HINDCAST OF THE MESOSCALE EDDY FIELD IN THE SOUTHEASTERN BALTIC SEA: MODEL OUTPUT VS SATELLITE IMAGERY
Abstract and keywords
Abstract (English):
An ultra-high resolution circulation model (0.125 nautical mile grid) of the Southeastern Baltic Sea is compiled from the General Estuarine Transport Model (GETM) in order to simulate the mesoscale eddy field in the area. The model results are compared with optical and infrared satellite imagery available for the period of May-August 2015. Mesoscale eddies detected in the satellite images are reasonably well identified in the simulated patterns of the sea surface temperature, currents, and floating Lagrangian particles.

Keywords:
Mesoscale eddy, Baltic Sea, numerical modeling, satellite imagery
Text
Publication text (PDF): Read Download
References

1. Bulycheva, E. V., A. V. Krek, A. G. Kostianoy, A. V. Semenov, A. Joksimovich (2016), Oil pollution in the Southeastern Baltic Sea by satellite remote sensing data in 2004-2015, Transport and Telecommunication, 17, no. 22, p. 155-163, https://doi.org/10.1515/ttj-2016-0015.

2. Bulycheva, E., I. Kuzmenko, V. Sivkov (2014), Annual sea surface oil pollution of the south-eastern part of the Baltic Sea by satellite data for 2006-2013, Baltica, Special Issue, 27, p. 9-14, https://doi.org/10.5200/baltica.2014.27.10.

3. Burchard, H., K. Bolding (2001), Comparative Analysis of Four Second-Moment Turbulence Closure Models for the Oceanic Mixed Layer, J. Phys. Oceanogr., 31, p. 1943-1968, https://doi.org/10.1175/1520-0485(2001)031%3C1943:CAOFSM%3E2.0.CO;2.

4. Burchard, H., K. Bolding (2002), GETM - a general estuarine transport model. Scientific documentation. Technical report EUR 20253en., European Commission, Ispra, Italy.

5. Canuto, V. M., et al. (2001), Ocean Turbulence. Part I: One-Point Closure Model-Momentum and Heat Vertical Diffusivities, J. Phys. Oceanogr., 31, p. 1413-1426, https://doi.org/10.1175/1520-0485(2001)031%3C1413:OTPIOP%3E2.0.CO;2.

6. Dabuleviciene, T., I.  Kozlov, D. Vaiciute, I. Dailidiene (2018), Remote sensing of coastal upwelling in the South-Eastern Baltic Sea: Statistical properties and implications for the coastal environment, Remote Sensing, 10, no. 11, p. 1752, https://doi.org/10.3390/rs10111752.

7. Elkin, D. N., A. G. Zatsepin (2013), Laboratory Investigation of the Mechanism of the Periodic Eddy Formation Behind Capes in a Coastal Sea, Oceanology, 53, no. 1, p. 24-35, https://doi.org/10.1134/S0001437012050062.

8. Ginzburg, A. I., E. V. Bulycheva, A. G. Kostianoy, D. M. Solovyov (2015a), Vortex Dynamics in the Southeastern Baltic Sea from Satellite Radar Data, Oceanology, 55, no. 6, p. 805-813, https://doi.org/10.1134/S0001437015060065.

9. Ginzburg, A. I., E. V. Bulycheva, A. G. Kostianoy, D. M. Solovyov (2015b), On the role of vortices in the transport of oil pollution in the Southeastern Baltic Sea (according to satellite monitoring), Current Problems in Remote Sensing of the Earth From Space, 12, no. 3, p. 149-157 (in Russian).

10. Ginzburg, A. I., A. G. Kostianoy, D. M. Soloviev, S. V. Stanichny (1998), Upwelling cyclonic eddies off south-western tip of the Crimea, Issledovanie Zemli iz Kosmosa, 3, p. 83-88 (in Russian).

11. Ginzburg, A. I., E. V. Krek, A. G. Kostianoy, D. M. Solovyev (2017), Evolution of mesoscale anticyclonic vortex and vortex dipoles/multipoles on its base in the south-eastern Baltic (satellite information May-July 2015), Journal of Oceanological Research, 45, no. 1, p. 10-22, https://doi.org/10.29006/1564-2291.JOR-2017.45(1).3 (in Russian).

12. Gräwe, U., P. Holtermann, K. Klingbeil, H. Burchard (2015), Advantages of vertically adaptive coordinates in numerical models of stratified shelf seas, Ocean Modelling, 92, p. 56-68, https://doi.org/10.1016/j.ocemod.2015.05.008.

13. Gurova, E., A. Lehmann, A. Ivanov (2013), Upwelling dynamics in the Baltic Sea studied by a combined SAR/infrared satellite data and circulation model analysis, Oceanologia, 55, no. 3, p. 687-707, https://doi.org/10.5697/oc.55-3.687.

14. Hofmeister, R., H. Burchard, J.-M. Beckers (2010), Non-uniform adaptive vertical grids for 3D numerical ocean models, Ocean Modelling, 33, no. 1-2, p. 70-86, https://doi.org/10.1016/j.ocemod.2009.12.003.

15. Johansson, J. (2018), Total and regional runoff to the Baltic Sea, HELCOM Baltic Sea Environment Fact Sheets, Online data, HELCOM, Helsinki, Finland (http://www.helcom.fi/baltic-sea-trends/ environment-fact-sheets/).

16. Karimova, S. S., O. Yu. Lavrova, D. M. Solov'ev (2012), Observation of Eddy Structures in the Baltic Sea with the Use of Radiolocation and Radiometric Satellite Data, Izvestiya, Atmospheric and Oceanic Physics, 48, no. 9, p. 1006-1013, https://doi.org/10.1134/S0001433812090071.

17. Kostianoy, A. G. (2017), Satellite monitoring of the ocean climate parameters. Part 1, Fundamental and Applied Climatology, 2, p. 27-49, https://doi.org/10.21513/2410-8758-2017-2-63-85 (in Russian).

18. Kostianoy, A. G., et al. (2006), Operational satellite monitoring of oil spill pollution in the southeastern Baltic Sea: 18 months experience, Environmental Research, Engineering and Management, 4, no. 38, p. 70-77.

19. Kostianoy, A. G., E. V. Bulycheva, A. V. Semenov, A. V. Krainyukov (2015), Satellite monitoring systems for shipping, and offshore oil and gas industry in the Baltic Sea, Transport and Telecommunication, 16, no. 2, p. 117-126, https://doi.org/10.1515/ttj-2015-0011.

20. Krauss, W., B. Brügge (1991), Wind-produced water exchange between the deep basins of the Baltic Sea, J. Phys. Oceanogr., 21, p. 373-384, https://doi.org/10.1175/1520-0485(1991)021%3C0373:WPWEBT%3E2.0.CO;2.

21. Krek, E., A. Kostianoy, A. Krek, A. V. Semenov (2018), Spatial distribution of oil spills at the sea surface in the Southeastern Baltic Sea according to satellite SAR data, Transport and Telecommunication, 19, no. 4, p. 294-300, https://doi.org/10.2478/ttj-2018-0024.

22. Lavrova, O. Yu., E. V. Krayushkin, K. R. Nazirova, A. Ya. Strochkov (2018), Vortex structures in the Southeastern Baltic Sea: Satellite observations and concurrent measurements, Proc. SPIE 10784, Remote Sensing of the Ocean, Sea Ice, Coastal Waters, and Large Water Regions 2018, 1078404 (5 October 2018), https://doi.org/10.1117/12.2325463.

23. Lavrova, O. Yu., A. G. Kostianoy, S. A. Lebedev, M. I. Mityagina, A. I. Ginzburg, N. A. Sheremet (2011), Complex Satellite Monitoring of the Russian Seas, 470 pp., IKI RAN, Moscow (in Russian).

24. Lavrova, O. Yu., M. I. Mityagina, A. G. Kostianoy (2016), Satellite Methods of Detection and Monitoring of Marine Zones of Ecological Risks, 336 pp., Space Research Institute, Moscow (in Russian).

25. Lehmann, A., K. Myrberg (2008), Upwelling in the Baltic Sea - A review, J. Mar. Syst., 74, p. S3-S12, https://doi.org/10.1016/j.jmarsys.2008.02.010.

26. Lips, U., V. Zhurbas, M. Skudra, G. Väli (2016), A numerical study of circulation in the Gulf of Riga, Baltic Sea. Part I: Whole-basin gyres and mean currents, Cont. Shelf Res., 112, p. 1-13, https://doi.org/10.1016/j.csr.2015.11.008.

27. Männik, A., M. Merilain (2007), Verification of different precipitation forecasts during extended winter-season in Estonia, HIRLAM Newsletter , 52, p. 65-70.

28. Munk, W. H., L. Armi, K. Fischer, F. Zachariasen (2000), Spirals on the sea, Proc. R. Soc. Lond., A 456, p. 1217-1280.

29. Myrberg, K., O. Andrejev (2003), Main upwelling regions in the Baltic Sea - A statistical analysis based on three-dimensional modeling, Boreal Environment Research, 8, no. 2, p. 97-112.

30. Umlauf, L., H. Burchard (2005), Second-order turbulence closure models for geophysical boundary layers. A review of recent work, Cont. Shelf Res., 25, no. 7-8, p. 795-827, https://doi.org/10.1016/j.csr.2004.08.004.

31. Väli, G., V. Zhurbas, U. Lips, J. Laanemets (2017), Submesoscale structures related to upwelling events in the Gulf of Finland, Baltic Sea (numerical experiments), J. Mar. Syst., 171, no. SI, p. 31-42, https://doi.org/10.1016/j.jmarsys.2016.06.010.

32. Väli, G., V. M. Zhurbas, J. Laanemets, U. Lips (2018), Clustering of floating particles due to submesoscale dynanics: a simulation study for the Gulf of Finland, Fundamentalnaya i Prikladnaya Gidrofizika, 11, no. 2, p. 21-35, https://doi.org/10.7868/S2073667318020028.

33. Vignudelli, S., A.  Kostianoy, P. Cipollini, J. Benveniste (eds.) (2011), Coastal Altimetry, 578 pp., Springer-Verlag, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-12796-0.

34. Zhurbas, V., J. Elken, V. Paka, J. Piechura, I. Chubarenko, N. Golenko, S. Shchuka (2012), Structure of unsteady overflow in the Slupsk Furrow of the Baltic Sea, J. Geophys. Res. - Oceans, 117, no. C04027, p. 1-17, https://doi.org/10.1029/2011JC007284.

35. Zhurbas, V. M., N. P. Kuzmina, D. A. Lyzhkov (2017), Eddy formation behind a coastal cape in a flow generated by transient longshore wind (numerical experiments), Oceanology, 57, no. 3, p. 350-359, https://doi.org/10.1134/S0001437017020229.

36. Zhurbas, V., I. S. Oh, T. Park (2006), Formation and decay of a longshore baroclinic jet associated with transient coastal upwelling and downwelling: A numerical study with applications to the Baltic Sea, J. Geophys. Res., 111, no. C04014, p. 1-18, https://doi.org/10.1029/2005JC003079.

37. Zhurbas, V., T. Stipa, P. Mälkki, I. Hense, V. Sklyarov, et al. (2004a), Generation of subsurface cyclonic eddies in the southeast Baltic Sea: Observations and numerical experiments, J. Geophys. Res., 109, no. C05033, p. 1-12, https://doi.org/10.1029/2003JC002074.

38. Zhurbas, V. M., T. Stipa, P. Mälkki, V. T. Paka, N. P. Kuzmina, V. E. Sklyarov (2004b), Mesoscale Variability of Upwelling in the South-East Baltic: Infrared Images and Numerical Modeling, Oceanology, 44, no. 5, p. 619-628.

39. Zhurbas, V., G. Väli, M. Golenko, V. Paka (2018), Variability of bottom friction velocity along the inflow water pathway in the Baltic Sea, J. Mar. Syst., 184, p. 50-58, https://doi.org/10.1016/j.jmarsys.2018.04.008.

Login or Create
* Forgot password?