Vladikavkaz Scientific Center RAS
Russian Federation
The article presents the results of FCAZ-recognition of the strongest (M≥" role="presentation">M≥
earthquake-prone areas, fcaz, pattern recognition, earthquake catalog, epicenter, foreshocks, aftershocks, california, kamchatka peninsula
1. Abubakirov, I. R., A. A. Gusev, E. M. Guseva, at al. (2018) , Mass determination of moment magnitudes Mw and establishing the relationship between Mw and ML for moderate and small Kamchatka earthquakes, Izv., Phys. Solid Earth, 54, p. 33-47, https://doi.org/10.1134/S1069351318010019
2. Agayan, S., Sh. Bogoutdinov, M. Dobrovolsky (2014) , Discrete perfect sets and their application in cluster analysis, Cybernetics and Systems Analysis, 50, no. 2, p. 176-190, https://doi.org/10.1007/s10559-014-9605-9
3. Agayan, S., Sh. Bogoutdinov, R. Krasnoperov (2018) , Short introduction into DMA, Russ. J. Earth. Sci., 18, p. ES2001, https://doi.org/10.2205/2018ES000618
4. Akopian, S., V. Bondur, E. Rogozhin (2017) , Technology for monitoring and forecasting strong earthquakes in Russia with the use of the seismic entropy method, Izv., Phys. Solid Earth, 53, p. 32-51, https://doi.org/10.1134/S1069351317010025
5. Baranov, S. V., A. D. Gvishiani, C. Narteau, P. N. Shebalin (2019) , Epidemic type aftershock sequence exponential productivity, Russ. J. Earth. Sci., 19, p. ES6003, https://doi.org/10.2205/2019ES000695
6. Bondur, V. G., I. A. Garagash, M. B. Gokhberg (2017) , The dynamics of the stress state in Southern California based on the geomechanical model and current seismicity: Short term earthquake prediction, Russ. J. Earth. Sci., 17, p. ES1005, https://doi.org/10.2205/2017ES000596
7. Dzeboev, B. A., S. M. Agayan, Yu. I. Zharkikh, et al. (2018a) , Strongest Earthquake-Prone Areas in Kamchatka, Izv., Phys. Solid Earth, 54, no. 2, p. 284-291, https://doi.org/10.1134/S1069351318020052
8. Dzeboev, B. A., R. I. Krasnoperov, I. O. Belov, et al. (2018b) , Modified algorithmic system FCAZm and strong earthquake-prone areas in California, Geoinformatika, no. 2, p. 2-8 (in Russian)
9. Fedotov, S. A. (1972) , Energy Classification of the Kuril-Kamchatka Earthquakes and the Problem of Magnitudes, 116 pp., Nauka, Moscow (in Russian)
10. Fedotov, S. A., A. V. Solomatin (2015) , The long-term earthquake forecast for the Kuril-Kamchatka island arc for the September 2013 to August 2018 period; the seismicity of the arc during preceding deep-focus earthquakes in the sea of Okhotsk (in 2008, 2012, and 2013 at M = 7.7, 7.7, and 8.3), J. Volcanolog. Seismol., 9, p. 65-80, https://doi.org/10.1134/S0742046315020025
11. Gelfand, I. M., Sh. I. Guberman, M.L. Izvekova, et al. (1972) , Criteria of high seismicity determined by pattern recognition, Tectonophysics, 13, no. 1-4, p. 415-422, https://doi.org/10.1016/0040-1951(72)90031-5
12. Gelfand, I. M., Sh. I. Guberman, V. I. Keilis-Borok, et al. (1976) , Pattern recognition applied to earthquake epicenters in California, Physics of the Earth and Planetary Interiors, 11, no. 3, p. 227-283
13. Gordeev, E. I., A. A. Gusev, V. I. Levina, et al. (2006) , Shallow Earthquakes in Kamchatka, Vulkanol. Seismol., no. 3, p. 28-38 (in Russian)
14. Gorshkov, A. I., I. V. Kuznetsov, A. A. Soloviev, et al. (2000) , Identification of future earthquake sources in the Carpatho-Balkan orogenic belt using morphostuctural criteria, Pure and Applied Geophysics, 157, no. 1-2, p. 79-95, https://doi.org/10.1007/PL00001101
15. Gorshkov, A. I., G. F. Panza, A. A. Soloviev, et al. (2002) , Morphostructural zonation and preliminary recognition of seismogenic nodes around the Adria margin in peninsular Italy and Sicily, Journal of Seismology and Earthquake Engineering, 4, no. 1, p. 1-24
16. Gorshkov, A., V. Kossobokov, A. Soloviev (2003) , Recognition of Earthquake-Prone Areas, Nonlinear Dynamics of the Lithosphere and Earthquake Prediction, edited by Keilis-Borok V., Soloviev A., p. 239-310, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-662-05298-3_6
17. Gorshkov, A., O. Novikova (2018) , Estimating the validity of the recognition results of earthquake-prone areas using the ArcMap, Acta Geophysica, 66, no. 5, p. 843-853, https://doi.org/10.1007/s11600-018-0177-3
18. Gvishiani, A. D., S. M. Agayan, Sh. R. Bogoutdinov (2008) , Discrete mathematical analysis and monitoring of volcanoes, Inzh. Ekol., no. 5, p. 26-31 (in Russian)
19. Gvishiani, A. D., S. M. Agayan, Sh. R. Bogoutdinov, et al. (2010) , Discrete mathematical analysis and applications in geology and geophysics, Vestnik KRAUNTs. Nauki o Zemle, no. 2, p. 109-125 (in Russian)
20. Gvishiani, A., B. Dzeboev, S. Agayan (2013) , A new approach to recognition of the earthquake-prone areas in the Caucasus, Izv., Phys. Solid Earth, 49, no. 6, p. 747-766, https://doi.org/10.1134/S1069351313060049
21. Gvishiani, A. D., B. A. Dzeboev, S. M. Agayan (2016) , FCAZm intelligent recognition system for locating areas prone to strong earthquakes in the Andean and Caucasian mountain belts, Izv., Phys. Solid Earth, 54, no. 4, p. 461-491, https://doi.org/10.1134/S1069351316040017
22. Gvishiani, A. D., B. A. Dzeboev, I. O. Belov (2017a) , Successive Recognition of Significant and Strong Earthquake-Prone Areas: The Baikal-Transbaikal Region, Doklady Earth Sciences, 477. Part 2, p. 1488-1493, https://doi.org/10.1134/S1028334X1712025X
23. Gvishiani, A. D., B. A. Dzeboev, N. A. Sergeyeva, et al. (2017b) , Formalized Clustering and the Significant Earthquake-Prone Areas in the Crimean Peninsula and Northwest Caucasus, Izv., Phys. Solid Earth, 53, no. 3, p. 353-365, https://doi.org/10.1134/S106935131703003X
24. Gvishiani, A. D., B. A. Dzeboev, N. A. Sergeyeva, et al. (2018) , Significant Earthquake-Prone Areas in the Altai-Sayan Region, Izv., Phys. Solid Earth, 54, no. 3, p. 406-414, https://doi.org/10.1134/S1069351318030035
25. Gvishiani, A. D., A. A. Soloviev, B. A. Dzeboev (2020) , Problem of Recognition of Strong-Earthquake-Prone Areas: a State-of-the-Art Review, Izv., Phys. Solid Earth, 56, no. 1, p. 1-23, https://doi.org/10.1134/S1069351320010048
26. Kossobokov, V. G., A. A. Soloviev (2018) , Pattern recognition in problems of seismic hazard assessment, Chebyshevskii Sbornik, 19, no. 4, p. 55-90, https://doi.org/10.22405/2226-8383-2018-19-4-55-90 (In Russian)
27. Levina, V. I., A. V. Lander, et al. (2013) , The seismicity of the Kamchatka region: 1962-2011, J. Volcanolog. Seismol., 7, p. 37-57, https://doi.org/10.1134/S0742046313010053
28. Skorkina, A. A. (2020) , Scaling of two corner frequencies of source spectra for earthquakes of the Bering fault, Russ. J. Earth. Sci., 20, p. ES2001, https://doi.org/10.2205/2020ES000704
29. Soloviev, A. A., A. I. Gorshkov, A. A. Soloviev (2016) , Application of the data on the lithospheric magnetic anomalies in the problem of recognizing the earthquake prone areas, Izv., Phys. Solid Earth, 52, p. 803-809, https://doi.org/10.1134/S1069351316050141
30. Zaliapin, I., Y. Ben-Zion (2013) , Earthquake clusters in southern California I: identification and stability, J. Geophys. Res. Solid Earth, 118, p. 2847-2864, https://doi.org/10.1002/jgrb.50179
31. Zgurovsky, M. Z, N. D. Pankratova (2007) , System Analysis: Theory and Applications, 447 pp., Springer-Verlag, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-48880-4