GEOMAGNETIC EFFECT OF THE BERING SEA METEOROID
Abstract and keywords
Abstract (English):
Possibilities of studies of the geomagnetic effects produced by the interaction of a cosmic bodies with the magnetosphere-ionosphere-atmosphere system are very limited due to extremely small number of examined events. Here we present geomagnetic observations at an array of magnetometers during Bering Sea Bolide event on December 18, 2018 when a space body entered the Earth's atmosphere and exploded at the altitude of ∼25" role="presentation">∼25

Keywords:
meteoroid, geomagnetic response, geomagnetic pulsations, ionosphere, magnetosphere
References

1. Adushkin, V. V., O. P. Popova, Yu. S. Rybnov, at al. (2004) , Geophysical effects of the Vitim bolide September 24, 2002, Doklady Earth Sciences, 397, p. 685-688 (in Russian)

2. Bronshten, V. A. (1991) , Electrical and electromagnetic phenomena associated with the meteor flight, Sol. Sys. Res., 25, p. 93-104

3. Bronshten, V. A. (2002) , Magnetic effect of the Tungus meteorite, Geomagn. Aeron., 42, p. 816-818

4. Brown, P., R. Spalding, D. ReVelle, at al. (2002) , The flux of small near-Earth objects colliding with the Earth, Nature, 420, p. 294-296, https://doi.org/10.1038/nature01238

5. Chapman, R., A. A. Ashour (1965) , Meteor geomagnetic effects, Smithsonian Contributions to Astrophysics, 8 (7), p. 181-197, https://doi.org/10.5479/si.00810231.8-7.181

6. Chernogor, L., N. Blaunstein (2013) , Radiophysical and Geomagnetic Effects of Rocket Burn and Launch in the Near-the-Earth Environment, 542 pp., CRC Press, Boca Raton, https://doi.org/10.1201/b15614

7. Chernogor, L. F. (2018) , Effects during the Approach of the Chelyabinsk Meteoroid, Geomagn. Aeron., 58, p. 252-265, https://doi.org/10.1134/S0016793218020044

8. Dobrowolny, M., P. Veltri (1986) , Structure of Alfven wings associated with a conductor moving across a magnetoplasma, Astron. Astrophys., 167, p. 179-185

9. Ellyett, C. D., B. J. Fraser (1963) , On the correlation of meteors with micropulsations, J. Geophys. Res., Vol. 68, Iss. 21, p. 5937-5945, https://doi.org/10.1029/JZ068i021p05937

10. Gavrilov, B. G., J. I. Zetzer, I. M. Podgorny, et al. (2003) , Plasma Jet Motion Across the Geomagnetic Field in the "North Star" Active Geophysical Experiment, Cosmic Researc, 41, p. 28-38, https://doi.org/10.1023/A:1022399412544

11. Gordeev, E. I., S. N. Kulichkov, P. P. Firstov, et al. (2018) , Infrasonic Waves and Assessment of the Explosion Energy of the Bering Sea Meteoroid on December 19, 2018, Dokl. Earth Sc., 489, p. 1436-1439, https://doi.org/10.1134/S1028334X19120043

12. Hawkins, G. S. (1958) , A search for magnetic effects from meteors. Journal of Geophysical Research, J. Geophys. Res., 63(3), p. 467-475, https://doi.org/10.1029/jz063i003p00467

13. Ivanov, K. G. (1967) , About the nature of the impact of the Tunguska fall on the upper atmosphere, the geomagnetic field and the glow of the night, Geomagn. Aeron., 7, no. 6, p. 1031-1035 (in Russian)

14. Ivanov, V. V., Y. A. Medvedev (1965) , The magnetic effect and shock wave of a meteor, Soviet Astronomy, 8, p. 890

15. Kalashnikov, A. G. (1949) , On observations of magnetic effect of meteors by the induction method, Dokl. Akad. Sci. USSR, 66, p. 373-376

16. Kalashnikov, A. G. (1952) , On observations of magnetic effect of meteors by the induction method, Izvestia AN SSSR, Geofizika, No. 6, p. 7-20

17. Negraru, P., G. Johnson (2019) , Analysis of the infrasound signals from a bolide over the Bering Sea, Thesis T2.3-P005, CTBT Science and Technology 2019 Conference, Hofburg, Vienna, Austria

18. Nemchinov, I. V., T. V. Loseva, V. G. Mukhin (1999) , Estimation of the magnetic effect during the fall of the Tunguska meteoroid, Physical processes in the geospheres: their manifestations and interaction, M: IDG RAS, p. 324-338

19. Pilipenko, V. A. (2013) , Trigger excitation of ULF waves in the Earth's magnetosphere, Thesis, GEOS, Moscow, Russia (ISBN 978-5-89118-641-5)

20. Popova, O. P., P. Jenniskens, V. V. Emelyanenko, et al. (2013) , Chelyabinsk Airburst, Damage Assessment, Meteorite Recovery, and Characterization, Science, 342, p. 1069-1073, https://doi.org/10.1126/science.1242642

21. Revelle, D. O. (1997) , Historical Detection of Atmospheric Impacts by Large Bolides Using Acoustic-Gravity Waves, Annals of the New York Academy of Sciences, 822, p. 284-302, https://doi.org/10.1111/j.1749-6632.1997.tb48347.x

22. Savchenko, Yu. N. (1975) , Geomagnetic Disturbances Caused by Shock Waves of Large Meteoric Bodies, Geomagn. Aeron., 15, no. 6, p. 1047-1053

23. Savchenko, Yu. N. (1976) , Geomagnetic Disturbances Caused by Shock Waves of Large Meteoric Bodies. II, Geomagn. Aeron., 16, no. 6, p. 518-525

24. Shiokawa, K., Y. Katoh, Y. Hamaguchi, et al. (2017) , Ground-based instruments of the PWING project to investigate dynamics of the inner magnetosphere at subauroral latitudes as a part of the ERG-ground coordinated observation network, Earth Planets Space, 69, p. 160, https://doi.org/10.1186/s40623-017-0745-9

25. Zetser, Y. I., B. G. Gavrilov, V. A. Zhmailo, et al. (2004) , Geomagnetic Effects from Expanding Plasma Formation of a High-Altitude Nuclear Explosion, Combustion, Explosion, and Shock Waves, 40, p. 638-648, https://doi.org/10.1023/B:CESW.0000048265.43517.e6

Login or Create
* Forgot password?