, p. 1015-1033, https://doi.org/10.1016/S0967-0637(99)00075-8

5. Campagna, C., A. R. Piola, et al. (2007) , Deep divers in shallow seas: Southern elephant seals on the Patagonian shelf, Deep Sea Res., Part I, 54, p. 1792-1814, https://doi.org/10.1016/j.dsr.2007.06.006

6. Combes, V., R. P. Matano (2014) , A two-way nested simulation of the oceanic circulation in the Southwestern Atlantic, J. Geophys. Res. Oceans, 119, p. 731-756, https://doi.org/10.1002/2013JC009498

7. Egbert, G. D., S. Y. Erofeeva (2002) , Efficient inverse modeling of barotropic ocean tides, J. Atmos. Oceanic Technol., 19, p. 183-204, https://doi.org/10.1175/1520-0426(2002)019%3C0183:EIMOBO%3E2.0.CO;2

8. Ferrari, R., C. Artana, M. Saraceno, et al. (2017) , Satellite altimetry and current-meter velocities in the Malvinas Current at 41° S: Comparisons and modes of variations, J. Geophys. Res. Oceans, 122, p. 9572-9590, https://doi.org/10.1002/2017JC013340

9. Fetter, A. F. H., R. P. Matano (2008) , On the origins of the variability of the Malvinas Current in a global, eddy-permitting numerical simulation, J. Geophys. Res., 113, p. C11018, https://doi.org/10.1029/2008JC004875

10. Forbs, M. C., Z. Garrafo (1988) , A note on the mean seasonal transport on the Argentine Shelf, J. Geophys. Res., 93, p. 2311-2319, https://doi.org/10.1029/JC093iC03p02311

11. Franco, B. C., A. R. Piola, et al. (2008) , Multiple thermal fronts near the Patagonian shelf break, Geophys. Res. Lett., 35, p. L02607, https://doi.org/10.1029/2007GL032066

12. Jullion, L., K. J. Heywood, et al. (2010) , Circulation and water mass modification in the Brazil-Malvinas Confluence, J. Phys. Oceanogr., 40, p. 845-864, https://doi.org/10.1175/2009JPO4174.1

13. Maamaatuaiahutapu, K., V. Garcon, et al. (1994) , Spring and winter water mass composition in the Brazil-Malvinas Confuence, J. Mar. Res., 52, p. 397-426, https://doi.org/10.1357/0022240943077064

14. Maamaatuaiahutapu, K., V. Garcon, et al. (1998) , Transports of the Brazil and Malvinas Currents at their Confluence, J. Mar. Res., 56, p. 417-438, https://doi.org/10.1357/002224098321822366

15. Magalhães, J. M., J. C. B. da Silva (2017) , Internal waves along the Malvinas Current: Evidence of transcritical generation in satellite imagery, Oceanography, 30, no. 3, p. 110-119, https://doi.org/10.5670/oceanog.2017.319

16. Morozov, E. G., R. Yu. Tarakanov, T. A. Demidova, et al. (2016) , Velocity and transport of the Falkland Current at 46° S, Russ. J. Earth. Sci., 16, p. ES6005, https://doi.org/10.2205/2016ES000588

17. Palma, E. D., R. P. Matano, A. R. Piola (2008) , A numerical study of the Southwestern Atlantic Shelf circulation: Stratified ocean response to local and offshore forcing, J. Geophys. Res., 113, p. C11010, https://doi.org/10.1029/2007JC004720

18. Painter, S. C., A. J. Poulton, et al. (2010) , The COPAS-08 expedition to the Patagonian Shelf: Physical and environmental conditions during the 2008 coccolithophore bloom, Cont. Shelf Res., 30, no. 18, p. 1907-1923, https://doi.org/10.1016/j.csr.2010.08.013

19. Paniagua, G. F., M. Saraceno, A. R. Piola, et al. (2018) , Malvinas Current at 40° S-41° S: First assessment of temperature and salinity temporal variability, J. Geophys. Res. Oceans, 123, https://doi.org/10.1029/2017JC013666

20. Peterson, R. G. (1992) , The boundary current in the western Argentine Basin, Deep Sea Res., Part A, 39, p. 623-644, https://doi.org/10.1016/0198-0149(92)90092-8

21. Piola, A. R., B. C. Franco, et al. (2013) , Multiple jets in the Malvinas Current, J. Geophys. Res. Oceans, 118, p. 2107-2117, https://doi.org/10.1002/jgrc.20170

22. Piola, A. R., N. Martínez Avellaneda, et al. (2010) , Malvinas-slope water intrusions on the northern Patagonia continental shelf, Ocean Sci., 6, p. 345-359, https://doi.org/10.5194/os-6-345-2010

23. Remeslo, A. V., E. G. Morozov, et al. (2004) , Structure and variability of the Falkland Current, Doklady Earth Sciences, 399, p. 1156-1159

24. Romero, S. I., A. R. Piola, et al. (2006) , Chlorophyll a variability off Patagonia based on SeaWiFS data, J. Geophys. Res., 111, p. C05021, https://doi.org/10.1029/2005JC003244

25. Saunders, P. M., B. A. King (1995) , Bottom currents derived from shipborne ADCP on WOCE cruise A11 in the South Atlantic, J. Phys. Oceanogr., 25, p. 329-347, https://doi.org/10.1175/1520-0485(1995)025%3C0329:BCDFAS%3E2.0.CO;2

26. Spadone, A., C. Provost (2009) , Variations in the Malvinas Current volume transport since October 1992, J. Geophys. Res., 114, p. C02002, https://doi.org/10.1029/2008JC004882

27. Thomson, G. A., A. A. Alder, D. Boltovskoy (2001) , Tintinnids (Ciliophora) and other net microzooplankton (>30 mm) in southwestern Atlantic shelf break waters, Mar. Ecol., 22, p. 343-355, https://doi.org/10.1046/j.1439-0485.2001.01723.x

28. Vivier, F., C. Provost (1999a) , Volume transport of the Malvinas Current: Can the flow be monitored by TOPEX/Poseidon?, J. Geophys. Res., 104, https://doi.org/10.1029/1999JC900056

29. Vivier, F., C. Provost (1999b) , Direct velocity measurements in the Malvinas Current, J. Geophys. Res., 104, https://doi.org/10.1029/1999JC900163

30. Weijer, W., M. E. Maltrud, W. B. Homoky, et al. (2015) , Eddy-driven sediment transport in the Argentine Basin: Is the height of the Zapiola Rise hydrodynamically controlled?, J. Geophys. Res. Oceans, 120, p. 2096-2111, https://doi.org/10.1002/2014JC010573

31. Yang, X.-Y., Z. He (2014) , Decadal change of Antarctic Intermediate Water in the region of Brazil and Malvinas confluence, Deep Sea Res., Part I, 88, p. 1-7, https://doi.org/10.1016/j.dsr.2014.02.007

Login or Create
* Forgot password?