SHORT-TERM FORECAST OF THE AURORAL OVAL POSITION ON THE BASIS OF THE "VIRTUAL GLOBE" TECHNOLOGY
Abstract and keywords
Abstract (English):
A nowcasting and even forecast of the auroral oval position and intensity is a highly needed resource for practical applications. The auroral oval is the region with a high level of ionospheric plasma turbulence, which provokes malfunctions of radio communication and navigation satellite systems, and the region with most intense irregular ionospheric electrojet exciting the geomagnetically induced currents (GICs) in electric power lines. We have elaborated a web service (http://aurora-forecast.ru) for continuous nowcasting, visualization and short-term forecast of auroras. The implementation tool of the developed geographic information system (GIS) is the Django framework. The web service is a software shell built on the basis of a virtual globe - a multi-scale digital 3D model of the Earth, rendering visualization of data provided by the NOAA service on the planetary distribution of the probability of the aurora occurrence. The NOAA service uses the output of the OVATION-prime model, which gives a forecast of auroras in advance of 30 minutes with a 5-minute update step, using real-time data from interplanetary monitors of the solar wind. The developed web-service can be used both to assess the probability of observing auroras anywhere in the world. This service may help to predict the deterioration of the satellite navigation signal quality or warn about possibility of intense GICs at high latitudes.

Keywords:
Space weather, aurora, GIS technology, auroral oval
References

1. Bobkov, A. E., A. V. Leonov (2017) , Virtual globe: history and modernity, Scientific Visualization, 9, no. 2, p. 49-63

2. Akasofu, S. I. (1977) , Physics of Magnetospheric Substorms, Springer Nature, Switzerland, https://doi.org/10.1007/978-94-010-1164-8

3. Kozyreva, O. V., V. A. Pilipenko, M. J. Engebretson, et al. (2016) , Correspondence between the ULF wave power distribution and auroral oval, Solar-Terrestrial Physics, 2, no. 2, p. 46-65, https://doi.org/10.12737/20999

4. Kozyreva, O. V., V. A. Pilipenko, V. I. Zakharov, M. J. Engebretson (2017) , GPS-TEC response to the substorm onset, GPS Solutions, 21, no. 3, p. 927-936, https://doi.org/10.1007/s10291-016-0581-6

5. Kozyreva, O. V., V. A. Pilipenko, R. I. Krasnoperov, et al. (2020) , Fine structure of substorm and geomagnetically induced currents, Annals of Geophysics, 63, no. 2, p. GM219, https://doi.org/10.4401/ag-8198

6. Lukianova, R., F. Christiansen (2006) , Modeling of the global distribution of ionospheric electric fields based on realistic maps of field-aligned currents, J. Geophys. Res., 111, p. A03213, https://doi.org/10.1029/2005JA011465

7. Lunyushkin, S. B., Yu. V. Penskikh (2019) , Diagnostics of the boundaries of the auroral oval based on the technique of inversion of magnetograms, Solar-Terrestrial Physics, 5, no. 2, p. 97-113, https://doi.org/10.12737/szf-52201913

8. Machol, J., J. . Green, R. . Redmon, et al. (2012) , Evaluation of OVATION Prime as a forecast model for visible aurorae, Space Weather, 10, p. S03005, https://doi.org/10.1029/2011SW000746

9. Newell, P. T., T. Sotirelis, K. Liou, et al. (2007) , A nearly universal solar wind-magnetosphere coupling function inferred from 10 magnetospheric state variables, J. Geophys. Res., 112, p. A01206, https://doi.org/10.1029/2006JA012015

10. Newell, P. T., T. Sotirelis, S. Wing (2009) , Diffuse, monoenergetic, and broadband aurora: The global precipitation budget, J. Geophys. Res., 114, no. A09207, p. 216, https://doi.org/10.1029/2009JA014326

11. Newell, P. T., T. Sotirelis, S. Wing (2010) , Seasonal variations in diffuse, monoenergetic, and broadband aurora, J. Geophys. Res., 115, no. A03216, https://doi.org/10.1029/2009JA014805

12. Newell, P. T., K. Liou, Y. Zhang, et al. (2014) , OVATION Prime-2013: Extension of auroral precipitation model to higher disturbance levels, Space Weather, 12, p. 368-379, https://doi.org/10.1002/2014sw001056

13. Sigernes, F., M. Dyrland, P. Brekke, et al. (2011) , Two methods to forecast auroral displays, Journal of Space Weather and Space Climate, 1, no. A03, https://doi.org/10.1051/swsc/2011003

14. Smith, A. M., C. N. Mitchell, R. J. Watson, et al. (2008) , GPS scintillation in the high Arctic associated with an auroral arc, Space Weather, 6, no. 3, p. 1-7, https://doi.org/10.1029/2007sw000349

15. Sotirelis, T., P. T. Newell (2000) , Boundary-oriented electron precipitation model, J. Geophys. Res., 105, p. 18,655-18,673, https://doi.org/10.1029/1999JA000269

16. Vorobev, A. V., G. R. Vorobeva (2017a) , Geoinformation system for amplitude-frequency analysis of observation data for geomagnetic variations and space weather, Computer Optics, 41, p. 963-972, https://doi.org/10.18287/2412-6179-2017-41-6-963-972

17. Vorobev, A. V., G. R. Vorobeva (2017b) , Web-based 2D/3D visualization of geomagnetic field parameters and its variations, Scientific Visualization, 9, no. 2, p. 94-101

18. Vorobjev, V. G., O. I. Yagodkina (2008) , Empirical model of auroral precipitation power during substorms, J. Atm. Solar-Ter. Phys., 70, p. 654-662, https://doi.org/10.1016/j.jastp.2007.08.046

19. Vorobev, A. V., V. A. Pilipenko, A. G. Reshetnikov, et al. (2020) , Web-oriented visualization of auroral oval geophysical parameters, Scientific Visualization, 12.3, p. 108-118, https://doi.org/10.26583/sv.12.3.10

Login or Create
* Forgot password?