TOPOGRAPHIC EXPERIMENTS OVER DYNAMICAL PROCESSES IN THE NORWEGIAN SEA
Abstract and keywords
Abstract (English):
The Norwegian Atlantic Current is significantly steered by large topographic features of the Norwegian Sea. The geometry of topographic features in the region is highly variable, but the influence of this variation on the formation of a quasi-permanent anticyclonic vortex located in the center of the Lofoten Basin (Lofoten Vortex) is poorly understood. Four sensitivity experiments with a regional configuration of the Massachusetts Institute of Technology general circulation model have been carried out with an objective to investigate the role of bottom topography on the formation of the Lofoten Vortex in the Norwegian Sea. We find that the bottom topography and especially the geometry of subsurface ridges are critical for the dynamics of the Norwegian Sea and stability of the Lofoten Vortex.

Keywords:
Norwegian Sea, Lofoten Basin, Norwegian Basin, bottom topography, MITgcm, topography experiments
Text
Text (PDF): Read Download
References

1. Adcroft, A., C. Hill, J. Marshall (1997) , The representation of topography by shaved cells in a height coordinate model, Mon. Weather Rev., 125, p. 2293-2315, https://doi.org/10.1175/1520-0493(1997)125%3C2293:ROTBSC%3E2.0.CO;2.

2. Alexeev, V. A., V. V. Ivanov, I. A. Repina, et al. (2016) , Convective structures in the Lofoten Basin based on satellite and Argo data, Izv. Atmos. Ocean. Phys., 52, no. 9, p. 1064-1077, https://doi.org/10.1134/S0001433816090036.

3. Alekseev, G. V., M. V. Bagryantsev, P. V. Bogorodsky, et al. (1991) , Structure and circulation of waters in the North-East of the Norwegian sea, Problems of the Arctic and Antarctic. Issue 65, p. 14-23, Hydrometeoizdat, Leningrad.

4. Bashmachnikov, I. L., T. V. Belonenko, P. A. Kuibin (2017a) , The application of the theory of the columnar Q-vortex with helical structure to the description of the dynamic characteristics of the Lofoten vortex of the Norwegian sea, Vestn. St. Petersburg Un-ta Ser. 7, 62, no. 3, p. 21-336, https://doi.org/10.21638/11701/spbu07.2017.301 (in Russian).

5. Bashmachnikov, I. L., et al. (2017b) , On the vertical structure and stability of the Lofoten vortex in the Norwegian Sea, Deep-Sea Res. I, 128, p. 1-27, https://doi.org/10.1016/j.dsr.2017.08.001.

6. Bashmachnikov, I., T. Belonenko, P. Kuibin, et al. (2018) , Pattern of vertical velocity in the Lofoten vortex (the Norwegian Sea), Ocean Dynamics, 68, no. 12, p. 1711-1725, https://doi.org/10.1007/s10236-018-1213-1.

7. Belonenko, T. V., I. L. Bashmachnikov, et al. (2017) , On the Vertical Velocity Component in the Mesoscale Lofoten Vortex of the Norwegian Sea, Izvestiya, Atmospheric and Oceanic Physics, 53, no. 6, p. 641-649, https://doi.org/10.1134/S0001433817060032 (in Russian).

8. Belonenko, T. V., A. V. Koldunov, et al. (2018) , Thermohaline structure of the Lofoten vortex in the Norwegian sea based on field research and hydrodynamic modeling, Vestn. S. Petersbur. Un-ta, Earth Sciences, 63, no. 4, p. 502-519, https://doi.org/10.21638/spbu07.2018.406 (in Russian).

9. Belonenko, T. V., D. L. Volkov, et al. (2014) , Circulation of waters in the Lofoten Basin of the Norwegian Sea, Vestn. S. Petersbur. Un-ta, 7, no. 2, p. 108-121 (in Russian).

10. Belonenko, T., V. Zinchenko, et al. (2020) , Evaluation of Heat and Salt Transports by Mesoscale Eddies in the Lofoten Basin, Russ. J. Earth Sci., 20, https://doi.org/10.2205/2020ES000720.

11. Benilov, E. S. (2005) , Stability of a Two-Layer Quasigeostrophic Vortex over Axisymmetric Localized Topography, J. Phys. Oceanogr., 35, no. 1, p. 123-130, https://doi.org/10.1175/JPO-2660.1.

12. Bloshkina, E. V., V. V. Ivanov (2016) , Convective structures in the Norwegian and Greenland Seas based on simulation results with high spatial resolution, Proceedings of the Hydrometeorological Research Center of the Russian Federation, 361, p. 146-168 (in Russian).

13. Bosse, A., I. Fer, et al. (2019) , Dynamical controls on the longevity of a non-linear vortex: The case of the Lofoten Basin Eddy, Scientific Reports, 9, no. 13,448, p. 1-13, https://doi.org/10.1038/s41598-019-49599-8.

14. Carnevale, G. F., R. C. Kloosterziel, G. J. F. van Heijst (1991) , Propagation of barotropic vortices over topography in a rotating tank, J. Fluid Mech., 233, p. 119-125, https://doi.org/10.1017/S0022112091000411.

15. Dugstad, J., I. Fer, J. LaCasce, et al. (2019) , Lateral heat transport in the Lofoten Basin: Near-surface pathways and subsurface exchange, Journal of Geophysical Research: Oceans, 124, p. 2992-3006, https://doi.org/10.1029/2018JC014774.

16. Fedorov, A. M., I. L. Bashmachnikov, T. V. Belonenko (2018) , Localization of areas of deep convection in the Nordic seas, the Labrador Sea and the Irminger Sea, Vestn. S. Petersbur. Un-ta, Earth Sciences, 63, no. 3, p. 345-362, https://doi.org/10.21638/spbu07.2018.306 (in Russian).

17. Fedorov, A. M., I. L. Bashmachnikov, T. V. Belonenko (2019) , Winter convection in the Lofoten Basin according to ARGO buoys and hydrodynamic modeling, Vestn. S. Petersbur. Un-ta, Earth Sciences, 64, no. 3, p. 491-511, https://doi.org/10.21638/spbu07.2019.308 (in Russian).

18. Fer, I., A. Bosse, et al. (2018) , The Dissipation of Kinetic Energy in the Lofoten Basin Eddy, Journal of Physical Oceanography, 48, no. 6, p. 1299-1305, https://doi.org/10.1175/JPO-D-17-0244.1.

19. Gascard, J.-C., K. A. Mork (2008) , Climatic importance of large-scale and mesoscale circulation in the Lofonten Basin deduced from Lagrangian observations Arctic-Subarctic Ocean Fluxes, Defining the Role of the Northern Seas in Climate, p. 131-144, Springer Science, https://doi.org/10.1007/978-1-4020-6774-7_7.

20. Gordeeva, S., V. Zinchenko, et al. (2020) , Statistical analysis of long-lived mesoscale eddies in the Lofoten Basin from satellite altimetry, Advances in Space Research, https://doi.org/10.1016/j.asr.2020.05.043.

21. Isachsen, P. E. (2011) , Baroclinic instability and eddy tracer transport across sloping bottom topography: How well does a modified Eady model do in primitive equation simulations?, Ocean Modell., 39, p. 183-199, https://doi.org/10.1016/j.ocemod.2010.09.007.

22. Isachsen, P. E. (2015) , Baroclinic instability and the mesoscale eddy field around the Lofoten Basin, J. Geophys. Res., 120, no. 4, p. 2884-2903, https://doi.org/10.1002/2014JC010448.

23. Isachsen, P. E., J. H. LaCasce, et al. (2003) , Wind-driven variability of the large-scale recirculating flow in the Nordic seas and Arctic Ocean, J. Phys. Oceanogr., 33, p. 2534-2550, https://doi.org/10.1175/1520-0485(2003)033%3C2534:WVOTLR%3E2.0.CO;2.

24. Ivanov, V. V., A. A. Korablev (1995a) , Formation and regeneration of the pycnocline lens in the Norwegian Sea, Russ. Meteor. Hydrol., 9, p. 62-69.

25. Ivanov, V. V., A. A. Korablev (1995b) , Dynamics of an intrapycnocline lens in the Norwegian Sea, Russ. Meteor. Hydrol., 10, p. 32-37.

26. Jakobsen, P., M. Ribergaard, et al. (2003) , Near-surface circulation in the northern North Atlantic as inferred from Lagrangian drifters: Variability from the mesoscale to interannual, Journal of Geophysical Research, 108, no. C8, p. 3251-3254, https://doi.org/10.1029/2002JC001554.

27. Kara, A. B., P. A. Rochford, H. E. Hurlburt (2000) , An optimal definition for ocean mixed layer depth, Journal of Geophysical Research, 105, no. C7, p. 16,803-16,821, https://doi.org/10.1029/2000JC900072.

28. Killworth, P. D. (1983) , Deep convection in the World Ocean, Reviews of Geophysics, 21, no. 1, p. 1, https://doi.org/10.1029/rg021i001p00001.

29. Kohl, A. (2007) , Generation and Stability of a Quasi-Permanent Vortex in the Lofoten Basin, J. Phys. Oceanogr., 37, p. 2637-2651, https://doi.org/10.1175/2007JPO3694.1.

30. Koszalka, I., J. H. LaCasce, M. Andersson, et al. (2011) , Surface circulation in the Nordic seas from clustered drifters, Deep-Sea Res. I, 58, p. 468-485, https://doi.org/10.1016/j.dsr.2011.01.007.

31. Large, W. G., J. C. McWilliams, S. C. Doney (1994) , Oceanic vertical mixing: are view and a model with an on local boundary layer parameterization, Rev. Geophys., 32, p. 363-403, https://doi.org/10.1029/94RG01872.

32. Losch, M., D. Menemenlis, et al. (2010) , On the formulation of sea-ice models. Part1: Effects of different solver implementations and parameterizations, Ocean Model., 33, p. 129-144, https://doi.org/10.1016/j.ocemod.2009.12.008.

33. Marshall, J., A. Adcroft, C. Hill, et al. (1997) , A finite volume, incompressible Navier-Stokes model for studies of the ocean on parallel computers, J. Geophys. Res., 102, p. 5753-5766, https://doi.org/10.1029/96JC02775.

34. Nguyen, A. T., D. Menemenlis, R. Kwok (2011) , Arctic ice-ocean simulation with optimized model parameters: approach and assessment, J. Geophys. Res., 116, p. C04025, https://doi.org/10.1029/2010JC006573.

35. Nilsen, J. E., E. Falck (2006) , Variations of mixed layer properties in the Norwegian Sea for the period 1948-1999, Progress in Oceanography, 70, p. 58-89, https://doi.org/10.1016/j.pocean.2006.03.014.

36. Nost, O. A., P. E. Isachsen (2003) , The large-scale time-mean ocean circulation in the Nordic Seas and Arctic Ocean estimated from simplified dynamics, Journal of Marine Research, 61, p. 175-210, https://doi.org/10.1357/002224003322005069.

37. Orvik, K. (2004) , The deepening of the Atlantic water in the Lofoten Basin of the Norwegian Sea, demonstrated by using an active reduced gravity model, Geophysical Research Letters, 31, no. L01306, p. 1-3, https://doi.org/10.1029/2003GL018687.

38. Orvik, K., P. P. Niiler (2002) , Major pathways of Atlantic water in the northern North Atlantic and Nordic seas toward Arctic, Geophys. Res. Lett., 29, p. 1896, https://doi.org/10.1029/2002GL015002.

39. Poulain, P.-M., A. Warn-Varnas, P. Niiler (1996) , Near surface circulation of the Nordic Seas as measured by lagrangian drifters, Journal of Geophysical Research, 101, no. C8, p. 18,237-18,258, https://doi.org/10.1029/96JC00506.

40. Raj, R. P., I. Halo (2016) , Monitoring the mesoscale eddies of the Lofoten Basin: importance, progress, and challenges, International Journal of Remote Sensing, 37, no. 16, p. 3712-3728, https://doi.org/10.1080/01431161.2016.1201234.

41. Raj, R. P., I. Halo, S. Chatterjee, et al. (2020) , Interaction between mesoscale eddies and the gyre circulation in the Lofoten Basin, JGR Oceans, https://doi.org/10.1029/2020JC016102.

42. Rossby, T., V. Ozhigin, et al. (2009) , An isopycnal view of the Nordic Seas hydrography with focus on properties of the Lofoten Basin, Deep-Sea Research I, 56, no. 11, p. 1955-1971, https://doi.org/10.1016/j.dsr.2009.07.005.

43. Smith, W. H. F., D. T. Sandwell (1997) , Global sea floor topography from satellite altimetry and ship depth soundings, Science, 277, no. 5334, p. 1956-1962, https://doi.org/10.1126/science.277.5334.1956.

44. Soiland, H., L. Chafik, T. Rossby (2016) , On the long-term stability of the Lofoten Basin Eddy, J. Geophys. Res. Oceans, 121, p. 4438-4449, https://doi.org/10.1002/2016JC011726.

45. Shchepetkin, A. F. (1995) , Interaction of turbulent barotropic shallow-water flow with topography, 1995, Proceedings of Hawaiian Winter Aha Huliko'a Workshop, P. M\\"uller and D. Henderson (eds), p. 225-237, HI, Honolulu.

46. Travkin, V. S., T. V. Belonenko (2020) , Mixed layer depth in winter convection in the Lofoten Basin in the Norwegian Sea and assessment methods. Hydrometeorology and Ecology, Proceedings of the Russian State Hydrometeorological University, 59, p. 67-83, https://doi.org/10.33933/2074-2762-2020-59-67-83 (in Russian).

47. Voet, G., D. Quadfasel, et al. (2010) , The mid-depth circulation of the Nordic Seas derived from profiling float observations, Tellus A, 62, no. 4, p. 516-529, https://doi.org/10.1111/j.1600-0870.2010.00444.x.

48. Volkov, D. L., T. V. Belonenko, V. R. Foux (2013) , Puzzling over the dynamics of the Lofoten Basin - a sub-Arctic hot spot of ocean variability, Geophys. Res. Lett., 40, no. 4, p. 738-743, https://doi.org/10.1002/grl.50126.

49. Volkov, D. L., A. A. Kubryakov, R. Lumpkin (2015) , Formation and variability of the Lofoten basin vortex in a high-resolution ocean model, Deep-Sea Res. I, 105, p. 142-157, https://doi.org/10.1016/j.dsr.2015.09.001.

50. Yu, L.-S., A. Bosse, I. Fer, et al. (2017) , The Lofoten Basin eddy: Three years of evolution as observed by Seagliders, Journal of Geophysical Research: Oceans, 122, no. 8, p. 6814-6834, https://doi.org/10.1002/2017jc012982.

51. Zinchenko, V. A., S. M. Gordeeva, et al. (2019) , Analysis of Mesoscale eddies in the Lofoten Basin based on satellite altimetry, Fundamentalnaya i Prikladnaya Gidrofzika, 12, no. 3, p. 46-54, https://doi.org/10.7868/S2073667319030067.

Login or Create
* Forgot password?