Abstract and keywords
Abstract (English):
Detailed velocity structure of the Malvinas/Falkland Current (M/FC) was studied based on the high-resolution shipborne ADCP direct current observations. The measurements were carried out along the transect located between 58°00′" role="presentation">58°00′

Malvinas (Falkland) Current, current jets, transport, direct velocity measurements, shipborne ADCP, shelf break front

1. Acha, E. M., H. W. Mianzan, et al. (2004) , Marine fronts at the continental shelves of austral South America: Physical and ecological processes, J. Mar. Syst., 44, p. 83-105,

2. Artana, C., R. Ferrari, Z. Koenig, et al. (2016) , Malvinas Current variability from Argo floats and satellite altimetry, J. Geophys. Res. Oceans, 121, p. 4854-4872,

3. Artana, C., J.-M. Lellouche, et al. (2018) , Fronts of the Malvinas Current System: Surface and subsurface expressions revealed by satellite altimetry, Argo floats, and Mercator operational model outputs, J. Geophys. Res. Oceans, 123, p. 5261-5285,

4. Brandini, F. P., D. Boltovskoy, A. R. Piola, et al. (2000) , Multiannual trends in fronts and distribution of nutrients and chlorophyll in the southwestern Atlantic (30-62 S), Deep Sea Res., Part I, 47, p. 1015-1033,

5. Campagna, C., A. R. Piola, et al. (2007) , Deep divers in shallow seas: Southern elephant seals on the Patagonian shelf, Deep Sea Res., Part I, 54, p. 1792-1814,

6. Combes, V., R. P. Matano (2014) , A two-way nested simulation of the oceanic circulation in the Southwestern Atlantic, J. Geophys. Res. Oceans, 119, p. 731-756,

7. Egbert, G. D., S. Y. Erofeeva (2002) , Efficient inverse modeling of barotropic ocean tides, J. Atmos. Oceanic Technol., 19, p. 183-204,;2

8. Ferrari, R., C. Artana, M. Saraceno, et al. (2017) , Satellite altimetry and current-meter velocities in the Malvinas Current at 41° S: Comparisons and modes of variations, J. Geophys. Res. Oceans, 122, p. 9572-9590,

9. Fetter, A. F. H., R. P. Matano (2008) , On the origins of the variability of the Malvinas Current in a global, eddy-permitting numerical simulation, J. Geophys. Res., 113, p. C11018,

10. Forbs, M. C., Z. Garrafo (1988) , A note on the mean seasonal transport on the Argentine Shelf, J. Geophys. Res., 93, p. 2311-2319,

11. Franco, B. C., A. R. Piola, et al. (2008) , Multiple thermal fronts near the Patagonian shelf break, Geophys. Res. Lett., 35, p. L02607,

12. Jullion, L., K. J. Heywood, et al. (2010) , Circulation and water mass modification in the Brazil-Malvinas Confluence, J. Phys. Oceanogr., 40, p. 845-864,

13. Maamaatuaiahutapu, K., V. Garcon, et al. (1994) , Spring and winter water mass composition in the Brazil-Malvinas Confuence, J. Mar. Res., 52, p. 397-426,

14. Maamaatuaiahutapu, K., V. Garcon, et al. (1998) , Transports of the Brazil and Malvinas Currents at their Confluence, J. Mar. Res., 56, p. 417-438,

15. Magalhães, J. M., J. C. B. da Silva (2017) , Internal waves along the Malvinas Current: Evidence of transcritical generation in satellite imagery, Oceanography, 30, no. 3, p. 110-119,

16. Morozov, E. G., R. Yu. Tarakanov, T. A. Demidova, et al. (2016) , Velocity and transport of the Falkland Current at 46° S, Russ. J. Earth. Sci., 16, p. ES6005,

17. Palma, E. D., R. P. Matano, A. R. Piola (2008) , A numerical study of the Southwestern Atlantic Shelf circulation: Stratified ocean response to local and offshore forcing, J. Geophys. Res., 113, p. C11010,

18. Painter, S. C., A. J. Poulton, et al. (2010) , The COPAS-08 expedition to the Patagonian Shelf: Physical and environmental conditions during the 2008 coccolithophore bloom, Cont. Shelf Res., 30, no. 18, p. 1907-1923,

19. Paniagua, G. F., M. Saraceno, A. R. Piola, et al. (2018) , Malvinas Current at 40° S-41° S: First assessment of temperature and salinity temporal variability, J. Geophys. Res. Oceans, 123,

20. Peterson, R. G. (1992) , The boundary current in the western Argentine Basin, Deep Sea Res., Part A, 39, p. 623-644,

21. Piola, A. R., B. C. Franco, et al. (2013) , Multiple jets in the Malvinas Current, J. Geophys. Res. Oceans, 118, p. 2107-2117,

22. Piola, A. R., N. Martínez Avellaneda, et al. (2010) , Malvinas-slope water intrusions on the northern Patagonia continental shelf, Ocean Sci., 6, p. 345-359,

23. Remeslo, A. V., E. G. Morozov, et al. (2004) , Structure and variability of the Falkland Current, Doklady Earth Sciences, 399, p. 1156-1159

24. Romero, S. I., A. R. Piola, et al. (2006) , Chlorophyll a variability off Patagonia based on SeaWiFS data, J. Geophys. Res., 111, p. C05021,

25. Saunders, P. M., B. A. King (1995) , Bottom currents derived from shipborne ADCP on WOCE cruise A11 in the South Atlantic, J. Phys. Oceanogr., 25, p. 329-347,;2

26. Spadone, A., C. Provost (2009) , Variations in the Malvinas Current volume transport since October 1992, J. Geophys. Res., 114, p. C02002,

27. Thomson, G. A., A. A. Alder, D. Boltovskoy (2001) , Tintinnids (Ciliophora) and other net microzooplankton (>30 mm) in southwestern Atlantic shelf break waters, Mar. Ecol., 22, p. 343-355,

28. Vivier, F., C. Provost (1999a) , Volume transport of the Malvinas Current: Can the flow be monitored by TOPEX/Poseidon?, J. Geophys. Res., 104,

29. Vivier, F., C. Provost (1999b) , Direct velocity measurements in the Malvinas Current, J. Geophys. Res., 104,

30. Weijer, W., M. E. Maltrud, W. B. Homoky, et al. (2015) , Eddy-driven sediment transport in the Argentine Basin: Is the height of the Zapiola Rise hydrodynamically controlled?, J. Geophys. Res. Oceans, 120, p. 2096-2111,

31. Yang, X.-Y., Z. He (2014) , Decadal change of Antarctic Intermediate Water in the region of Brazil and Malvinas confluence, Deep Sea Res., Part I, 88, p. 1-7,

Login or Create
* Forgot password?