In this work by implementing the method of colocalization the altimetry data and temperature and salinity profiles we provide a detailed study of the averaged thermohaline structure of the anticyclonic and cyclonic mesoscale eddies formed in the southern part of the Agulhas Current system. The observed intensification of eddy dissipation processes can be caused by the topographic barriers, such as the Agulhas Plateau or the Agulhas Ridge. In the eddies of both polarities significant temperature anomalies are concentrated within the distance of one radius from the eddy center and to the depth of ∼ 1500 m. The obtained averaged estimates of heat and salt transported by the Agulhas Rings is 2.38 × 1020 J and 4.79 × 1012 kg respectively. Westward propagation of the zonal eddy-induced transport for anticyclonic and cyclonic eddies is observed in the Agulhas Retroflection region, Cape Basin and in the central part of the shelf zone with the maximum values of 4 Sv/deg2 for anticyclonic eddies and 1.77 Sv/deg2 for cyclonic eddies.
Agulhas Rings, Agulhas Current, mesoscale eddies, altimetry
1. Arhan, M., H. Mercier, J. R. E. Lutjeharms (1999), The disparate evolution of three Agulhas rings in the South Atlantic Ocean, Journal of Geophysical Research Oceans, 104, No. C9, 987, Crossref
2. van Ballegooyen, R. C., et al. (1994), Eddy fluxes of heat and salt from the southwest Indian Ocean into the southeast Atlantic Ocean: A case study, Journal of Geophysical Research, 99, No. C7, 14,053-14,070, Crossref
3. Barnes, S. L. (1973), Mesoscale objective map analysis using weighted time-series observations (NOAA Tech. Memo. ERL NSSL-69, 60 pp. National Severe Storm Laboratory, Norman, OK
4. Belonenko, T., V. Zinchenko, et al. (2020), Evaluation of Heat and Salt Transports by Mesoscale Eddies in the Lofoten Basin, Russ. J. Earth Sci., 20, ES6011, Crossref
5. Boebel, O., J. R. E. Lutjeharms, et al. (2003), The Cape Cauldron: a regime of turbulent interocean exchange, Deep-Sea Research II, 50, No. 1, 57-86, Crossref
6. Byrne, D. A., A. L. Gordon, W. F. Haxby (1995), Agulhas eddies: A synoptic view using Geosat ERM data, Journal of Physical Oceanography, 25, No. 5, 902917, Crossref
7. Chaigneau, A., M. Le Texier, et al. (2011), Vertical structure of mesoscale eddies in the eastern South Pacific Ocean: A composite analysis from altimetry and Argo profiling floats, J. Geophys. Res., 116, C11025, Crossref
8. Chelton, D. B., M. G. Schlax, R. M. Samelson (2011), Global observations of nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167-216, Crossref
9. Chelton, D. B., M. G. Schlax, et al. (2007), Global observations of large oceanic eddies, Geophysical Research Letters, 34, 15, Crossref
10. Dencausse, G., M. Arhan, S. Speich (2010), Routes of Agulhas rings in the southeastern Cape Basin, Deep Sea Research Part I: Oceanographic Research Papers, 57, No. 11, 1406-1421, Crossref
11. Dong, D., P. Brandt, et al. (2017), Mesoscale eddies in the Northwestern Pacific Ocean: Three-dimensional eddy structures and heat/salt transports, Journal of Geophysical Research: Oceans, 122, 9795- 9813, Crossref
12. Dong, C., J. C. McWilliams, et al. (2014), Global heat and salt transports by eddy movement, Nature Communications, 3294, Crossref
13. Duncombe Rae, C., F. Shillington, et al. (1992), An Agulhas ring in the South Atlantic Ocean and its interaction with the Benguela upwelling frontal system, Deep Sea Research Part A. Oceanographic Research Papers, 39, 2009-2027, Crossref
14. Duncombe Rae, C., S. Garzoli, A. Gordon (1996), The eddy field of the southeast Atlantic Ocean: A statistical census from the Benguela Sources and Transports Project, J. Geophys. Res.: Oceans, 101, No. C5, 11,949-11,964, Crossref
15. Flierl, G. R. (1981), Particle motions in largeamplitude wave fields, Geophys. Astrophys. Fluid Dyn., 18, 39-74, Crossref
16. Garzoli, S. L., P. L. Richardson, et al. (1999), Three Agulhas rings observed during the Benguela Current Experiment, Journal of Geophysical Research, 104, 20,971-20,985, Crossref
17. Gordon, A. L., J. R. Lutjeharms, M. L. Griindlingh (1987), Stratification and circulation at the Agulhas Retroflection, Deep Sea Research Part A. Oceanographic Research Papers, 34, No. 4, 565- 599, Crossref
18. Hall, C., J. R. E. Lutjeharms (2011), Cyclonic eddies identified in the Cape Basin of the South Atlantic Ocean, J. Marine Systems, 85, 1-10, Crossref
19. He, Q., H. Zhan, et al. (2018), A new assessment of mesoscale eddies in the South China Sea: Surface features, three-dimensional structures, and thermohaline transports, Journal of Geophysical Research: Oceans, 123, 4906-4929, Crossref
20. Keppler, L., S. Cravatte, et al. (2018), Observed characteristics and vertical structure of mesoscale eddies in the southwest tropical Pacific, Journal of Geophysical Research: Oceans, 123, 2731-2756, Crossref
21. Kubryakov, A. A., A. V. Bagaev, et al. (2018), Thermohaline structure transport and evolution of the Black Sea eddies from hydrological and satellite data, Progress in Oceanography, 167, 44-63
22. Laxenaire, R., S. Speich, S. Alexandre (2019), Evolution of the thermohaline structure of one Agulhas Ring reconstructed from satellite altimetry and Argo floats, Journal of Geophysical Research: Oceans, 124, 8969-9003, Crossref
23. Lutjeharms, J. R. E. (2006), The Agulhas Current, 330 pp. Springer, Berlin, Heidelberg
24. Lutjeharms, J. R. E. (2007), Three decades of research on the greater Agulhas Current, Ocean Science, 3, No. 1, 129-147, Crossref
25. Lutjeharms, J. R. E., R. C. van Ballegooyen (1988), The retroflection of the Agulhas Current, J. Physical Oceanography, 18, 1570-1583, Crossref
26. Lutjeharms, J. R. E., H. R. Valentine (1988), Evidence for persistent Agulhas rings southwest of Cape Town, South African, J. Science, 84, 781-783
27. Malysheva, A. A., A. V. Koldunov, et al. (2018), Agulhas Leakage Eddies based on the altimetry data, Uchjonye Zapiski RGGMU, 52, 154-170. (in Russian)
28. McCartney, M. S., M. Woodgate-Jones (1991), A deep-reaching anticyclonic eddy in the subtropical gyre of the eastern South Atlantic, Deep Sea Research Part A. Oceanographic Research Papers, 38, 411- 443, Crossref
29. McDonagh, E. L., K. J. Heywood, M. P. Meredith (1999), On the structure, paths, and fluxes associated with Agulhas rings, Journal of Geophysical Research: Oceans, 104, No. C9, 21,007-21,020, Crossref
30. Monin, A. S., G. M. Zhiharev (1990), Ocean Eddies, Uspekhi Fizicheskikh Nauk, 160, No. 5, 1- 47, (in Russian)Crossref
31. Nencioli, F., G. Dall’Olmo, G. D. Quartly (2018), Agulhas ring transport efficiency from combined satellite altimetry and Argo profiles,Journal of Geophysical Research: Oceans, 123, No. 8, 5874-5888, Crossref
32. Sandalyuk, N. V., T. V. Belonenko (2018), Mesoscale vortex dynamics in the Agulhas Current from satellite altimetry data, Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 15, No. 5, 179-190, (in Russian)Crossref
33. Sandalyuk, N. V., A. Bosse, T. V. Belonenko (2020), The 3-D structure of mesoscale eddies in the Lofoten Basin of the Norwegian Sea: A composite analysis from altimetry and in situ data, Journal of Geophysical Research: Oceans, 125, e2020JC016331, Crossref
34. Schmid, C., O. Boebel, W. Zenk, et al. (2003), Early evolution of an Agulhas Ring, Deep Sea Research Part II: Topical Studies in Oceanography, 50, No. 1, 141-166, Crossref
35. Schouten, M. W., W. P. M. de Ruijter, et al. (2000), Translation, decay and splitting of Agulhas rings in the southeastern Atlantic Ocean, Journal of Geophysical Research, 105, No. C9, 21,913-21,925, Crossref
36. van Sebille, E., P. J. van Leeuwen (2007), Fast northward energy transfer in the Atlantic due to Agulhas rings, Journal of Physical Oceanography, 37, No. 9, 2305-2315, Crossref
37. van Sebille, E., P. J. van Leeuwen, et al. (2010), On the fast decay of Agulhas rings, J. Geophys. Res., 115, C03010, Crossref
38. Souza, J. M. A. C., C. de Boyer Montegut, et al. (2011), Estimation of the Agulhas ring impacts on meridional heat fluxes and transport using ARGO floats and satellite data, Geophysical Research Letters, 38, L21602, Crossref
39. de Souza, A. G. Q., R. Kerr, J. L. L. de Azevedo (2018), On the influence of subtropical mode water on the South Atlantic Ocean, Journal of Marine Systems, 185, 13-24, Crossref
40. Schlax, M. G., D. B. Chelton (2016), The “Growing Method” of Eddy Identification and Tracking in Two and Three Dimensions, College of Earth, Ocean and Atmospheric Sciences Oregon State University, Corvallis, Oregon
41. Travkin, V. S., T. V. Belonenko (2019), Seasonal variability of mesoscale eddies of the Lofoten Basin using satellite and model data, Russian Journal of Earth Sciences, 19, No. 5, ES5004, Crossref
42. Wells, N. C., V. O. Ivchenko, S. E. Best (2000), Instabilities in the Agulhas Retroflection Current system: A comparative model study, J. Geophys. Res., 105, No. C2, 3233-3241, Crossref
43. Williams, S., M. Hecht, et al. (2011), Visualization and analysis of eddies in a global ocean simulation, Comput. Graphics Forum, 30, 991-1000, Crossref
44. Willis, J. K., L.-L. Fu (2008), Combining altimeter and subsurface float data to estimate the time-averaged circulation in the upper ocean, J. Geophys. Res., 113, C12017, Crossref
45. Yang, G., F. Wang, et al. (2013), Mesoscale eddies in the northwestern subtropical Pacific Ocean: Statistical characteristics and three-dimensional structures, Journal of Geophysical Research: Oceans, 118, 1906-1925, Crossref
46. Yu, L.-S., A. Bosse, et al. (2017), The Lofoten Basin eddy: Three years of evolution as observed by Seagliders, J. Geophys. Res. Oceans, 122, 6814- 6834, Crossref
47. Zhang, Z., Y. Zhang, et al. (2013), Universal structure of mesoscale eddies in the ocean, Geophys. Res. Lett., 40, 3677-3681, Crossref