The North Atlantic is one of the key regions, where low-frequency climate variability is formed. However, despite numerous studies related to this topic, some issues still remains unsolved. One of them is the ambiguous cross-correlation of the North Atlantic sea surface temperature (SST) and the intensity of Atlantic Meridional Overturning Circulation (AMOC). A widely accepted concept suggests that the long-term climate variability is a result of the atmospheric stochastic forcing transformed by the inertial ocean. Existence of negative and positive feedback mechanisms suggests that the long-term North Atlantic dynamics may be considered as a damped stochastically forced oscillator in which both SST and AMOC are the elements of the same process. In this study, we analyze the cross-correlation functions of the main North Atlantic climatic indexes derived from a simple box-like stochastic model. The random forcing simulates the air-sea interface heat fluxes and excites both the SST and the AMOC. Stochastic excitation of the meridional circulation implies the leading AMOC and stochastic forcing of SST implies the leading Atlantic Multidecadal Oscillation (AMO). Connection of the AMOC and AMO indexes depends on the principal oceanic feedbacks and the dissipation intensity.
North Atlantic, stochastic forcing, variability, Atlantic Multidecadal Oscillation, cross-correlation
1. Ba, J., N. S. Keenlyside, W. Park, M. Latif, E. Hawkins, H. Ding (2013), A mechanism for Atlantic multidecadal variability in the Kiel Climate Model, Clim. Dyn., 41, p. 2133-2144, https://doi.org/10.1007/s00382-012-1633-4
2. Ba, J., N. S. Keenlyside, M. Latif, W. Park, H. Ding, K. Lohmann, J. Mignot, M. Menary, O. H. Ottera, B. Wouters, D. Salas y Melia, A. Oka, A. Bellucci, E. Volodin (2014), A multi-model comparison of Atlantic Multidecadal variability, Clim. Dyn., 43, p. 2333-2348, https://doi.org/10.1007/s00382-014-2056-1
3. Bekryaev, R. V. (2016), Atmospheric forcing and low-frequency North Atlantic variability, Proc. Voeikov Main Geophysical Observatory, 581, p. 41-76
4. Bellomo, K., L. N. Murphy, et al. (2018), Historical forcings as main drivers of the Atlantic Multidecadal variability in the CESM large ensemble, Clim. Dyn., 50, p. 3687-3698, https://doi.org/10.1007/s00382-017-3834-3
5. Booth, B. B. B., N. J. Dunstone, P. R. Halloran, T. Andrews, N. Bellouin (2012), Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability, Nature, 484, p. 228-233, https://doi.org/10.1038/nature10946
6. Born, A., T. F. Stocker (2014), Two stable equilibria of the Atlantic subpolar gyre, J. Phys. Oceanogr., 44, p. 246-264, https://doi.org/10.1175/JPO-D-13-073.1
7. Born, A., J. Mignot, T. F. Stocker (2015), Multiple equilibria as a possible mechanism for decadal variability in the North Atlantic ocean, J. Climate., 28, p. 8907-8922, https://doi.org/10.1175/JCLI-D-14-00813.1
8. Cane, M. A., A. C. Clement, et al. (2017), Low-pass filtering, heat flux, and Atlantic Multidecadal Variability, J. Climate, 30, p. 7529-7553, https://doi.org/10.1175/JCLI-D-16-0810.1
9. Cessi, P. (1994), A simple box model of stochastically forced thermohaline flow, J. Phys. Oceanogr., 24, p. 1911-1920, https://doi.org/10.1175/1520-0485(1994)024<1911:ASBMOS>2.0.CO;2
10. Chen, H., E. K. Schneider, Z. Wu (2016), Mechanisms of internally generated decadal-to-multidecadal variability of SST in the Atlantic Ocean in a coupled GCM, Clim. Dyn., 46, p. 1517-1546, https://doi.org/10.1007/s00382-015-2660-8
11. Chylek, P., C. Folland, L. Frankcombe, H. Dijkstra, G. Lesins, M. Dubey (2012), Greenland ice core evidence for spatial and temporal variability of the Atlantic Multidecadal Oscillations, Geophys. Res. Lett., 39, p. L09705, https://doi.org/10.1029/2012GL051241
12. Clement, A., K. Bellomo, L. N. Murphy, M. A. Cane, T. Mauritsen, G. Radel, B. Stevens (2015), The Atlantic Multidecadal Oscillation without a role for ocean circulation, Science, 350, no. 6258, p. 320-324, https://doi.org/10.1126/science.aab3980
13. Danabasoglu, G., S. G. Yeager, Y.-O. Kwon, J. J. Tribbia, A. S. Phillips, J. W. Hurrell (2012), Variability of the Atlantic Meridional Overturning Circulation in CCSM4, J. Climate, 25, p. 5153-5172, https://doi.org/10.1175/JCLI-D-11-00463.1
14. Day, J. J., J. C. Hargreaves, et al. (2012), Sources of multi-decadal variability in Arctic sea ice extent, Environ. Res. Lett., 7, no. 3, p. 034011, https://doi.org/10.1088/1748-9326/7/3/034011
15. Delworth, T. L., M. E. Mann (2000), Observed and simulated multidecadal variability in the Northern Hemisphere, Climate Dynamics, 16, no. 9, p. 661-676, https://doi.org/10.1007/s003820000075
16. Dijkstra, H. A., M. Ghil (2005), Low-frequency variability of the large-scale ocean circulation: A dynamical systems approach, Rev. Geophys., 43, p. RG3002, https://doi.org/10.1029/2002RG000122
17. Dijkstra, H. A., L. M. Frankcombe, A. S. v.d.Heydt (2008), A stochastic dynamical systems view of the Atlantic Multidecadal Oscillation, Phil. Trans. R. Soc., 366, p. 2545-2560, https://doi.org/10.1098/rsta.2008.0031
18. Dommenget, D., M. Latif (2008), Generation of hyper climate modes, Geophys. Res. Lett., 35, no. L02706, https://doi.org/10.1029/2007GL031087
19. Enfield, D. B., A. M. Mestas-Nunez, P. J. Trimble (2001), The Atlantic multidecadal oscillation and its relation to rainfall and river flows in the continental U.S., Geophys. Res. Lett., 28, no. 10, p. 2077-2080, https://doi.org/10.1029/2000GL012745
20. Frankcombe, L. M., A. von der Heydt, H. A. Dijkstra (2010), North Atlantic Multidecadal Climate variability: An Investigation of Dominant Time Scales and Processes, J. Climate., 23, p. 3626-3638, https://doi.org/10.1175/2010JCLI3471.1
21. Frankcombe, L. M., H. A. Dijkstra (2011), The role of Atlantic-Arctic exchange in North Atlantic multidecadal climate variability, Geophys. Res. Lett., 38, p. L16603, https://doi.org/10.1029/2011GL048158
22. Gastineau, G., B. L'Heveder, F. Codron, et al. (2016), Mechanisms determining the winter atmospheric response to the Atlantic overturning circulation, J. Climate, 29, p. 3767-3785, https://doi.org/10.1175/JCLI-D-15-0326.1
23. Gulev, S. K., M. Latif, N. Keenlyside, W. Park, K. P. Koltermann (2013), North Atlantic Ocean control on surface heat flux on multidecadal timescales, Nature, 499, p. 464-468, https://doi.org/10.1038/nature12268
24. Johns, W. E., M. O. Baringer, L. M. Beal, et al. (2011), Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5° N, J. Climate, 24, p. 2429-2449, https://doi.org/10.1175/2010JCLI3997.1
25. Knight, J. R., R. J. Allan, C. K. Folland, M. Vellinga, M. E. Mann (2005), A signature of persistent natural thermohaline circulation cycles in observed climate, Geophys. Res. Lett., 32, p. L20708, https://doi.org/10.1029/2005GL024233
26. Knight, J. R., C. K. Folland, A. A. Scaife (2006), Climate impacts of the Atlantic Multidecadal Oscillation, Geophys. Res. Lett., 33, p. L17706, https://doi.org/10.1029/2006GL026242
27. Legatt, R., I. V. Polyakov, U. S. Bhatt, X. Zhang, R. V. Bekryaev (2012), North Atlantic variability driven by stochastic forcing in a simple model, Tellus A, 64, p. 18695, https://doi.org/10.3402/tellusa.v64i0.18695
28. McCarthy, G. D., I. D. Haigh, J. J.-M. Hirshi, J. P. Grist, D. A. Smeed (2015), Ocean impact on decadal Atlantic climate variability revealed by sea-level observations, Nature, 521, no. 7553, p. 508-510, https://doi.org/10.1038/nature14491
29. Marini, C., C. Frankignoul (2014), An attempt to deconstruct the Atlantic Multidecadal Oscillation, Clim. Dyn., 43, p. 607-625, https://doi.org/10.1007/s00382-013-1852-3
30. Marshall, J., Y. Kushnir, D. Battisti, et al. (2001), North Atlantic climate variability: Phenomena, impacts and mechanisms, International Journal of Climatology, 21, p. 1863-1898, https://doi.org/10.1002/joc.693
31. Medhaug, I., T. Furevik (2011), North Atlantic 20th century multydecadal variability in coupled climate models: sea surface temperature and ocean overturning circulation, Ocean Science, 7, p. 389-404, https://doi.org/10.5194/os-7-389-2011
32. Muir, L. C., A. V. Fedorov (2015), How the AMOC affects ocean temperatures on decadal to centennial timescales: the North Atlantic versus an interhemispheric seesaw, Clim. Dyn., 45, p. 151-160, https://doi.org/10.1007/s00382-014-2443-7
33. d'Orgeville, M., W. R. Peltier (2007), On the Pacific Decadal Oscillation and the Atlantic Multidecadal Oscillation: Might they be related?, Geophys. Res. Lett., 34, p. L23705, https://doi.org/10.1029/2007GL031584
34. O'Reilly, C. H., M. Huber, T. Woollings, L. Zanna (2016), The signature of low-frequency oceanic forcing in the Atlantic Multidecadal Oscillation, Geophys. Res. Lett., 43, p. 2810-2818, https://doi.org/10.1002/2016GL067925
35. Ottera, O. H., M. Bentsen, H. Drange, L. Suo (2010), External forcing as a metronome for Atlantic multidecadal variability, Nature Geoscience, 3, p. 688-694, https://doi.org/10.1038/NGEO955
36. Park, W., M. Latif (2008), Multidecadal and multicentennial variability of the meridional overturning circulation, Geophys. Res. Lett., 35, p. L22703, https://doi.org/10.1029/2008GL035779
37. Park, W., M. Latif (2010), Pacific and Atlantic Multidecadal variability in the Kiel Climate Model, Geophys. Res. Lett., 37, p. L24702, https://doi.org/10.1029/2010GL045560
38. Polyakov, I. V., V. A. Alexeev, U. S. Bhatt, et al. (2010), North Atlantic warming: patterns of long-term trend and multidecadal variability, Clim. Dyn., 34, p. 439-457, https://doi.org/10.1007/s00382-008-0522-3
39. Rahmstorf, S. (1995), Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle, Nature, 378, p. 145-149, https://doi.org/10.1038/378145a0
40. Roberts, C. D., F. K. Garry, L. C. Jackson (2013), A multimodel study of sea surface temperature and subsurface density fingerprints of the Atlantic meridional overturning circulation, J. Climate, 26, p. 9155-9174, https://doi.org/10.1175/JCLI-D-12-00762.1
41. Schlesinger, M. E., N. Ramankutty (1994), An oscillation in the global climate system of period 65-70 years, Nature, 367, p. 723-726, https://doi.org/10.1038/367723a0
42. Sevellec, F., T. Huck (2015), Theoretical investigation of the Atlantic Multidecadal Oscillation, J. Phys. Oceanogr., 45, p. 2189-2208, https://doi.org/10.1175/JPO-D-14-0094.1
43. Sun, C., J. Li, F.-F. Jin (2015), A delayed oscillator model for the quasi-periodic multidecadal variability of the NAO, Climate Dynamics, 45, p. 2083-2099, https://doi.org/10.1007/s00382-014-2459-z
44. Sun, C., J. Li, F. Kucharski, J. Xue, X. Li (2019), Contrasting spatial structures of Atlantic Multidecadal Oscillation between observations and slab ocean model simulations, Climate Dynamics, 52, no. 3-4, p. 1395-1411, https://doi.org/10.1007/s00382-018-4201-8
45. Tandon, N. F., P. J. Kushner (2015), Does external forcing interfere with the AMOC's influence on North Atlantic sea surface temperature?, J. Climate, 28, p. 6309-6323, https://doi.org/10.1175/JCLI-D-14-00664.1
46. Trenberth, K. E., D. J. Shea (2006), Atlantic hurricanes and natural variability in 2005, Geophys. Res. Lett., 33, p. L12704, https://doi.org/10.1029/2006GL026894
47. Ushakov, K. V., R. A. Ibrayev (2018), Assessment of mean world ocean meridional heat transport characteristics by a high-resolution model, Russ. J. Earth. Sci., 18, p. ES1004, https://doi.org/10.2205/2018ES000616
48. Van Oldenborgh, G. J., L. A. te Raa, H. A. Dijkstra, S. Y. Philip (2009), Frequency- or amplitude-dependent effects of the Atlantic meridional overturning on the tropical Pacific Ocean, Ocean Sci., 5, p. 293-301, https://doi.org/10.5194/os-5-293-2009
49. Wang, C., L. Zhang (2013), Multidecadal ocean temperature and salinity variability in the tropical North Atlantic: Linking with the AMO, AMOC, and subtropical cell, J. Climate, 26, p. 6137-6162, https://doi.org/10.1175/JCLI-D-12-00721.1
50. Wei, W., G. Lohmann (2012), Simulated Atlantic Multidecadal Oscillation during the Holocene, J. Climate, 25, p. 6989-7002, https://doi.org/10.1175/JCLI-D-11-00667.1
51. Wills, R. C. J., K. C. Armour, D. S. Battisti, D. L. Hartmann (2019), Ocean-atmosphere dynamical coupling fundamental to the Atlantic Multidecadal Oscillation, J. Climate, 32, p. 251-272, https://doi.org/10.1175/JCLI-D-18-0269.1
52. Wouters, B., S. Drijfhout, W. Hazeleger (2012), Interdecadal North-Atlantic meridional overturning circulation variability in EC_EARTH, Clim. Dyn., 39, p. 2695-2712, https://doi.org/10.1007/s00382-012-1366-4
53. Zhang, L., C. Wang (2013), Multidecadal North Atlantic sea surface temperature and Atlantic meridional overturning circulation variability in CMIP5 historical simulations, J. Geophys. Res. Oceans, 118, p. 5772-5791, https://doi.org/10.1002/jgrc.20390
54. Zhang, R., T. L. Delworth, R. Sutton, et al. (2013), Have aerosols caused the observed Atlantic Multidecadal Variability?, J. Atmos. Sci., 70, p. 1135-1144, https://doi.org/10.1175/JAS-D-12-0331.1
55. Yaglom, A. M. (1987), Correlation Theory of Stationary and Related Random Functions, Volume I: Basic Results, Springer Series in Statistics, p. XIV, 526 pp., Springer, Dordrecht