Immanuel Kant Baltic Federal University
Russian Federation
The alongshore sediment transport plays a key role in the development of the coastal zone of the Sambia Peninsula, the Curonian, and Vistula (Baltic) spits of the South-Eastern Baltic Sea. One of the considerable indicators of the general direction of sediment transport is natural minerals-tracers, for example, glauconite. The distribution of glauconite in the upper layer of sediments marks the direction and intensity of the transport of suspended sediments, and, consequently, determines the boundary of the coastal lithodynamic system. Paleogene deposits are the only known source of glauconite on the coast of the Kaliningrad region which outcrops at the Sambia Peninsula. The grain size, morphological and mineralogical analyses of the bottom sediments were done.
Glauconite, coastal lithodynamic system, accumulation dynamics, mineralogical analyses
1. Ambrosimov, A. K., I. M. Kabatchenko, et al. (2013) , Seasonal characteristics of waves in the southeastern part of the Baltic Sea in 2008-2009, Russ. Meteorol. Hydrol., 38, no. 3, p. 191-198, https://doi.org/10.3103/S1068373913030084
2. Aybulatov, N. A. (1990) , Dynamics of Solid Matter in the Shelf Zone, Gidrometeoizdat, Leningrad (in Russian)
3. Babakov, A. N. (2003) , Spatio-temporal structure of currents and sediment migrations in the coastal zone of the south-eastern Baltic Sea (Sambia Peninsula and Curonian Spit), Doctoral thesis, KSU, Kaliningrad (in Russian)
4. Babakov, A., B. Chubarenko (2019) , The Structure of the net alongshore sediment transport in the Eastern Gulf of Gdansk, Water Resources, 46, no. 4, p. 515-529, https://doi.org/10.1134/S0097807819040031
5. Badyukova, E. N., G. D. Solovieva (2015) , Coastal eolian landforms and sea level fluctuations, Oceanol., 55, no. 1, p. 124-130, https://doi.org/10.1134/S0001437015010014
6. Banerjee, S., U. Bansal, A. Thorat (2016) , A review on palaeogeographic implications and temporal variation in glaucony composition, J. Palaeogeogr., 5, no. 1, p. 43-71, https://doi.org/10.1016/j.jop.2015.12.001
7. Berger, M. G. (1986) , Terrigenous Mineralogy, Nedra, Moscow (in Russian)
8. Blazhchishin, A. I. (1976) , , Geology of the Baltic Sea (Gudelys V. K., Yemelyanov E. M. (Eds.), p. 117-130, Moxlas, Vilnius
9. Blazhchishin, A. I. (1998) , Paleogeography and Evolution of Late Quaternary Sedimentation in the Baltic Sea, Yantarny Skaz, Kaliningrad (in Russian)
10. Blazhchishin, A. I., V. L. Boldyrev, K. V. Moroshkin (1978) , Amber-bearing deposits of the Paleogene and conditions of their occurrence on the submerged slope of the Sambia Peninsula, Tectonics and Minerals of Belarus and the Baltic States, Orlenok V. V. (Ed.), p. 119-127, KSU, Kaliningrad (in Russian)
11. Blazhchishin, A. I., M. M. Usonis (1970) , Features of sedimentation in the southeastern part of the Baltic Sea according to mineralogical analysis, Baltica, 4, p. 115-144 (in Russian)
12. Bobykina, V. P., Zh. I. Stont (2015) , Winter storm activity in 2011-2012 and its consequences for the Southeastern Baltic Coast, Water Resources, 42, no. 3, p. 371-377, https://doi.org/10.1134/S0097807815030021
13. Bogdanov, N. A., V. A. Sovershaev, et al. (1989) , Evolution of the knowledge on dynamics of the South-Eastern coasts of the Baltic Sea, Geomorphol., 2, p. 62-69 (in Russian)
14. Boynagryan, V. R. (1966) , Morphometric analysis of the short-term changes of the coastal topography, Oceanol., 4, no. 4, p. 651-658 (in Russian)
15. Clemmensen, L. B., R. G. Bromley, P. M. Holm (2011) , Glauconitic deposits at Juleg{å}rd on the south coast of Bornholm, Denmark dated to the Cambrian, Bull. Geolog. Soc. of Denmark, 59, p. 1-12
16. Dodonov, A. E., et al. (1976) , The Newest Tectonics of the Southeastern Part of the Baltic syneclise, MSU Publishing House, Moscow (in Russian)
17. Dorokhov, D., E. Dorokhova, V. Sivkov (2017) , Marine landscape mapping of the south-eastern part of the Baltic Sea, Baltica, 30, no. 1, p. 15-22, https://doi.org/10.5200/baltica.2017.30.02
18. Dubravin, V. Ph., Zh. I. Stont (2012) , Hydro-meteorological regime, structure and circulation of the waters, Oil and Environment of the Kaliningrad Region. Vol. II: Sea, Sivkov V. V. (Ed.), p. 69-105, Terra Baltica, Kaliningrad (in Russian)
19. Emelyanov, E. M. (2002) , Geology of the Gdansk Basin, Baltic Sea, Yantarnyj Skaz, Kaliningrad
20. Emelyanov, E. M. (1998) , Barrier Zones in the Ocean. Sediment and Mineralization, Geoecology, Yantarnyj Skaz, Kaliningrad (in Russian)
21. Emelyanov, E. M., E. S. Trimonis (1981) , Mineralnyj sostav pozdnechetvertichnykh osadkov Baltijskogo morya po dannym rentgendifraktometricheskogo analiza, Osadkoobrazovanie v Baltijskom More, Lisitsyn A. P. and Emelyanov E. M. (Eds.), p. 180-188, Nauka, Moscow (in Russian)
22. Gao, S., M. Collins (2001) , The use of grain size trends in marine sediment dynamics: A review, Chin. J. Oceanol. Limnol., 19, no. 3, p. 265-271, https://doi.org/10.1007/BF02850664
23. Gaigalas, A., S. Gulbinskas, M. Meleyté (1997) , Petrographical composition of the Pleistocene tills in the Lithuanian and south-west Latvian sea-side zone of the Baltic Sea, Geologia i Geomorfologia, 3, p. 73-93
24. Hawkins, A. E. (1993) , The Shape of Powder-Particle Outlines, Wiley, New York, https://doi.org/10.2307/2532825
25. Jarmalaviius, D., G. ilinskas, D. Pupienis (2012) , Impact of Klaipèda port jetties reconstruction on adjacent sea coast dynamics, J. Environ. Eng. Landsc. Manag., 20, no. 3, p. 240-247, https://doi.org/10.3846/16486897.2012.660884
26. Kairyté, M., R. Stevens, E. Trimonis (2005) , Provenance of silt and clay within sandy deposits of the Lithuanian coastal zone (Baltic Sea), Mar. Geol., 218, p. 97-112, https://doi.org/10.1016/j.margeo.2005.04.004
27. Kapiski, J., R. Ostrowski (2012) , Motion of water and sediment due to non-breaking waves in the swash zone, Oceanol., 54, no. 2, p. 175-197, https://doi.org/10.5697/oc.54-2.175
28. Kaplan, A. A., A. A. Grigialis, et al. (1977) , Stratigraphy and correlation of Paleogene deposits of the southwest of the Baltic, Ofioliti, 4, p. 31-43
29. Kirlys, V. I. (1971) , Some features of the dynamics of the sea shores of the Kurshu-Neriai shoal, Tr. LitSSR, B.4, no. 67, p. 211-224 (in Russian)
30. Knaps, R. (1952) , Ograditelnye sooruzhenya tipa molov i dvizhenye nanosov na peschanykh poberezhyakh, Izvestiya AN Latviyskoy SSR, 6, no. 59, p. 87-130 (in Russian)
31. Komar, P. D. (Ed.) (1983) , Coastal erosion in response to the construction of jetties and breakwaters, Handbook of Coast. Proc. Erosion, p. 191-204, CRC Press Inc., Boca Raton, Florida
32. Kos'yan, R. D., N. V. Pykhov (1991) , Hydrogenous Sediment Shift in the Coastal Zone, Nauka, Moscow (in Russian)
33. Kovaleva, O., B. Chubarenko, D. Pupienis (2016) , Grain size variability as an indicator of sediment transport alongshore the Curonian Spit (south-eastern Baltic Sea), Baltica, 29, p. 145-155, https://doi.org/10.5200/baltica.2016.29.13
34. Krek, A., Zh. Stont, M. Ulyanova (2016) , Alongshore bed load transport in the southeastern part of the Baltic Sea under changing hydrometeorological conditions: Recent decadal data, Region. Stud. Mar. Sci., 7, p. 81-87, https://doi.org/10.1016/j.rsma.2016.05.011
35. Krek, A. V., M. O. Ulyanova, E. S. Bubnova, et al. (2019) , Geoecological conditions in The Baltic Sea in 2017, Oceanol., 59, no. 1, p. 167-169, https://doi.org/10.31857/S0030-1574591184-186
36. Krek, A., M. Ulyanova, S. Koschavets (2018) , Influence of land-based Kaliningrad (Primorsky) amber mining on coastal zone, Mar. Pol. Bull., 131(Pt A), p. 1-9, https://doi.org/10.1016/j.marpolbul.2018.03.042
37. Krek, A., M. Ulyanova (2020) , Mineral tracers of the alongshore sediment transport (Data supplement), Earth Science DataBase, GC RAS, Moscow, https://doi.org/10.2205/RJES-data-714
38. Kriauciuniene, J., G. Zilinskas, et al. (2013) , Impact of ventoji port jetties on coastal dynamics of the Baltic Sea, J. Environ. Eng. Landsc. Manag., 21, p. 114-122, https://doi.org/10.3846/16486897.2012.695736
39. Krumbein, W. C. (1934) , Size Frequency Distribution of Sediments, J. Sediment. Petrol., 4, p. 65-77, https://doi.org/10.1306/D4268EB9-2B26-11D7-8648000102C1865D
40. Lausman, R., A. H. F. Klein, M. J. F. Stive (2010) , Uncertainty in the application of the parabolic bay shape equation: Part 2, Coast. Eng., 57, p. 142-151, https://doi.org/10.1016/j.coastaleng.2009.10.001
41. Leont'yev, O. K., L. A. Zhindarev, O. I. Ryabkova (1989) , Origin and evolution of the large coastal accumulative forms, Theoretical Problems of the Sea Coasts Development, p. 83-91, Nauka, Moscow (in Russian)
42. Leont'yev, I. O. (2015) , Sediment fluxes along the south-eastern coast of the Baltic Sea, Geomorphol., 1, p. 70-76, https://doi.org/10.15356/0435-4281-2015-1-70-76
43. Leont'yev, I. O. (1987) , On the coastal horizontal circulation of water in conditions of irregular waves, Water Res., 5, p. 16-22 (in Russian)
44. Longo, S., P. Marco, I. J. Losada (2002) , Turbulence in the swash and surf zones: A review, Coast. Eng., 45, no. 3, p. 129-147, https://doi.org/10.1016/S0378-3839(02)00031-5
45. McLaren, P., D. Bowles (1985) , The effects of sediment transport on grain size distributions, J. Sediment. Petrol., 55, no. 4, p. 457-470, https://doi.org/10.1306/212F86FC-2B24-11D7-8648000102C1865D
46. McLaren, P., S. H. Hill, D. Bowles (2007) , Deriving transport pathways in a sediment trend analysis (STA), Sediment. Geol., 202, no. 3, p. 489-498, https://doi.org/10.1016/j.sedgeo.2007.03.011
47. Mens, K., I. Paalits, I. Puura (1999) , Biostratigraphic dating of pebbles from the Upper Cambrian conglomerates in Estonia, Proc. Estonian Acad. Sci., Geol., 48, p. 140-157
48. Odin, G. S., R. Létolle (1980) , Glauconitization and phosphatization environments: A tentative comparison, SEPM Special Publications, 29, p. 227-237, https://doi.org/10.2110/pec.80.29.0227
49. Odin, G. S., A. Matter (1981) , De Glauconiarum Origine, Sediment., 28, p. 611-641, https://doi.org/10.1111/j.1365-3091.1981.tb01925.x
50. Ostrowski, R., Z. Pruszak, et al. (2012) , Anthropogenic Effects on Coastal Sediment Fluxes in a Nontidal Gulf System, J. Waterway, Port, Coastal, Ocean Eng., 138, p. 491-500, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000156
51. Petrov, O. V. (Ed.) (2010) , Atlas of Geological and Environmental Geological Maps of the Russian Area of the Baltic Sea, VSEGEI, Saint Petersburg
52. Pettijohn, F. J. (1975) , Sedimentary Rocks (second ed.), Harper and Row Publishers, New York
53. Poizot, E., Y. Méar, L. Biscara (2008) , Sediment trend analysis through the variation of granulometric parameters: A review of theories and applications, Earth-Sci. Reviews, 86, p. 15-41, https://doi.org/10.1016/j.earscirev.2007.07.004
54. Pupienis, D., S. Jonukaité, et al. (2013) , Klaipèda port jetties impact on the Baltic Sea shoreline dynamics, Lithuania, J. Coast. Res., 65, p. 2167-2172, https://doi.org/10.2112/SI65-366.1
55. Ritzkowski, S. (1997) , K-Ar Altersbestimmungen der Bernsteinführenden Sedimente des Samlandes (Paläogen, Bezirk Kaliningrad), Metalla, Sonderheft, 66, p. 19-24
56. Rodríguez, J., T. Edeskär, S. Knutsson (2013) , Particle shape quantities and measurement tecniques - A review, Electron. J. Geotechn. Eng., 18, p. 169
57. Sergeev, A. Yu. (2015) , History of geological development of the Curonian Spit in the Holocene and modern lithodynamic processes in the coastal area, Doctoral thesis, VSEGEI, St. Petersburg (in Russian)
58. Shuisky, Yu. D. (1969) , Peculiarities of the coastal-sea placers of the eastern Baltic due to the regime of the alongshore sediment transport (in 2 vol.), Dis. Cand. geogr. sci., IO Acad. Sci USSR, Moscow (in Russian)
59. Shuisky, Yu. D., V. L. Boldyrev, B. V. Kochetkov (1970) , On the conditions and features of the formation of the coastal sea alluvial deposits of the eastern part of the Baltic Sea, DAN USSR, 194, no. 1, p. 187-190 (in Russian)
60. Sivkov, V., B. Chubarenko (1997) , Influence of amber mining on the concentration and chemical composition of suspended sedimentary matter (Sambian Peninsula, Southeast Baltic), Mar. Georesour., Geotechnol., 15, no. 2, p. 115-126, https://doi.org/10.1080/10641199709379940
61. Skiba, M., K. Maj-Szeliga, et al. (2014) , Weathering of glauconite in soils of temperate climate as exemplified by a Luvisol profile, Poland, Geoderma, 235-236, p. 212-226, https://doi.org/10.1016/j.geoderma.2014.07.013
62. Soomere, T., M. Vika (2014) , Simulated wave-driven sediment transport along the eastern coast of the Baltic Sea, J. Mar. Sys., 129, p. 96-105, https://doi.org/10.1016/j.jmarsys.2013.02.001
63. Stauskaitè, R. (1962) , Baltijos pajürio kranto zonos Sventosios-Jantarnoje (Palvininkii) ruozo sméliit mineraloginé sudétis, Lietuvos TSR Moklsu Akademijos darbai. Serija B, 4, p. 83-106 (in Lithuanian)
64. Tokpohozin, N. B., B. Kounouhewa, et al. (2015) , Modelling of sediment movement in the surf and swash zones, Acta Oceanol. Sinica, 34, no. 2, p. 137-142, https://doi.org/10.1007/s13131-015-0610-2
65. Trimonis, E. S., V. L. Stryuk (2002) , Sources of sedimentary matter, Geology of the Gdansk Basin, Emelyanov E. M. (Ed.), p. 75-78, Yantarny Skaz, Kaliningrad
66. Vika, M., T. Soomere (2013) , Simulated and observed reversals of wave-driven alongshore sediment transport at the eastern Baltic Sea coast, Baltica, 26, no. 2, p. 145-156, https://doi.org/10.5200/baltica.2013.26.15
67. aromskis, R., S. Gulbinskas (2010) , Main patterns of coastal zone development of the Curonian Spit, Lithuania, Baltica, 23, no. 2, p. 149-156
68. Zenkovich, V. P. (1962) , Basis of Sea Coasts Development, USSR Acad. Sci., Moscow (in Russian)
69. Zhamoida, V. A., D. V. Ryabchuk, et al. (2009) , Recent sedimentation processes in the coastal zone of the Curonian Spit (Kaliningrad region, Baltic Sea), Z. dt. Ges. Geowiss, 160, p. 143-157, https://doi.org/10.1127/1860-1804/2009/0160-0143
70. Zhindarev, L. A., O. I. Ryabkova, V. Sivkov (2012) , Coastal geology and geomorphology, Oil and Environment of the Kaliningrad Region. Vol. II: Sea, Sivkov V. V. et al. (Eds.), p. 19-36, Terra Baltica, Kaliningrad (in Russian)