EVALUATION OF HEAT AND SALT TRANSPORTS BY MESOSCALE EDDIES IN THE LOFOTEN BASIN
Abstract and keywords
Abstract (English):
The vertical structure of mesoscale eddies in the Lofoten Basin (LB) is investigated by combining satellite altimetry data and the Global Ocean Physics Reanalysis profiles (GLORYS12V1). We apply an automated eddy identification and tracking method to detect and track mesoscale eddies in the LB from altimeter data during the period 1993-2017. The three-dimensional structure of eddies detected is determined from GLORYS12V1 temperature and salinity profiles. A method based on the inferred three-dimensional structure of eddies and eddy trajectories is applied to estimate eddy heat and salt transports in a Lagrangian framework at each point of the track. Note that the study focuses on long-lived eddies (>35" role="presentation">>35

Keywords:
Lofoten Vortex, Lofoten Basin, Norwegian Sea, mesoscale eddies, altimetry, automatic identification algorithm, heat and salt transports, GLORYS12V1
References

1. Alexeev, G. V., M. V. Bagryantsev, et al. (1991) , Structure and circulation of water masses in the area of an anticyclonic vortex in the north-eastern part of the Norwegian Sea, Probl. Arctic Antarct., 65, p. 14-23 (in Russian)

2. Alexeev, V. A., V. V. Ivanov, et al. (2016) , Convective structures in the Lofoten Basin based on satellite and Argo data, Izv. Atmos. Ocean. Phys., 52, no. 9, p. 1064-1077, https://doi.org/10.1134/S0001433816090036

3. Bashmachnikov, I. L., M. A. Sokolovskiy, et al. (2017) , On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea, Deep-Sea Res. I, 128, p. 1-27, https://doi.org/10.1016/j.dsr.2017.08.001

4. Belonenko, T. V., et al. (2018) , Horizontal advection of temperature and salinity by Rossby waves in the North Pacific, International Journal of Remote Sensing, 39, no. 8, p. 2177-2188, https://doi.org/10.1080/01431161.2017.1420932

5. Belonenko, T. V., D. L. Volkov, et al. (2014) , Circulation of waters in the Lofoten Basin of the Norwegian Sea, Vestn. S. Petersburg Un-ta, 7, no. 2, p. 108-121 (in Russian)

6. Belonenko, T. V., A. V. Koldunov, V. R. Foux (2011) , Advecting Chlorophyll by Rossby Waves, Vestn. S. Petersburg Un-ta, 7, no. 4, p. 106-109 (in Russian)

7. Bjork, G., B. G. Gustafsson, A. Stigebrandt (2001) , Upper layer circulation of the Nordic seas as inferred from the spatial distribution of heat and freshwater content, Polar Res., 20, p. 161-168, https://doi.org/10.3402/polar.v20i2.6513

8. Bloshkina, E. V., V. V. Ivanov (2016) , Convective structures in the Norwegian and Greenland Seas based on simulation results with high spatial resolution, Proc. Hydromet. Research Center of the Russian Federation, 361, p. 146-168 (in Russian)

9. Carton, X. J. (1992) , On the Merger of Shielded Vortices, EPL (Europhysics Letters), 18, no. 8, https://doi.org/10.1209/0295-5075/18/8/006

10. Chaigneau, A., M. Le Texier, et al. (2011) , Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats, J. Geophys. Res., 116, p. C11025, https://doi.org/10.1029/2011JC007134

11. Chelton, D. B., R. A. DeSzoeke, et al. (1998) , Geographical variability of the first baroclinic Rossby radius of deformation, J. Phys. Oceanogr., 28, p. 433-460, https://doi.org/10.1175/1520-0485(1998)028%3C0433:GVOTFB%3E2.0.CO;2

12. Chelton, D. B., P. Gaube, et al. (2011) , The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll, Science, 334, no. 6054, p. 328-332, https://doi.org/10.1126/science.1208897

13. Dong, C., J. C. McWilliams, et al. (2014) , Global heat and salt transports by eddy movement, Nature Communications, 5, p. 3294, https://doi.org/10.1038/ncomms4294

14. Dong, D., P. Brandt, et al. (2017) , Mesoscale eddies in the Northwestern Pacific Ocean: Three-dimensional eddy structures and heat/salt transports, J. Geophys. Res., 122, p. 9795-9813, https://doi.org/10.1002/2017JC013303

15. Faghmous, J. H., I. Frenger, et al. (2015) , A daily global mesoscale ocean eddy dataset from satellite altimetry, Sci. Data, 2, p. 150028, https://doi.org/10.1038/sdata.2015.28

16. Fedorov, A. M., I. L. Bashmachnikov, T. V. Belonenko (2019) , Winter convection in the Lofoten Basin according to ARGO buoys and hydrodynamic modeling, Vestn. S. Petersburg Un-ta, Earth Sciences, 64, no. 3, p. 491-511, https://doi.org/10.21638/spbu07.2019.308 (in Russian)

17. Gaube, P., D. B. Chelton, et al. (2015) , Satellite observations of mesoscale eddy-induced Ekman pumping, J. Phys. Oceanogr., 45, no. 1, p. 104-132, https://doi.org/10.1175/JPO-D-14-0032.1

18. Gordeeva, S., V. Zinchenko, et al. (2019) , Pattern of mesoscale eddy activity in the Lofoten Basin based on statistical analysis, Advanced in Space Res., https://doi.org/10.1016/j.asr.2020.05.043

19. Ikeda, M., J. A. Johannessen, et al. (1989) , A process study of mesoscale meanders and eddies in the Norwegian Coastal Current, J. Phys. Oceanogr., 19, p. 20-35, https://doi.org/10.1175/1520-0485(1989)019%3C0020:APSOMM%3E2.0.CO;2

20. Ivanov, V. V., A. A. Korablev (1995) , Dynamics of an intrapycnocline lens in the Norwegian Sea, Russ. Meteorol. Hydrol., 10, p. 55-62 (in Russian)

21. Isachsen, P. E. (2015) , Baroclinic instability and the mesoscale eddy field around the Lofoten Basin, J. Geophys. Res., 120, no. 4, p. 2884-2903, https://doi.org/10.1002/2014JC010448

22. Jakobsen, P. K., M. H. Ribergaard, et al. (2003) , Near-surface circulation in the northern North Atlantic as inferred from Lagrangian drifters: Variability from the mesoscale to interannual, J. Geophys. Res., 108, p. C8, https://doi.org/10.1029/2002JC001554

23. Kohl, A. (2007) , Generation and stability of a quasi-permanent vortex in the Lofoten Basin, J. Phys. Oceanogr., 37, p. 2637-2651, https://doi.org/10.1175/2007JPO3694

24. Koszalka, I., J. H. LaCasce, et al. (2011) , Surface circulation in the Nordic seas from clustered drifters, Deep-Sea Res. I, 58, p. 468-485, https://doi.org/10.1016/j.dsr.2011.01.007

25. Kubryakov, A. A., T. V. Belonenko, S. V. Stanichny (2016) , Impact of the mesoscale eddies on the sea surface temperature in the North Pacific Ocean, Modern Problems of Remote Sensing of the Earth from Space, 13, no. 2, p. 124-133, https://doi.org/10.21046/2070-7401-2016-13-2-34-43 (in Russian)

26. Lozier, M. S. (1997) , Evidence for large-scale eddy-driven gyres in the North Atlantic, Science, 277, no. 5324, p. 361-364, https://doi.org/10.1126/science.277.5324.361

27. Mork, K. A., O. Skagseth (2010) , A quantitative description of the Norwegian Atlantic Current by combining altimetry and hydrography, Ocean Science, 6, p. 901-911, https://doi.org/10.5194/os-6-901-2010

28. Morrow, R., P. Y. Le Traon (2012) , Recent advances in observing mesoscale ocean dynamics with satellite altimetry, Advances in Space Res., 50, no. 8, p. 1062-1076, https://doi.org/10.1016/j.asr.2011.09.033

29. Morrow, R., R. Coleman, et al. (1994) , Surface eddy momentum flux and velocity variances in the Southern Ocean from Geosat altimetry, Journal of Physical Oceanography, 24, no. 10, p. 2050-2071, https://doi.org/10.1175/1520-0485(1994)024%3C2050:SEMFAV%3E2.0.CO;2

30. Orvik, K. A. (2004) , The deepening of the Atlantic water in the Lofoten Basin of the Norwegian Sea, demonstrated by using an active reduced gravity model, Geophys. Res. Lett., 31, p. L01306, https://doi.org/10.1029/2003GL018687

31. Poulain, P.-M., A. Warn-Varnas, P. P. Niiler (1996) , Near-surface circulation of the Nordic seas as measured by Lagrangian drifters, J. Geophys. Res., 101, no. C8, p. 18,237-18,258, https://doi.org/10.1029/96JC00506

32. Raj, R. P., L. Chafik, et al. (2015) , The Lofoten Vortex of the Nordic Seas, Deep-Sea Res. I, 96, p. 1-14, https://doi.org/10.1016/j.dsr.2014.10.011

33. Raj, R. P., J. A. Johannessen, et al. (2016) , Quantifying mesoscale eddies in the Lofoten Basin, J. Geophys. Res., 121, p. 4503-4521, https://doi.org/10.1002/2016JC011637

34. Richards, C. G., F. Straneo (2015) , Observations of Water Mass Transformation and Eddies in the Lofoten Basin of the Nordic Seas, Journal of Phys. Oceanogr., 45, no. 6, https://doi.org/10.1175/JPO-D-14-0238.1

35. Rossby, T., V. Ozhigin, et al. (2009a) , An isopycnal view of the Nordic Seas hydrography with focus on properties of the Lofoten Basin, Deep-Sea Res. I, 56, no. 11, p. 1955-1971, https://doi.org/10.1016/j.dsr.2009.07.005

36. Rossby, T., M. D. Prater, H. Soiland (2009b) , Pathways of inflow and dispersion of warm waters in the Nordic seas, J. Geophys. Res., 114, p. C04011, https://doi.org/10.1029/2008JC005073

37. Skagseth, O., A. Slotte, et al. (2015) , Characteristics of the Norwegian Coastal Current during Years with High Recruitment of Norwegian Spring Spawning Herring (Clupea harengus L.), PLoS ONE, 10, no. 12, p. e0144117, https://doi.org/10.1371/journal.pone.0144117

38. Soiland, H., T. Rossby (2013) , On the structure of the Lofoten Basin Eddy, J. Geophys. Res., 118, p. 4201-4212, https://doi.org/10.1002/jgrc.20301

39. Soiland, H., L. Chafik, T. Rossby (2016) , On the long-term stability of the Lofoten Basin Eddy, J. Geophys. Res., 121, p. 4438-4449, https://doi.org/10.1002/2016JC011726

40. Toth, G., G. Hazi (2010) , Merging of shielded Gaussian vortices and formation of a tripole at low Reynolds numbers, Physics of Fluids, 22, p. 053101, https://doi.org/10.1063/1.3428539

41. Volkov, D. L., L.-L. Fu (2008) , The role of vorticity fluxes in the dynamics of the Zapiola Anticyclone, J. Geophys. Res., 113, p. C11015, https://doi.org/10.1029/2008JC004841

42. Volkov, D. L., T. V. Belonenko, V. R. Foux (2013) , Puzzling over the dynamics of the Lofoten Basin - a sub-Arctic hot spot of ocean variability, Geophys. Res. Lett., 40, no. 4, p. 738-743, https://doi.org/10.1002/grl.50126

43. Volkov, D. L., A. Kubryakov, R. Lumpkin (2015) , Formation and variability of the Lofoten Basin vortex in a high-resolution ocean model, Deep-Sea Res. I, 105, p. 142-157, https://doi.org/10.1016/j.dsr.2015.09.001

44. Vorobiev, V. I. (1991) , Synoptic Meteorology, 612 pp., Hydrometeoizdat, Leningrad (in Russian)

45. Wunsch, C., P. Heimbach, et al. (2009) , The global general circulation of the ocean estimated by the ECCO-consortium, Oceanography, 22, p. 88-103, https://doi.org/10.5670/oceanog.2009.41

46. Yu, L.-S., A. Bosse, et al. (2017) , The Lofoten Basin eddy: Three years of evolution as observed by Seagliders, J. Geophys. Res., 122, p. 6814-6834, https://doi.org/10.1002/2017JC012982

47. Zinchenko, V. A., S. M. Gordeeva, et al. (2019) , Analysis of Mesoscale eddies in the Lofoten Basin based on satellite altimetry, Fundamentalnaya i Prikladnaya Gidrofzika, 12, no. 3, p. 46-54, https://doi.org/10.7868/S2073667319030067 (in Russian)

48. Zhmur, V. V. (2011) , Mesoscale Vortices of the Ocean, 384 pp., GEOS, Moscow (in Russian)

Login or Create
* Forgot password?